/* $NetBSD: bcm2835_emmc.c,v 1.29.10.1 2017/06/30 06:23:17 snj Exp $ */ /*- * Copyright (c) 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Nick Hudson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: bcm2835_emmc.c,v 1.29.10.1 2017/06/30 06:23:17 snj Exp $"); #include "bcmdmac.h" #include #include #include #include #include #include #include #include #include #include #include #include #include enum bcmemmc_dma_state { EMMC_DMA_STATE_IDLE, EMMC_DMA_STATE_BUSY, }; struct bcmemmc_softc { struct sdhc_softc sc; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_addr_t sc_iob; bus_size_t sc_ios; struct sdhc_host *sc_hosts[1]; void *sc_ih; kcondvar_t sc_cv; enum bcmemmc_dma_state sc_state; struct bcm_dmac_channel *sc_dmac; bus_dmamap_t sc_dmamap; bus_dma_segment_t sc_segs[1]; /* XXX assumes enough descriptors fit in one page */ struct bcm_dmac_conblk *sc_cblk; }; static int bcmemmc_match(device_t, struct cfdata *, void *); static void bcmemmc_attach(device_t, device_t, void *); static void bcmemmc_attach_i(device_t); #if NBCMDMAC > 0 static int bcmemmc_xfer_data_dma(struct sdhc_softc *, struct sdmmc_command *); static void bcmemmc_dma_done(uint32_t, uint32_t, void *); #endif CFATTACH_DECL_NEW(bcmemmc, sizeof(struct bcmemmc_softc), bcmemmc_match, bcmemmc_attach, NULL, NULL); /* ARGSUSED */ static int bcmemmc_match(device_t parent, struct cfdata *match, void *aux) { struct amba_attach_args *aaa = aux; if (strcmp(aaa->aaa_name, "emmc") != 0) return 0; return 1; } /* ARGSUSED */ static void bcmemmc_attach(device_t parent, device_t self, void *aux) { struct bcmemmc_softc *sc = device_private(self); prop_dictionary_t dict = device_properties(self); struct amba_attach_args *aaa = aux; prop_number_t frequency; int error; sc->sc.sc_dev = self; sc->sc.sc_dmat = aaa->aaa_dmat; sc->sc.sc_flags = 0; sc->sc.sc_flags |= SDHC_FLAG_32BIT_ACCESS; sc->sc.sc_flags |= SDHC_FLAG_HOSTCAPS; sc->sc.sc_flags |= SDHC_FLAG_NO_HS_BIT; sc->sc.sc_caps = SDHC_VOLTAGE_SUPP_3_3V | SDHC_HIGH_SPEED_SUPP | (SDHC_MAX_BLK_LEN_1024 << SDHC_MAX_BLK_LEN_SHIFT); sc->sc.sc_host = sc->sc_hosts; sc->sc.sc_clkbase = 50000; /* Default to 50MHz */ sc->sc_iot = aaa->aaa_iot; /* Fetch the EMMC clock frequency from property if set. */ frequency = prop_dictionary_get(dict, "frequency"); if (frequency != NULL) { sc->sc.sc_clkbase = prop_number_integer_value(frequency) / 1000; } error = bus_space_map(sc->sc_iot, aaa->aaa_addr, aaa->aaa_size, 0, &sc->sc_ioh); if (error) { aprint_error_dev(self, "can't map registers for %s: %d\n", aaa->aaa_name, error); return; } sc->sc_iob = aaa->aaa_addr; sc->sc_ios = aaa->aaa_size; aprint_naive(": SDHC controller\n"); aprint_normal(": SDHC controller\n"); sc->sc_ih = intr_establish(aaa->aaa_intr, IPL_SDMMC, IST_LEVEL, sdhc_intr, &sc->sc); if (sc->sc_ih == NULL) { aprint_error_dev(self, "failed to establish interrupt %d\n", aaa->aaa_intr); goto fail; } aprint_normal_dev(self, "interrupting on intr %d\n", aaa->aaa_intr); #if NBCMDMAC > 0 sc->sc_dmac = bcm_dmac_alloc(BCM_DMAC_TYPE_NORMAL, IPL_SDMMC, bcmemmc_dma_done, sc); if (sc->sc_dmac == NULL) goto done; sc->sc.sc_flags |= SDHC_FLAG_USE_DMA; sc->sc.sc_flags |= SDHC_FLAG_EXTERNAL_DMA; sc->sc.sc_caps |= SDHC_DMA_SUPPORT; sc->sc.sc_vendor_transfer_data_dma = bcmemmc_xfer_data_dma; sc->sc_state = EMMC_DMA_STATE_IDLE; cv_init(&sc->sc_cv, "bcmemmcdma"); int rseg; error = bus_dmamem_alloc(sc->sc.sc_dmat, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE, sc->sc_segs, 1, &rseg, BUS_DMA_WAITOK); if (error) { aprint_error_dev(self, "dmamem_alloc failed (%d)\n", error); goto fail; } error = bus_dmamem_map(sc->sc.sc_dmat, sc->sc_segs, rseg, PAGE_SIZE, (void **)&sc->sc_cblk, BUS_DMA_WAITOK); if (error) { aprint_error_dev(self, "dmamem_map failed (%d)\n", error); goto fail; } KASSERT(sc->sc_cblk != NULL); memset(sc->sc_cblk, 0, PAGE_SIZE); error = bus_dmamap_create(sc->sc.sc_dmat, PAGE_SIZE, 1, PAGE_SIZE, 0, BUS_DMA_WAITOK, &sc->sc_dmamap); if (error) { aprint_error_dev(self, "dmamap_create