/* $NetBSD: at91bus.c,v 1.19 2016/12/22 14:47:54 cherry Exp $ */ /* * Copyright (c) 2007 Embedtronics Oy * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: at91bus.c,v 1.19 2016/12/22 14:47:54 cherry Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_pmap_debug.h" #include "locators.h" /* Define various stack sizes in pages */ #define IRQ_STACK_SIZE 8 #define ABT_STACK_SIZE 8 #ifdef IPKDB #define UND_STACK_SIZE 16 #else #define UND_STACK_SIZE 8 #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* console stuff: */ #ifndef CONSPEED #define CONSPEED B115200 #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int cnspeed = CONSPEED; int cnmode = CONMODE; /* kernel mapping: */ #define KERNEL_BASE_PHYS 0x20200000 #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) #define KERNEL_VM_SIZE 0x0C000000 /* boot configuration: */ vaddr_t physical_start; vaddr_t physical_freestart; vaddr_t physical_freeend; vaddr_t physical_freeend_low; vaddr_t physical_end; u_int free_pages; paddr_t msgbufphys; //static struct arm32_dma_range dma_ranges[4]; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* L2 table for mapping vectors page */ #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 4 /* L2 tables for mapping kernel VM */ #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; /* prototypes: */ void consinit(void); static int at91bus_match(device_t, cfdata_t, void *); static void at91bus_attach(device_t, device_t, void *); static int at91bus_search(device_t, cfdata_t, const int *, void *); static int at91bus_print(void *, const char *); static int at91bus_submatch(device_t, cfdata_t, const int *, void *); CFATTACH_DECL_NEW(at91bus, sizeof(struct at91bus_softc), at91bus_match, at91bus_attach, NULL, NULL); struct at91bus_clocks at91bus_clocks = {0}; struct at91bus_softc *at91bus_sc = NULL; #include "opt_at91types.h" #ifdef AT91RM9200 #include #endif #ifdef AT91SAM9260 #include #endif #ifdef AT91SAM9261 #include #endif static const struct { uint32_t cidr; const char * name; const struct at91bus_machdep *machdep; } at91_types[] = { { DBGU_CIDR_AT91RM9200, "AT91RM9200" #ifdef AT91RM9200 , &at91rm9200bus #endif }, { DBGU_CIDR_AT91SAM9260, "AT91SAM9260" #ifdef AT91SAM9260 , &at91sam9260bus #endif }, { DBGU_CIDR_AT91SAM9260, "AT91SAM9261" #ifdef AT91SAM9261 , &at91sam9261bus #endif }, { DBGU_CIDR_AT91SAM9263, "AT91SAM9263" }, { 0, 0, 0 } }; uint32_t at91_chip_id; static int at91_chip_ndx = -1; struct at91bus_machdep at91bus_machdep = { 0 }; at91bus_tag_t at91bus_tag = 0; static int match_cid(void) { uint32_t cidr; int i; /* get chip id */ cidr = DBGUREG(DBGU_CIDR); at91_chip_id = cidr; /* do we know it? */ for (i = 0; at91_types[i].name; i++) { if (cidr == at91_types[i].cidr) return i; } return -1; } int at91bus_init(void) { int i = at91_chip_ndx = match_cid(); if (i < 0) panic("%s: unknown chip", __FUNCTION__); if (!at91_types[i].machdep) panic("%s: %s is not supported", __FUNCTION__, at91_types[i].name); memcpy(&at91bus_machdep, at91_types[i].machdep, sizeof(at91bus_machdep)); at91bus_tag = &at91bus_machdep; return 0; } u_int at91bus_setup(BootConfig *mem) { int loop; int loop1; u_int l1pagetable; consinit(); #ifdef VERBOSE_INIT_ARM printf("\nNetBSD/AT91 booting ...\n"); #endif // setup the CPU / MMU / TLB functions: if (set_cpufuncs()) panic("%s: cpu not recognized", __FUNCTION__); #ifdef VERBOSE_INIT_ARM printf("%s: configuring system...\n", __FUNCTION__); #endif /* * Setup the variables that define the availability of * physical memory. */ physical_start = mem->dram[0].address; physical_end = mem->dram[0].address + mem->dram[0].pages * PAGE_SIZE; physical_freestart = mem->dram[0].address + 0x9000ULL; physical_freeend = KERNEL_BASE_PHYS; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system vectors page */ valloc_pages(systempage, 1); systempage.pv_va = 0x00000000; /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables. Save physical_freeend for when we give whats left * of memory below 2Mbyte to UVM. */ physical_freeend_low = physical_freeend; #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = KERNEL_BASE_PHYS - mem->dram[0].address; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_LOW, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, at91_devmap()); /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { