/* $NetBSD: cbsc.c,v 1.33 2010/12/20 00:25:25 matt Exp $ */ /* * Copyright (c) 1997 Michael L. Hitch * Copyright (c) 1982, 1990 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #ifdef __m68k__ #include "opt_m68k_arch.h" #endif #include __KERNEL_RCSID(0, "$NetBSD: cbsc.c,v 1.33 2010/12/20 00:25:25 matt Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __powerpc__ #define badaddr(a) badaddr_read(a, 2, NULL) #endif int cbscmatch(device_t, cfdata_t, void *); void cbscattach(device_t, device_t, void *); /* Linkup to the rest of the kernel */ CFATTACH_DECL_NEW(cbsc, sizeof(struct cbsc_softc), cbscmatch, cbscattach, NULL, NULL); /* * Functions and the switch for the MI code. */ uint8_t cbsc_read_reg(struct ncr53c9x_softc *, int); void cbsc_write_reg(struct ncr53c9x_softc *, int, uint8_t); int cbsc_dma_isintr(struct ncr53c9x_softc *); void cbsc_dma_reset(struct ncr53c9x_softc *); int cbsc_dma_intr(struct ncr53c9x_softc *); int cbsc_dma_setup(struct ncr53c9x_softc *, uint8_t **, size_t *, int, size_t *); void cbsc_dma_go(struct ncr53c9x_softc *); void cbsc_dma_stop(struct ncr53c9x_softc *); int cbsc_dma_isactive(struct ncr53c9x_softc *); struct ncr53c9x_glue cbsc_glue = { cbsc_read_reg, cbsc_write_reg, cbsc_dma_isintr, cbsc_dma_reset, cbsc_dma_intr, cbsc_dma_setup, cbsc_dma_go, cbsc_dma_stop, cbsc_dma_isactive, NULL, }; /* Maximum DMA transfer length to reduce impact on high-speed serial input */ u_long cbsc_max_dma = 1024; extern int ser_open_speed; u_long cbsc_cnt_pio = 0; /* number of PIO transfers */ u_long cbsc_cnt_dma = 0; /* number of DMA transfers */ u_long cbsc_cnt_dma2 = 0; /* number of DMA transfers broken up */ u_long cbsc_cnt_dma3 = 0; /* number of pages combined */ #ifdef DEBUG struct { uint8_t hardbits; uint8_t status; uint8_t xx; uint8_t yy; } cbsc_trace[128]; int cbsc_trace_ptr = 0; int cbsc_trace_enable = 1; void cbsc_dump(void); #endif /* * if we are a Phase5 CyberSCSI [mark I?] */ int cbscmatch(device_t parent, cfdata_t cf, void *aux) { struct zbus_args *zap; volatile uint8_t *regs; zap = aux; if (zap->manid != 0x2140) return 0; /* It's not Phase5 */ if (zap->prodid != 12 && zap->prodid != 11) return 0; /* Not CyberStorm MKI SCSI */ if (zap->prodid == 11 && iszthreepa(zap->pa)) return 0; /* Fastlane Z3! */ regs = &((volatile uint8_t *)zap->va)[0xf400]; if (badaddr((void *)__UNVOLATILE(regs))) return 0; regs[NCR_CFG1 * 4] = 0; regs[NCR_CFG1 * 4] = NCRCFG1_PARENB | 7; delay(5); if (regs[NCR_CFG1 * 4] != (NCRCFG1_PARENB | 7)) return 0; return 1; } /* * Attach this instance, and then all the sub-devices */ void cbscattach(device_t parent, device_t self, void *aux) { struct cbsc_softc *csc = device_private(self); struct ncr53c9x_softc *sc = &csc->sc_ncr53c9x; struct zbus_args *zap; extern u_long scsi_nosync; extern int shift_nosync; extern int ncr53c9x_debug; /* * Set up the glue for MI code early; we use some of it here. */ sc->sc_dev = self; sc->sc_glue = &cbsc_glue; /* * Save the regs */ zap = aux; csc->sc_reg = &((volatile uint8_t *)zap->va)[0xf400]; csc->sc_dmabase = &csc->sc_reg[0x400]; sc->sc_freq = 40; /* Clocked at 40 MHz */ aprint_normal(": address %p", csc->sc_reg); sc->sc_id = 7; /* * It is necessary to try to load the 2nd config register here, * to find out what rev the FAS chip is, else the ncr53c9x_reset * will not set up the defaults correctly. */ sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB; sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE; sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB; sc->sc_rev = NCR_VARIANT_FAS216; /* * This is the value used to start sync negotiations * Note that the NCR register "SYNCTP" is programmed * in "clocks per byte", and has a minimum value of 4. * The SCSI period used in negotiation is one-fourth * of the time (in nanoseconds) needed to transfer one byte. * Since the chip's clock is given in MHz, we have the following * formula: 4 * period = (1000 / freq) * 4 */ sc->sc_minsync = 1000 / sc->sc_freq; /* * get flags from -I argument and set cf_flags. * NOTE: low 8 bits are to disable disconnect, and the next * 8 bits are to disable sync. */ device_cfdata(self)->cf_flags |= (scsi_nosync >> shift_nosync) & 0xffff; shift_nosync += 16; /* Use next 16 bits of -I argument to set ncr53c9x_debug flags */ ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff; shift_nosync += 16; #if 1 if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00) sc->sc_minsync = 0; #endif /* Really no limit, but since we want to fit into the TCR... */ sc->sc_maxxfer = 64 * 1024; /* * Configure interrupts. */ csc->sc_isr.isr_intr = ncr53c9x_intr; csc->sc_isr.isr_arg = sc; csc->sc_isr.isr_ipl = 2; add_isr(&csc->sc_isr); /* * Now try to attach all the sub-devices */ sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request; sc->sc_adapter.adapt_minphys = minphys; ncr53c9x_attach(sc); } /* * Glue functions. */ uint8_t cbsc_read_reg(struct ncr53c9x_softc *sc, int reg) { struct cbsc_softc *csc = (struct cbsc_softc *)sc; return csc->sc_reg[reg * 4]; } void cbsc_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val) { struct cbsc_softc *csc = (struct cbsc_softc *)sc; uint8_t v = val; csc->sc_reg[reg * 4] = v; #ifdef DEBUG if (cbsc_trace_enable/* && sc->sc_nexus && sc->sc_nexus->xs->xs_control & XS_CTL_POLL*/ && reg == NCR_CMD/* && csc->sc_active*/) { cbsc_trace[(cbsc_trace_ptr - 1) & 127].yy = v; /* printf(" cmd %x", v);*/ } #endif } int cbsc_dma_isintr(struct ncr53c9x_softc *sc) { struct cbsc_softc *csc = (struct cbsc_softc *)sc; if ((csc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) == 0) return 0; if (sc->sc_state == NCR_CONNECTED) csc->sc_portbits |= CBSC_PB_LED; else csc->sc_portbits &= ~CBSC_PB_LED; csc->sc_reg[0x802] = csc->sc_portbits; if ((csc->sc_reg[0x802] & CBSC_HB_CREQ) == 0) return 0; #ifdef DEBUG if (/*sc->sc_nexus && sc->sc_nexus->xs->xs_control & XS_CTL_POLL &&*/ cbsc_trace_enable) { cbsc_trace[cbsc_trace_ptr].status = csc->sc_reg[NCR_STAT * 4]; cbsc_trace[cbsc_trace_ptr].xx = csc->sc_reg[NCR_CMD * 4]; cbsc_trace[cbsc_trace_ptr].yy = csc->sc_active; cbsc_trace_ptr = (cbsc_trace_ptr + 1) & 127; } #endif return 1; } void cbsc_dma_reset(struct ncr53c9x_softc *sc) { struct cbsc_softc *csc = (struct cbsc_softc *)sc; csc->sc_active = 0; } int cbsc_dma_intr(struct ncr53c9x_softc *sc) { register struct cbsc_softc *csc = (struct cbsc_softc *)sc; register int cnt; NCR_DMA(("cbsc_dma_intr: cnt %d int %x stat %x fifo %d ", csc->sc_dmasize, sc->sc_espintr, sc->sc_espstat, csc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF)); if (csc->sc_active == 0) { printf("cbsc_intr--inactive DMA\n"); return -1; } /* update sc_dmaaddr and sc_pdmalen */ cnt = csc->sc_reg[NCR_TCL * 4]; cnt += csc->sc_reg[NCR_TCM * 4] << 8; cnt += csc->sc_reg[NCR_TCH * 4] << 16; if (!csc->sc_datain) { cnt += csc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF; csc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH; } cnt = csc->sc_dmasize - cnt; /* number of bytes transferred */ NCR_DMA(("DMA xferred %d\n", cnt)); if (csc->sc_xfr_align) { memcpy(*csc->sc_dmaaddr, csc->sc_alignbuf, cnt); csc->sc_xfr_align = 0; } *csc->sc_dmaaddr += cnt; *csc->sc_pdmalen -= cnt; csc->sc_active = 0; return 0; } int cbsc_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len, int datain, size_t *dmasize) { struct cbsc_softc *csc = (struct cbsc_softc *)sc; paddr_t pa; uint8_t *ptr; size_t xfer; csc->sc_dmaaddr = addr; csc->sc_pdmalen = len; csc->sc_datain = datain; csc->sc_dmasize = *dmasize; /* * DMA can be nasty for high-speed serial input, so limit the * size of this DMA operation if the serial port is running at * a high speed (higher than 19200 for now - should be adjusted * based on CPU type and speed?). * XXX - add serial speed check XXX */ if (ser_open_speed > 19200 && cbsc_max_dma != 0 && csc->sc_dmasize > cbsc_max_dma) csc->sc_dmasize = cbsc_max_dma; ptr = *addr; /* Kernel virtual address */ pa = kvtop(ptr); /* Physical address of DMA */ xfer = min(csc->sc_dmasize, PAGE_SIZE - (pa & (PAGE_SIZE - 1))); csc->sc_xfr_align = 0; /* * If output and unaligned, stuff odd byte into FIFO */ if (datain == 0 && (int)ptr & 1) { NCR_DMA(("cbsc_dma_setup: align byte written to fifo\n")); pa++; xfer--; /* XXXX CHECK THIS !!!! XXXX */ csc->sc_reg[NCR_FIFO * 4] = *ptr++; } /* * If unaligned address, read unaligned bytes into alignment buffer */ else if ((int)ptr & 1) { pa = kvtop((void *)&csc->sc_alignbuf); xfer = csc->sc_dmasize = min(xfer, sizeof(csc->sc_alignbuf)); NCR_DMA(("cbsc_dma_setup: align read by %d bytes\n", xfer)); csc->sc_xfr_align = 1; } ++cbsc_cnt_dma; /* number of DMA operations */ while (xfer < csc->sc_dmasize) { if ((pa + xfer) != kvtop(*addr + xfer)) break; if ((csc->sc_dmasize - xfer) < PAGE_SIZE) xfer = csc->sc_dmasize; else xfer += PAGE_SIZE; ++cbsc_cnt_dma3; } if (xfer != *len) ++cbsc_cnt_dma2; csc->sc_dmasize = xfer; *dmasize = csc->sc_dmasize; csc->sc_pa = pa; #if defined(M68040) || defined(M68060) if (mmutype == MMU_68040) { if (csc->sc_xfr_align) { dma_cachectl(csc->sc_alignbuf, sizeof(csc->sc_alignbuf)); } else dma_cachectl(*csc->sc_dmaaddr, csc->sc_dmasize); } #endif if (csc->sc_datain) pa &= ~1; else pa |= 1; csc->sc_dmabase[0] = (uint8_t)(pa >> 24); csc->sc_dmabase[2] = (uint8_t)(pa >> 16); csc->sc_dmabase[4] = (uint8_t)(pa >> 8); csc->sc_dmabase[6] = (uint8_t)(pa); if (csc->sc_datain) csc->sc_portbits &= ~CBSC_PB_WRITE; else csc->sc_portbits |= CBSC_PB_WRITE; csc->sc_reg[0x802] = csc->sc_portbits; csc->sc_active = 1; return 0; } void cbsc_dma_go(struct ncr53c9x_softc *sc) { } void cbsc_dma_stop(struct ncr53c9x_softc *sc) { } int cbsc_dma_isactive(struct ncr53c9x_softc *sc) { struct cbsc_softc *csc = (struct cbsc_softc *)sc; return csc->sc_active; } #ifdef DEBUG void cbsc_dump(void) { int i; i = cbsc_trace_ptr; printf("cbsc_trace dump: ptr %x\n", cbsc_trace_ptr); do { if (cbsc_trace[i].hardbits == 0) { i = (i + 1) & 127; continue; } printf("%02x%02x%02x%02x(", cbsc_trace[i].hardbits, cbsc_trace[i].status, cbsc_trace[i].xx, cbsc_trace[i].yy); if (cbsc_trace[i].status & NCRSTAT_INT) printf("NCRINT/"); if (cbsc_trace[i].status & NCRSTAT_TC) printf("NCRTC/"); switch(cbsc_trace[i].status & NCRSTAT_PHASE) { case 0: printf("dataout"); break; case 1: printf("datain"); break; case 2: printf("cmdout"); break; case 3: printf("status"); break; case 6: printf("msgout"); break; case 7: printf("msgin"); break; default: printf("phase%d?", cbsc_trace[i].status & NCRSTAT_PHASE); } printf(") "); i = (i + 1) & 127; } while (i != cbsc_trace_ptr); printf("\n"); } #endif