/* $NetBSD: catrigl.c,v 1.2 2017/05/07 21:59:06 christos Exp $ */ /*- * Copyright (c) 2012 Stephen Montgomery-Smith * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * The algorithm is very close to that in "Implementing the complex arcsine * and arccosine functions using exception handling" by T. E. Hull, Thomas F. * Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on * Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335, * http://dl.acm.org/citation.cfm?id=275324. * * The code for catrig.c contains complete comments. */ #include __RCSID("$NetBSD: catrigl.c,v 1.2 2017/05/07 21:59:06 christos Exp $"); #include "namespace.h" #ifdef __weak_alias __weak_alias(casinl, _casinl) #endif #ifdef __weak_alias __weak_alias(catanl, _catanl) #endif #include #include #include #include #ifdef notyet // missing log1pl __HAVE_LONG_DOUBLE #include "math_private.h" #undef isinf #define isinf(x) (fabsl(x) == INFINITY) #undef isnan #define isnan(x) ((x) != (x)) #define raise_inexact() do { volatile float junk __unused = /*LINTED*/1 + tiny; } while(/*CONSTCOND*/0) #undef signbit #define signbit(x) (__builtin_signbitl(x)) #if __HAVE_LONG_DOUBLE + 0 == 128 // Ok #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 // XXX: Byte order #define EXT_EXPBITS 15 struct ieee_ext { uint64_t ext_frac; uint16_t ext_exp:EXT_EXPBITS; uint16_t ext_sign:1; uint16_t ext_pad; }; #define extu_exp extu_ext.ext_exp #define extu_sign extu_ext.ext_sign #define extu_frac extu_ext.ext_frac union ieee_ext_u { long double extu_ld; struct ieee_ext extu_ext; }; #else #error "unsupported long double format" #endif #define GET_LDBL_EXPSIGN(r, s) \ do { \ union ieee_ext_u u; \ u.extu_ld = s; \ r = u.extu_sign; \ r >>= EXT_EXPBITS - 1; \ } while (/*CONSTCOND*/0) #define SET_LDBL_EXPSIGN(s, r) \ do { \ union ieee_ext_u u; \ u.extu_ld = s; \ u.extu_exp &= __BITS(0, EXT_EXPBITS - 1); \ u.extu_exp |= (r) << (EXT_EXPBITS - 1); \ s = u.extu_ld; \ } while (/*CONSTCOND*/0) static const long double A_crossover = 10, B_crossover = 0.6417, FOUR_SQRT_MIN = 0x1p-8189L, QUARTER_SQRT_MAX = 0x1p8189L, RECIP_EPSILON = 1/LDBL_EPSILON, SQRT_MIN = 0x1p-8191L; static const long double m_e = 2.71828182845904523536028747135266250e0L, /* 0x15bf0a8b1457695355fb8ac404e7a.0p-111 */ m_ln2 = 6.93147180559945309417232121458176568e-1L, /* 0x162e42fefa39ef35793c7673007e6.0p-113 */ pio2_hi = 1.5707963267948966192313216916397514L, /* pi/2 */ SQRT_3_EPSILON = 2.40370335797945490975336727199878124e-17L, /* 0x1bb67ae8584caa73b25742d7078b8.0p-168 */ SQRT_6_EPSILON = 3.39934988877629587239082586223300391e-17L; /* 0x13988e1409212e7d0321914321a55.0p-167 */ static const volatile double pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */ static const volatile float tiny = 0x1p-100; static long double complex clog_for_large_values(long double complex z); inline static long double f(long double a, long double b, long double hypot_a_b) { if (b < 0) return ((hypot_a_b - b) / 2); if (b == 0) return (a / 2); return (a * a / (hypot_a_b + b) / 2); } inline static void do_hard_work(long double x, long double y, long