extern char _end[]; physical_freestart = physical_start + (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif /* @@@@ check this out: @@@ */ arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_md_init(); uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); uvm_page_physload(atop(physical_start), atop(physical_freeend_low), atop(physical_start), atop(physical_freeend_low), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif at91_intr_init(); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO boothowto = BOOTHOWTO; #endif boothowto = AB_VERBOSE | AB_DEBUG; // @@@@ #ifdef IPKDB /* Initialise ipkdb */ ipkdb_init(); if (boothowto & RB_KDB) ipkdb_connect(0); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif #if 0 printf("test data abort...\n"); *((volatile uint32_t*)(0x1234567F)) = 0xdeadbeef; #endif #ifdef VERBOSE_INIT_ARM printf("%s: returning new stack pointer 0x%lX\n", __FUNCTION__, (kernelstack.pv_va + USPACE_SVC_STACK_TOP)); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } static int at91bus_match(device_t parent, cfdata_t match, void *aux) { // we could detect the device here... if (strcmp(match->cf_name, "at91bus") == 0) return 1; return 0; } static device_t at91bus_found(device_t self, bus_addr_t addr, int pid) { int locs[AT91BUSCF_NLOCS]; struct at91bus_attach_args sa; struct at91bus_softc *sc; memset(&locs, 0, sizeof(locs)); memset(&sa, 0, sizeof(sa)); locs[AT91BUSCF_ADDR] = addr; locs[AT91BUSCF_PID] = pid; sc = device_private(self); sa.sa_iot = sc->sc_iot; sa.sa_dmat = sc->sc_dmat; sa.sa_addr = addr; sa.sa_size = 1; sa.sa_pid = pid; return config_found_sm_loc(self, "at91bus", locs, &sa, at91bus_print, at91bus_submatch); } static void at91bus_attach(device_t parent, device_t self, void *aux) { struct at91bus_softc *sc; if (at91_chip_ndx < 0) panic("%s: at91bus_init() has not been called!", __FUNCTION__); sc = device_private(self); /* initialize bus space and bus dma things... */ sc->sc_iot = &at91_bs_tag; sc->sc_dmat = at91_bus_dma_init(&at91_bd_tag); if (at91bus_sc == NULL) at91bus_sc = sc; printf(": %s, sclk %u.%03u kHz, mclk %u.%03u MHz, pclk %u.%03u MHz, mstclk %u.%03u, plla %u.%03u, pllb %u.%03u MHz\n", at91_types[at91_chip_ndx].name, AT91_SCLK / 1000U, AT91_SCLK % 1000U, AT91_MCLK / 1000000U, (AT91_MCLK / 1000U) % 1000U, AT91_PCLK / 1000000U, (AT91_PCLK / 1000U) % 1000U, AT91_MSTCLK / 1000000U, (AT91_MSTCLK / 1000U) % 1000U, AT91_PLLACLK / 1000000U, (AT91_PLLACLK / 1000U) % 1000U, AT91_PLLBCLK / 1000000U, (AT91_PLLBCLK / 1000U) % 1000U); /* * Attach devices */ at91_search_peripherals(self, at91bus_found); struct at91bus_attach_args sa; memset(&sa, 0, sizeof(sa)); sa.sa_iot = sc->sc_iot; sa.sa_dmat = sc->sc_dmat; config_search_ia(at91bus_search, self, "at91bus", &sa); } int at91bus_submatch(device_t parent, cfdata_t cf, const int *ldesc, void *aux) { struct at91bus_attach_args *sa = aux; if (cf->cf_loc[AT91BUSCF_ADDR] == ldesc[AT91BUSCF_ADDR] && cf->cf_loc[AT91BUSCF_PID] == ldesc[AT91BUSCF_PID]) { sa->sa_addr = cf->cf_loc[AT91BUSCF_ADDR]; sa->sa_size = cf->cf_loc[AT91BUSCF_SIZE]; sa->sa_pid = cf->cf_loc[AT91BUSCF_PID]; return (config_match(parent, cf, aux)); } else return (0); } int at91bus_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux) { struct at91bus_attach_args *sa = aux; sa->sa_addr = cf->cf_loc[AT91BUSCF_ADDR]; sa->sa_size = cf->cf_loc[AT91BUSCF_SIZE]; sa->sa_pid = cf->cf_loc[AT91BUSCF_PID]; if (config_match(parent, cf, aux) > 0) config_attach(parent, cf, aux, at91bus_print); return (0); } static int at91bus_print(void *aux, const char *name) { struct at91bus_attach_args *sa = (struct at91bus_attach_args*)aux; if (name) aprint_normal("%s at %s", sa->sa_pid >= 0 ? at91_peripheral_name(sa->sa_pid) : "device", name); if (sa->sa_size) aprint_normal(" at addr 0x%lx", sa->sa_addr); if (sa->sa_size > 1) aprint_normal("-0x%lx", sa->sa_addr + sa->sa_size - 1); if (sa->sa_pid >= 0) aprint_normal(" pid %d", sa->sa_pid); return (UNCONF); } void consinit(void) { static int consinit_called; if (consinit_called != 0) return; consinit_called = 1; if (at91_chip_ndx < 0) panic("%s: at91_init() has not been called!", __FUNCTION__); // call machine specific bus initialization code (*at91bus_tag->init)(&at91bus_clocks); // attach console (*at91bus_tag->attach_cn)(&at91_bs_tag, cnspeed, cnmode); }