/* mpfr_urandom (rop, state, rnd_mode) -- Generate a uniform pseudorandom real number between 0 and 1 (exclusive) and round it to the precision of rop according to the given rounding mode. Copyright 2000, 2001, 2002, 2003, 2004, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 Free Software Foundation, Inc. Contributed by the AriC and Caramel projects, INRIA. This file is part of the GNU MPFR Library. The GNU MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. The GNU MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #define MPFR_NEED_LONGLONG_H #include "mpfr-impl.h" /* generate one random bit */ static int random_rounding_bit (gmp_randstate_t rstate) { mp_limb_t r; mpfr_rand_raw (&r, rstate, 1); return r & MPFR_LIMB_ONE; } int mpfr_urandom (mpfr_ptr rop, gmp_randstate_t rstate, mpfr_rnd_t rnd_mode) { mpfr_limb_ptr rp; mpfr_prec_t nbits; mp_size_t nlimbs; mp_size_t n; mpfr_exp_t exp; mpfr_exp_t emin; int cnt; int inex; rp = MPFR_MANT (rop); nbits = MPFR_PREC (rop); nlimbs = MPFR_LIMB_SIZE (rop); MPFR_SET_POS (rop); exp = 0; emin = mpfr_get_emin (); if (MPFR_UNLIKELY (emin > 0)) { if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDA || (emin == 1 && rnd_mode == MPFR_RNDN && random_rounding_bit (rstate))) { mpfr_set_ui_2exp (rop, 1, emin - 1, rnd_mode); return +1; } else { MPFR_SET_ZERO (rop); return -1; } } /* Exponent */ #define DRAW_BITS 8 /* we draw DRAW_BITS at a time */ cnt = DRAW_BITS; MPFR_ASSERTN(DRAW_BITS <= GMP_NUMB_BITS); while (cnt == DRAW_BITS) { /* generate DRAW_BITS in rp[0] */ mpfr_rand_raw (rp, rstate, DRAW_BITS); if (MPFR_UNLIKELY (rp[0] == 0)) cnt = DRAW_BITS; else { count_leading_zeros (cnt, rp[0]); cnt -= GMP_NUMB_BITS - DRAW_BITS; } if (MPFR_UNLIKELY (exp < emin + cnt)) { /* To get here, we have been drawing more than -emin zeros in a row, then return 0 or the smallest representable positive number. The rounding to nearest mode is subtle: If exp - cnt == emin - 1, the rounding bit is set, except if cnt == DRAW_BITS in which case the rounding bit is outside rp[0] and must be generated. */ if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDA || (rnd_mode == MPFR_RNDN && cnt == exp - emin - 1 && (cnt != DRAW_BITS || random_rounding_bit (rstate)))) { mpfr_set_ui_2exp (rop, 1, emin - 1, rnd_mode); return +1; } else { MPFR_SET_ZERO (rop); return -1; } } exp -= cnt; } MPFR_EXP (rop) = exp; /* Warning: may be outside the current exponent range */ /* Significand: we need generate only nbits-1 bits, since the most significant is 1 */ mpfr_rand_raw (rp, rstate, nbits - 1); n = nlimbs * GMP_NUMB_BITS - nbits; if (MPFR_LIKELY (n != 0)) /* this will put the low bits to zero */ mpn_lshift (rp, rp, nlimbs, n); /* Set the msb to 1 since it was fixed by the exponent choice */ rp[nlimbs - 1] |= MPFR_LIMB_HIGHBIT; /* Rounding */ if (rnd_mode == MPFR_RNDU || rnd_mode == MPFR_RNDA || (rnd_mode == MPFR_RNDN && random_rounding_bit (rstate))) { /* Take care of the exponent range: it may have been reduced */ if (exp < emin) mpfr_set_ui_2exp (rop, 1, emin - 1, rnd_mode); else if (exp > mpfr_get_emax ()) mpfr_set_inf (rop, +1); /* overflow, flag set by mpfr_check_range */ else mpfr_nextabove (rop); inex = +1; } else inex = -1; return mpfr_check_range (rop, inex, rnd_mode); }