double *rx, int *B_is_usable, long double *B, long double *sqrt_A2my2, long double *new_y) { long double R, S, A; long double Am1, Amy; R = hypotl(x, y+1); S = hypotl(x, y-1); A = (R + S) / 2; if (A < 1) A = 1; if (A < A_crossover) { if (y == 1 && x < LDBL_EPSILON*LDBL_EPSILON/128) { *rx = sqrtl(x); } else if (x >= LDBL_EPSILON * fabsl(y-1)) { Am1 = f(x, 1+y, R) + f(x, 1-y, S); *rx = log1pl(Am1 + sqrtl(Am1*(A+1))); } else if (y < 1) { *rx = x/sqrtl((1-y)*(1+y)); } else { *rx = log1pl((y-1) + sqrtl((y-1)*(y+1))); } } else *rx = logl(A + sqrtl(A*A-1)); *new_y = y; if (y < FOUR_SQRT_MIN) { *B_is_usable = 0; *sqrt_A2my2 = A * (2 / LDBL_EPSILON); *new_y= y * (2 / LDBL_EPSILON); return; } *B = y/A; *B_is_usable = 1; if (*B > B_crossover) { *B_is_usable = 0; if (y == 1 && x < LDBL_EPSILON/128) { *sqrt_A2my2 = sqrtl(x)*sqrtl((A+y)/2); } else if (x >= LDBL_EPSILON * fabsl(y-1)) { Amy = f(x, y+1, R) + f(x, y-1, S); *sqrt_A2my2 = sqrtl(Amy*(A+y)); } else if (y > 1) { *sqrt_A2my2 = x * (4/LDBL_EPSILON/LDBL_EPSILON) * y / sqrtl((y+1)*(y-1)); *new_y = y * (4/LDBL_EPSILON/LDBL_EPSILON); } else { *sqrt_A2my2 = sqrtl((1-y)*(1+y)); } } } long double complex casinhl(long double complex z) { long double x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y; int B_is_usable; long double complex w; x = creall(z); y = cimagl(z); ax = fabsl(x); ay = fabsl(y); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXL(x, y+y)); if (isinf(y)) return (CMPLXL(y, x+x)); if (y == 0) return (CMPLXL(x+x, y)); return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { if (signbit(x) == 0) w = clog_for_large_values(z) + m_ln2; else w = clog_for_large_values(-z) + m_ln2; return (CMPLXL(copysignl(creall(w), x), copysignl(cimagl(w), y))); } if (x == 0 && y == 0) return (z); raise_inexact(); if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4) return (z); do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y); if (B_is_usable) ry = asinl(B); else ry = atan2l(new_y, sqrt_A2my2); return (CMPLXL(copysignl(rx, x), copysignl(ry, y))); } long double complex casinl(long double complex z) { long double complex w = casinhl(CMPLXL(cimagl(z), creall(z))); return (CMPLXL(cimagl(w), creall(w))); } long double complex cacosl(long double complex z) { long double x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x; int sx, sy; int B_is_usable; long double complex w; x = creall(z); y = cimagl(z); sx = signbit(x); sy = signbit(y); ax = fabsl(x); ay = fabsl(y); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXL(y+y, -INFINITY)); if (isinf(y)) return (CMPLXL(x+x, -y)); if (x == 0) return (CMPLXL(pio2_hi + pio2_lo, y+y)); return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) { w = clog_for_large_values(z); rx = fabsl(cimagl(w)); ry = creall(w) + m_ln2; if (sy == 0) ry = -ry; return (CMPLXL(rx, ry)); } if (x == 1 && y == 0) return (CMPLXL(0, -y)); raise_inexact(); if (ax < SQRT_6_EPSILON/4 && ay < SQRT_6_EPSILON/4) return (CMPLXL(pio2_hi - (x - pio2_lo), -y)); do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x); if (B_is_usable) { if (sx==0) rx = acosl(B); else rx = acosl(-B); } else { if (sx==0) rx = atan2l(sqrt_A2mx2, new_x); else rx = atan2l(sqrt_A2mx2, -new_x); } if (sy==0) ry = -ry; return (CMPLXL(rx, ry)); } long double complex cacoshl(long double complex z) { long double complex w; long double rx, ry; w = cacosl(z); rx = creall(w); ry = cimagl(w); if (isnan(rx) && isnan(ry)) return (CMPLXL(ry, rx)); if (isnan(rx)) return (CMPLXL(fabsl(ry), rx)); if (isnan(ry)) return (CMPLXL(ry, ry)); return (CMPLXL(fabsl(ry), copysignl(rx, cimagl(z)))); } static long double complex clog_for_large_values(long double complex z) { long double x, y; long double ax, ay, t; x = creall(z); y = cimagl(z); ax = fabsl(x); ay = fabsl(y); if (ax < ay) { t = ax; ax = ay; ay = t; } if (ax > LDBL_MAX / 2) return (CMPLXL(logl(hypotl(x / m_e, y / m_e)) + 1, atan2l(y, x))); if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN) return (CMPLXL(logl(hypotl(x, y)), atan2l(y, x))); return (CMPLXL(logl(ax*ax + ay*ay) / 2, atan2l(y, x))); } inline static long double sum_squares(long double x, long double y) { if (y < SQRT_MIN) return (x*x); return (x*x + y*y); } inline static long double real_part_reciprocal(long double x, long double y) { long double scale; uint16_t hx, hy; int16_t ix, iy; GET_LDBL_EXPSIGN(hx, x); ix = hx & 0x7fff; GET_LDBL_EXPSIGN(hy, y); iy = hy & 0x7fff; #define BIAS (LDBL_MAX_EXP - 1) #define CUTOFF (LDBL_MANT_DIG / 2 + 1) if (ix - iy >= CUTOFF || isinf(x)) return (1/x); if (iy - ix >= CUTOFF) return (x/y/y); if (ix <= BIAS + LDBL_MAX_EXP / 2 - CUTOFF) return (x/(x*x + y*y)); scale = 1; SET_LDBL_EXPSIGN(scale, 0x7fff - ix); x *= scale; y *= scale; return (x/(x*x + y*y) * scale); } long double complex catanhl(long double complex z) { long double x, y, ax, ay, rx, ry; x = creall(z); y = cimagl(z); ax = fabsl(x); ay = fabsl(y); if (y == 0 && ax <= 1) return (CMPLXL(atanhl(x), y)); /* XXX need atanhl() */ if (x == 0) return (CMPLXL(x, atanl(y))); if (isnan(x) || isnan(y)) { if (isinf(x)) return (CMPLXL(copysignl(0, x), y+y)); if (isinf(y)) return (CMPLXL(copysignl(0, x), copysignl(pio2_hi + pio2_lo, y))); return (CMPLXL(x+0.0L+(y+0), x+0.0L+(y+0))); } if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) return (CMPLXL(real_part_reciprocal(x, y), copysignl(pio2_hi + pio2_lo, y))); if (ax < SQRT_3_EPSILON/2 && ay < SQRT_3_EPSILON/2) { raise_inexact(); return (z); } if (ax == 1 && ay < LDBL_EPSILON) { #if 0 if (ay > 2*LDBL_MIN) rx = - logl(ay/2) / 2; else #endif rx = - (logl(ay) - m_ln2) / 2; } else rx = log1pl(4*ax / sum_squares(ax-1, ay)) / 4; if (ax == 1) ry = atan2l(2, -ay) / 2; else if (ay < LDBL_EPSILON) ry = atan2l(2*ay, (1-ax)*(1+ax)) / 2; else ry = atan2l(2*ay, (1-ax)*(1+ax) - ay*ay) / 2; return (CMPLXL(copysignl(rx, x), copysignl(ry, y))); } long double complex catanl(long double complex z) { long double complex w = catanhl(CMPLXL(cimagl(z), creall(z))); return (CMPLXL(cimagl(w), creall(w))); } #else __strong_alias(_casinl, casin) __strong_alias(_catanl, catan) __strong_alias(cacoshl, cacosh) __strong_alias(cacosl, cacos) __strong_alias(casinhl, casinh) __strong_alias(catanhl, catanh) #endif