/* $NetBSD: tc_bus_mem.c,v 1.37 2016/08/03 17:16:07 christos Exp $ */ /* * Copyright (c) 1996 Carnegie-Mellon University. * All rights reserved. * * Author: Chris G. Demetriou * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* * Common TurboChannel Chipset "bus memory" functions. */ #include /* RCS ID & Copyright macro defns */ __KERNEL_RCSID(0, "$NetBSD: tc_bus_mem.c,v 1.37 2016/08/03 17:16:07 christos Exp $"); #include #include #include #include #include #include #include #define __C(A,B) __CONCAT(A,B) /* mapping/unmapping */ int tc_mem_map(void *, bus_addr_t, bus_size_t, int, bus_space_handle_t *, int); void tc_mem_unmap(void *, bus_space_handle_t, bus_size_t, int); int tc_mem_subregion(void *, bus_space_handle_t, bus_size_t, bus_size_t, bus_space_handle_t *); int tc_mem_translate(void *, bus_addr_t, bus_size_t, int, struct alpha_bus_space_translation *); int tc_mem_get_window(void *, int, struct alpha_bus_space_translation *); /* allocation/deallocation */ int tc_mem_alloc(void *, bus_addr_t, bus_addr_t, bus_size_t, bus_size_t, bus_addr_t, int, bus_addr_t *, bus_space_handle_t *); void tc_mem_free(void *, bus_space_handle_t, bus_size_t); /* get kernel virtual address */ void * tc_mem_vaddr(void *, bus_space_handle_t); /* mmap for user */ paddr_t tc_mem_mmap(void *, bus_addr_t, off_t, int, int); /* barrier */ static inline void tc_mem_barrier(void *, bus_space_handle_t, bus_size_t, bus_size_t, int); /* read (single) */ static inline uint8_t tc_mem_read_1(void *, bus_space_handle_t, bus_size_t); static inline uint16_t tc_mem_read_2(void *, bus_space_handle_t, bus_size_t); static inline uint32_t tc_mem_read_4(void *, bus_space_handle_t, bus_size_t); static inline uint64_t tc_mem_read_8(void *, bus_space_handle_t, bus_size_t); /* read multiple */ void tc_mem_read_multi_1(void *, bus_space_handle_t, bus_size_t, uint8_t *, bus_size_t); void tc_mem_read_multi_2(void *, bus_space_handle_t, bus_size_t, uint16_t *, bus_size_t); void tc_mem_read_multi_4(void *, bus_space_handle_t, bus_size_t, uint32_t *, bus_size_t); void tc_mem_read_multi_8(void *, bus_space_handle_t, bus_size_t, uint64_t *, bus_size_t); /* read region */ void tc_mem_read_region_1(void *, bus_space_handle_t, bus_size_t, uint8_t *, bus_size_t); void tc_mem_read_region_2(void *, bus_space_handle_t, bus_size_t, uint16_t *, bus_size_t); void tc_mem_read_region_4(void *, bus_space_handle_t, bus_size_t, uint32_t *, bus_size_t); void tc_mem_read_region_8(void *, bus_space_handle_t, bus_size_t, uint64_t *, bus_size_t); /* write (single) */ static inline void tc_mem_write_1(void *, bus_space_handle_t, bus_size_t, uint8_t); static inline void tc_mem_write_2(void *, bus_space_handle_t, bus_size_t, uint16_t); static inline void tc_mem_write_4(void *, bus_space_handle_t, bus_size_t, uint32_t); static inline void tc_mem_write_8(void *, bus_space_handle_t, bus_size_t, uint64_t); /* write multiple */ void tc_mem_write_multi_1(void *, bus_space_handle_t, bus_size_t, const uint8_t *, bus_size_t); void tc_mem_write_multi_2(void *, bus_space_handle_t, bus_size_t, const uint16_t *, bus_size_t); void tc_mem_write_multi_4(void *, bus_space_handle_t, bus_size_t, const uint32_t *, bus_size_t); void tc_mem_write_multi_8(void *, bus_space_handle_t, bus_size_t, const uint64_t *, bus_size_t); /* write region */ void tc_mem_write_region_1(void *, bus_space_handle_t, bus_size_t, const uint8_t *, bus_size_t); void tc_mem_write_region_2(void *, bus_space_handle_t, bus_size_t, const uint16_t *, bus_size_t); void tc_mem_write_region_4(void *, bus_space_handle_t, bus_size_t, const uint32_t *, bus_size_t); void tc_mem_write_region_8(void *, bus_space_handle_t, bus_size_t, const uint64_t *, bus_size_t); /* set multiple */ void tc_mem_set_multi_1(void *, bus_space_handle_t, bus_size_t, uint8_t, bus_size_t); void tc_mem_set_multi_2(void *, bus_space_handle_t, bus_size_t, uint16_t, bus_size_t); void tc_mem_set_multi_4(void *, bus_space_handle_t, bus_size_t, uint32_t, bus_size_t); void tc_mem_set_multi_8(void *, bus_space_handle_t, bus_size_t, uint64_t, bus_size_t); /* set region */ void tc_mem_set_region_1(void *, bus_space_handle_t, bus_size_t, uint8_t, bus_size_t); void tc_mem_set_region_2(void *, bus_space_handle_t, bus_size_t, uint16_t, bus_size_t); void tc_mem_set_region_4(void *, bus_space_handle_t, bus_size_t, uint32_t, bus_size_t); void tc_mem_set_region_8(void *, bus_space_handle_t, bus_size_t, uint64_t, bus_size_t); /* copy */ void tc_mem_copy_region_1(void *, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t); void tc_mem_copy_region_2(void *, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t); void tc_mem_copy_region_4(void *, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t); void tc_mem_copy_region_8(void *, bus_space_handle_t, bus_size_t, bus_space_handle_t, bus_size_t, bus_size_t); static struct alpha_bus_space tc_mem_space = { /* cookie */ NULL, /* mapping/unmapping */ tc_mem_map, tc_mem_unmap, tc_mem_subregion, tc_mem_translate, tc_mem_get_window, /* allocation/deallocation */ tc_mem_alloc, tc_mem_free, /* get kernel virtual address */ tc_mem_vaddr, /* mmap for user */ tc_mem_mmap, /* barrier */ tc_mem_barrier, /* read (single) */ tc_mem_read_1, tc_mem_read_2, tc_mem_read_4, tc_mem_read_8, /* read multiple */ tc_mem_read_multi_1, tc_mem_read_multi_2, tc_mem_read_multi_4, tc_mem_read_multi_8, /* read region */ tc_mem_read_region_1, tc_mem_read_region_2, tc_mem_read_region_4, tc_mem_read_region_8, /* write (single) */ tc_mem_write_1, tc_mem_write_2, tc_mem_write_4, tc_mem_write_8, /* write multiple */ tc_mem_write_multi_1, tc_mem_write_multi_2, tc_mem_write_multi_4, tc_mem_write_multi_8, /* write region */ tc_mem_write_region_1, tc_mem_write_region_2, tc_mem_write_region_4, tc_mem_write_region_8, /* set multiple */ tc_mem_set_multi_1, tc_mem_set_multi_2, tc_mem_set_multi_4, tc_mem_set_multi_8, /* set region */ tc_mem_set_region_1, tc_mem_set_region_2, tc_mem_set_region_4, tc_mem_set_region_8, /* copy */ tc_mem_copy_region_1, tc_mem_copy_region_2, tc_mem_copy_region_4, tc_mem_copy_region_8, }; bus_space_tag_t tc_bus_mem_init(void *memv) { bus_space_tag_t h = &tc_mem_space; h->abs_cookie = memv; return (h); } /* ARGSUSED */ int tc_mem_translate(void *v, bus_addr_t memaddr, bus_size_t memlen, int flags, struct alpha_bus_space_translation *abst) { return (EOPNOTSUPP); } /* ARGSUSED */ int tc_mem_get_window(void *v, int window, struct alpha_bus_space_translation *abst) { return (EOPNOTSUPP); } /* ARGSUSED */ int tc_mem_map(void *v, bus_addr_t memaddr, bus_size_t memsize, int flags, bus_space_handle_t *memhp, int acct) { int cacheable = flags & BUS_SPACE_MAP_CACHEABLE; int linear = flags & BUS_SPACE_MAP_LINEAR; /* Requests for linear uncacheable space can't be satisfied. */ if (linear && !cacheable) return (EOPNOTSUPP); if (memaddr & 0x7) panic("%s: need 8 byte alignment", __func__); if (cacheable) *memhp = ALPHA_PHYS_TO_K0SEG(memaddr); else *memhp = ALPHA_PHYS_TO_K0SEG(TC_DENSE_TO_SPARSE(memaddr)); return (0); } /* ARGSUSED */ void tc_mem_unmap(void *v, bus_space_handle_t memh, bus_size_t memsize, int acct) { /* XXX XX XXX nothing to do. */ } int tc_mem_subregion(void *v, bus_space_handle_t memh, bus_size_t offset, bus_size_t size, bus_space_handle_t *nmemh) { /* Disallow subregioning that would make the handle unaligned. */ if ((offset & 0x7) != 0) return (1); if ((memh & TC_SPACE_SPARSE) != 0) *nmemh = memh + (offset << 1); else *nmemh = memh + offset; return (0); } int tc_mem_alloc(void *v, bus_addr_t rstart, bus_addr_t rend, bus_size_t size, bus_size_t align, bus_size_t boundary, int flags, bus_addr_t *addrp, bus_space_handle_t *bshp) { /* XXX XXX XXX XXX XXX XXX */ panic("%s: unimplemented", __func__); } void tc_mem_free(void *v, bus_space_handle_t bsh, bus_size_t size) { /* XXX XXX XXX XXX XXX XXX */ panic("%s: unimplemented", __func__); } void * tc_mem_vaddr(void *v, bus_space_handle_t bsh) { #ifdef DIAGNOSTIC if ((bsh & TC_SPACE_SPARSE) != 0) { /* * tc_mem_map() catches linear && !cacheable, * so we shouldn't come here */ panic("%s: can't do sparse", __func__); } #endif return ((void *)bsh); } paddr_t tc_mem_mmap(void *v, bus_addr_t addr, off_t off, int prot, int flags) { int linear = flags & BUS_SPACE_MAP_LINEAR; bus_addr_t rv; if (linear) rv = addr + off; else rv = TC_DENSE_TO_SPARSE(addr + off); return (alpha_btop(rv)); } static inline void tc_mem_barrier(void *v, bus_space_handle_t h, bus_size_t o, bus_size_t l, int f) { if ((f & BUS_SPACE_BARRIER_READ) != 0) alpha_mb(); else if ((f & BUS_SPACE_BARRIER_WRITE) != 0) alpha_wmb(); } /* * https://web-docs.gsi.de/~kraemer/COLLECTION/DEC/d3syspmb.pdf * http://h20565.www2.hpe.com/hpsc/doc/public/display?docId=emr_na-c04623255 */ #define TC_SPARSE_PTR(memh, off) \ ((void *)((memh) + ((off & ((bus_size_t)-1 << 2)) << 1))) static inline uint8_t tc_mem_read_1(void *v, bus_space_handle_t memh, bus_size_t off) { alpha_mb(); /* XXX XXX XXX */ if ((memh & TC_SPACE_SPARSE) != 