failed (%d)\n", error); goto fail; } error = bus_dmamap_load(sc->sc.sc_dmat, sc->sc_dmamap, sc->sc_cblk, PAGE_SIZE, NULL, BUS_DMA_WAITOK|BUS_DMA_WRITE); if (error) { aprint_error_dev(self, "dmamap_load failed (%d)\n", error); goto fail; } done: #endif config_interrupts(self, bcmemmc_attach_i); return; fail: /* XXX add bus_dma failure cleanup */ if (sc->sc_ih) { intr_disestablish(sc->sc_ih); sc->sc_ih = NULL; } bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); } static void bcmemmc_attach_i(device_t self) { struct bcmemmc_softc * const sc = device_private(self); int error; error = sdhc_host_found(&sc->sc, sc->sc_iot, sc->sc_ioh, sc->sc_ios); if (error != 0) { aprint_error_dev(self, "couldn't initialize host, error=%d\n", error); goto fail; } return; fail: /* XXX add bus_dma failure cleanup */ if (sc->sc_ih) { intr_disestablish(sc->sc_ih); sc->sc_ih = NULL; } bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); } #if NBCMDMAC > 0 static int bcmemmc_xfer_data_dma(struct sdhc_softc *sdhc_sc, struct sdmmc_command *cmd) { struct bcmemmc_softc * const sc = device_private(sdhc_sc->sc_dev); kmutex_t *plock = sdhc_host_lock(sc->sc_hosts[0]); size_t seg; int error; KASSERT(mutex_owned(plock)); for (seg = 0; seg < cmd->c_dmamap->dm_nsegs; seg++) { sc->sc_cblk[seg].cb_ti = __SHIFTIN(11, DMAC_TI_PERMAP); /* e.MMC */ sc->sc_cblk[seg].cb_txfr_len = cmd->c_dmamap->dm_segs[seg].ds_len; /* * All transfers are assumed to be multiples of 32-bits. */ KASSERTMSG((sc->sc_cblk[seg].cb_txfr_len & 0x3) == 0, "seg %zu len %d", seg, sc->sc_cblk[seg].cb_txfr_len); if (ISSET(cmd->c_flags, SCF_CMD_READ)) { sc->sc_cblk[seg].cb_ti |= DMAC_TI_DEST_INC; /* * Use 128-bit mode if transfer is a multiple of * 16-bytes. */ if ((sc->sc_cblk[seg].cb_txfr_len & 0xf) == 0) sc->sc_cblk[seg].cb_ti |= DMAC_TI_DEST_WIDTH; sc->sc_cblk[seg].cb_ti |= DMAC_TI_SRC_DREQ; sc->sc_cblk[seg].cb_source_ad = sc->sc_iob + SDHC_DATA; sc->sc_cblk[seg].cb_dest_ad = cmd->c_dmamap->dm_segs[seg].ds_addr; } else { sc->sc_cblk[seg].cb_ti |= DMAC_TI_SRC_INC; /* * Use 128-bit mode if transfer is a multiple of * 16-bytes. */ if ((sc->sc_cblk[seg].cb_txfr_len & 0xf) == 0) sc->sc_cblk[seg].cb_ti |= DMAC_TI_SRC_WIDTH; sc->sc_cblk[seg].cb_ti |= DMAC_TI_DEST_DREQ; sc->sc_cblk[seg].cb_ti |= DMAC_TI_WAIT_RESP; sc->sc_cblk[seg].cb_source_ad = cmd->c_dmamap->dm_segs[seg].ds_addr; sc->sc_cblk[seg].cb_dest_ad = sc->sc_iob + SDHC_DATA; } sc->sc_cblk[seg].cb_stride = 0; if (seg == cmd->c_dmamap->dm_nsegs - 1) { sc->sc_cblk[seg].cb_ti |= DMAC_TI_INTEN; sc->sc_cblk[seg].cb_nextconbk = 0; } else { sc->sc_cblk[seg].cb_nextconbk = sc->sc_dmamap->dm_segs[0].ds_addr + sizeof(struct bcm_dmac_conblk) * (seg+1); } sc->sc_cblk[seg].cb_padding[0] = 0; sc->sc_cblk[seg].cb_padding[1] = 0; } bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_dmamap, 0, sc->sc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); error = 0; KASSERT(sc->sc_state == EMMC_DMA_STATE_IDLE); sc->sc_state = EMMC_DMA_STATE_BUSY; bcm_dmac_set_conblk_addr(sc->sc_dmac, sc->sc_dmamap->dm_segs[0].ds_addr); error = bcm_dmac_transfer(sc->sc_dmac); if (error) return error; while (sc->sc_state == EMMC_DMA_STATE_BUSY) { error = cv_timedwait(&sc->sc_cv, plock, hz * 10); if (error == EWOULDBLOCK) { device_printf(sc->sc.sc_dev, "transfer timeout!\n"); bcm_dmac_halt(sc->sc_dmac); sc->sc_state = EMMC_DMA_STATE_IDLE; error = ETIMEDOUT; break; } } bus_dmamap_sync(sc->sc.sc_dmat, sc->sc_dmamap, 0, sc->sc_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); return error; } static void bcmemmc_dma_done(uint32_t status, uint32_t error, void *arg) { struct bcmemmc_softc * const sc = arg; kmutex_t *plock = sdhc_host_lock(sc->sc_hosts[0]); if (status != (DMAC_CS_INT|DMAC_CS_END)) device_printf(sc->sc.sc_dev, "status %#x error %#x\n", status,error); mutex_enter(plock); KASSERT(sc->sc_state == EMMC_DMA_STATE_BUSY); if (status & DMAC_CS_END) sc->sc_state = EMMC_DMA_STATE_IDLE; cv_broadcast(&sc->sc_cv); mutex_exit(plock); } #endif