0) { volatile uint32_t *p; p = TC_SPARSE_PTR(memh, off); return ((*p >> ((off & 3) << 3)) & 0xff); } else { volatile uint8_t *p; p = (uint8_t *)(memh + off); return (*p); } } static inline uint16_t tc_mem_read_2(void *v, bus_space_handle_t memh, bus_size_t off) { alpha_mb(); /* XXX XXX XXX */ if ((memh & TC_SPACE_SPARSE) != 0) { volatile uint32_t *p; p = TC_SPARSE_PTR(memh, off); return ((*p >> ((off & 2) << 3)) & 0xffff); } else { volatile uint16_t *p; p = (uint16_t *)(memh + off); return (*p); } } static inline uint32_t tc_mem_read_4(void *v, bus_space_handle_t memh, bus_size_t off) { volatile uint32_t *p; alpha_mb(); /* XXX XXX XXX */ if ((memh & TC_SPACE_SPARSE) != 0) /* Nothing special to do for 4-byte sparse space accesses */ p = (uint32_t *)(memh + (off << 1)); else /* * LDL to a dense space address always results in two * TURBOchannel I/O read transactions to consecutive longword * addresses. Use caution in dense space if the option has * registers with read side effects. */ p = (uint32_t *)(memh + off); return (*p); } static inline uint64_t tc_mem_read_8(void *v, bus_space_handle_t memh, bus_size_t off) { volatile uint64_t *p; alpha_mb(); /* XXX XXX XXX */ if ((memh & TC_SPACE_SPARSE) != 0) panic("%s: not implemented for sparse space", __func__); p = (uint64_t *)(memh + off); return (*p); } #define tc_mem_read_multi_N(BYTES,TYPE) \ void \ __C(tc_mem_read_multi_,BYTES)( \ void *v, \ bus_space_handle_t h, \ bus_size_t o, \ TYPE *a, \ bus_size_t c) \ { \ \ while (c-- > 0) { \ tc_mem_barrier(v, h, o, sizeof *a, BUS_SPACE_BARRIER_READ); \ *a++ = __C(tc_mem_read_,BYTES)(v, h, o); \ } \ } tc_mem_read_multi_N(1,uint8_t) tc_mem_read_multi_N(2,uint16_t) tc_mem_read_multi_N(4,uint32_t) tc_mem_read_multi_N(8,uint64_t) #define tc_mem_read_region_N(BYTES,TYPE) \ void \ __C(tc_mem_read_region_,BYTES)( \ void *v, \ bus_space_handle_t h, \ bus_size_t o, \ TYPE *a, \ bus_size_t c) \ { \ \ while (c-- > 0) { \ *a++ = __C(tc_mem_read_,BYTES)(v, h, o); \ o += sizeof *a; \ } \ } tc_mem_read_region_N(1,uint8_t) tc_mem_read_region_N(2,uint16_t) tc_mem_read_region_N(4,uint32_t) tc_mem_read_region_N(8,uint64_t) #define TC_SPARSE_WR_PVAL(msk, b, v) \ ((UINT64_C(msk) << (32 + (b))) | ((uint64_t)(v) << ((b) << 3))) static inline void tc_mem_write_1(void *v, bus_space_handle_t memh, bus_size_t off, uint8_t val) { if ((memh & TC_SPACE_SPARSE) != 0) { volatile uint64_t *p; p = TC_SPARSE_PTR(memh, off); *p = TC_SPARSE_WR_PVAL(0x1, off & 3, val); } else panic("%s: not implemented for dense space", __func__); alpha_mb(); /* XXX XXX XXX */ } static inline void tc_mem_write_2(void *v, bus_space_handle_t memh, bus_size_t off, uint16_t val) { if ((memh & TC_SPACE_SPARSE) != 0) { volatile uint64_t *p; p = TC_SPARSE_PTR(memh, off); *p = TC_SPARSE_WR_PVAL(0x3, off & 2, val); } else panic("%s: not implemented for dense space", __func__); alpha_mb(); /* XXX XXX XXX */ } static inline void tc_mem_write_4(void *v, bus_space_handle_t memh, bus_size_t off, uint32_t val) { volatile uint32_t *p; if ((memh & TC_SPACE_SPARSE) != 0) /* Nothing special to do for 4-byte sparse space accesses */ p = (uint32_t *)(memh + (off << 1)); else p = (uint32_t *)(memh + off); *p = val; alpha_mb(); /* XXX XXX XXX */ } static inline void tc_mem_write_8(void *v, bus_space_handle_t memh, bus_size_t off, uint64_t val) { volatile uint64_t *p; if ((memh & TC_SPACE_SPARSE) != 0) panic("%s: not implemented for sparse space", __func__); p = (uint64_t *)(memh + off); *p = val; alpha_mb(); /* XXX XXX XXX */ } #define tc_mem_write_multi_N(BYTES,TYPE) \ void \ __C(tc_mem_write_multi_,BYTES)( \ void *v, \ bus_space_handle_t h, \ bus_size_t o, \ const TYPE *a, \ bus_size_t c) \ { \ \ while (c-- > 0) { \ __C(tc_mem_write_,BYTES)(v, h, o, *a++); \ tc_mem_barrier(v, h, o, sizeof *a, BUS_SPACE_BARRIER_WRITE); \ } \ } tc_mem_write_multi_N(1,uint8_t) tc_mem_write_multi_N(2,uint16_t) tc_mem_write_multi_N(4,uint32_t) tc_mem_write_multi_N(8,uint64_t) #define tc_mem_write_region_N(BYTES,TYPE) \ void \ __C(tc_mem_write_region_,BYTES)( \ void *v, \ bus_space_handle_t h, \ bus_size_t o, \ const TYPE *a, \ bus_size_t c) \ { \ \ while (c-- > 0) { \ __C(tc_mem_write_,BYTES)(v, h, o, *a++); \ o += sizeof *a; \ } \ } tc_mem_write_region_N(1,uint8_t) tc_mem_write_region_N(2,uint16_t) tc_mem_write_region_N(4,uint32_t) tc_mem_write_region_N(8,uint64_t) #define tc_mem_set_multi_N(BYTES,TYPE) \ void \ __C(tc_mem_set_multi_,BYTES)( \ void *v, \ bus_space_handle_t h, \ bus_size_t o, \ TYPE val, \ bus_size_t c) \ { \ \ while (c-- > 0) { \ __C(tc_mem_write_,BYTES)(v, h, o, val); \ tc_mem_barrier(v, h, o, sizeof val, BUS_SPACE_BARRIER_WRITE); \ } \ } tc_mem_set_multi_N(1,uint8_t) tc_mem_set_multi_N(2,uint16_t) tc_mem_set_multi_N(4,uint32_t) tc_mem_set_multi_N(8,uint64_t) #define tc_mem_set_region_N(BYTES,TYPE) \ void \ __C(tc_mem_set_region_,BYTES)( \ void *v, \ bus_space_handle_t h, \ bus_size_t o, \ TYPE val, \ bus_size_t c) \ { \ \ while (c-- > 0) { \ __C(tc_mem_write_,BYTES)(v, h, o, val); \ o += sizeof val; \ } \ } tc_mem_set_region_N(1,uint8_t) tc_mem_set_region_N(2,uint16_t) tc_mem_set_region_N(4,uint32_t) tc_mem_set_region_N(8,uint64_t) #define tc_mem_copy_region_N(BYTES) \ void \ __C(tc_mem_copy_region_,BYTES)( \ void *v, \ bus_space_handle_t h1, \ bus_size_t o1, \ bus_space_handle_t h2, \ bus_size_t o2, \ bus_size_t c) \ { \ bus_size_t o; \ \ if ((h1 & TC_SPACE_SPARSE) != 0 && \ (h2 & TC_SPACE_SPARSE) != 0) { \ memmove((void *)(h2 + o2), (void *)(h1 + o1), c * BYTES); \ return; \ } \ \ if (h1 + o1 >= h2 + o2) \ /* src after dest: copy forward */ \ for (o = 0; c > 0; c--, o += BYTES) \ __C(tc_mem_write_,BYTES)(v, h2, o2 + o, \ __C(tc_mem_read_,BYTES)(v, h1, o1 + o)); \ else \ /* dest after src: copy backwards */ \ for (o = (c - 1) * BYTES; c > 0; c--, o -= BYTES) \ __C(tc_mem_write_,BYTES)(v, h2, o2 + o, \ __C(tc_mem_read_,BYTES)(v, h1, o1 + o)); \ } tc_mem_copy_region_N(1) tc_mem_copy_region_N(2) tc_mem_copy_region_N(4) tc_mem_copy_region_N(8)