/* $NetBSD: sun6i_dma.c,v 1.2.2.2 2017/08/09 05:49:50 snj Exp $ */ /*- * Copyright (c) 2014-2017 Jared McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_ddb.h" #include __KERNEL_RCSID(0, "$NetBSD: sun6i_dma.c,v 1.2.2.2 2017/08/09 05:49:50 snj Exp $"); #include #include #include #include #include #include #include #include #include #define DMA_IRQ_EN_REG0_REG 0x0000 #define DMA_IRQ_EN_REG1_REG 0x0004 #define DMA_IRQ_EN_REG0_QUEUE_IRQ_EN(n) __BIT(n * 4 + 2) #define DMA_IRQ_EN_REG0_PKG_IRQ_EN(n) __BIT(n * 4 + 1) #define DMA_IRQ_EN_REG0_HLAF_IRQ_EN(n) __BIT(n * 4 + 0) #define DMA_IRQ_EN_REG1_QUEUE_IRQ_EN(n) __BIT((n - 8) * 4 + 2) #define DMA_IRQ_EN_REG1_PKG_IRQ_EN(n) __BIT((n - 8) * 4 + 1) #define DMA_IRQ_EN_REG1_HLAF_IRQ_EN(n) __BIT((n - 8) * 4 + 0) #define DMA_IRQ_PEND_REG0_REG 0x0010 #define DMA_IRQ_PEND_REG1_REG 0x0014 #define DMA_IRQ_QUEUE_MASK 0x4444444444444444ULL #define DMA_IRQ_PKG_MASK 0x2222222222222222ULL #define DMA_IRQ_HF_MASK 0x1111111111111111ULL #define DMA_STA_REG 0x0030 #define DMA_EN_REG(n) (0x0100 + (n) * 0x40 + 0x00) #define DMA_EN_EN __BIT(0) #define DMA_PAU_REG(n) (0x0100 + (n) * 0x40 + 0x04) #define DMA_PAU_PAUSE __BIT(0) #define DMA_START_ADDR_REG(n) (0x0100 + (n) * 0x40 + 0x08) #define DMA_CFG_REG(n) (0x0100 + (n) * 0x40 + 0x0C) #define DMA_CFG_DEST_DATA_WIDTH __BITS(26,25) #define DMA_CFG_DATA_WIDTH(n) ((n) >> 4) #define DMA_CFG_DEST_BST_LEN __BITS(24,23) #define DMA_CFG_BST_LEN(n) ((n) == 1 ? 0 : (((n) >> 3) + 1)) #define DMA_CFG_DEST_ADDR_MODE __BITS(22,21) #define DMA_CFG_ADDR_MODE_LINEAR 0 #define DMA_CFG_ADDR_MODE_IO 1 #define DMA_CFG_DEST_DRQ_TYPE __BITS(20,16) #define DMA_CFG_DRQ_TYPE_SDRAM 1 #define DMA_CFG_SRC_DATA_WIDTH __BITS(10,9) #define DMA_CFG_SRC_BST_LEN __BITS(8,7) #define DMA_CFG_SRC_ADDR_MODE __BITS(6,5) #define DMA_CFG_SRC_DRQ_TYPE __BITS(4,0) #define DMA_CUR_SRC_REG(n) (0x0100 + (n) * 0x40 + 0x10) #define DMA_CUR_DEST_REG(n) (0x0100 + (n) * 0x40 + 0x14) #define DMA_BCNT_LEFT_REG(n) (0x0100 + (n) * 0x40 + 0x18) #define DMA_PARA_REG(n) (0x0100 + (n) * 0x40 + 0x1C) #define DMA_PARA_DATA_BLK_SIZE __BITS(15,8) #define DMA_PARA_WAIT_CYC __BITS(7,0) struct sun6idma_desc { uint32_t dma_config; uint32_t dma_srcaddr; uint32_t dma_dstaddr; uint32_t dma_bcnt; uint32_t dma_para; uint32_t dma_next; #define DMA_NULL 0xfffff800 }; static const struct of_compat_data compat_data[] = { { "allwinner,sun6i-a31-dma", 16 }, { "allwinner,sun8i-a83t-dma", 8 }, { "allwinner,sun8i-h3-dma", 12 }, { NULL } }; struct sun6idma_channel { uint8_t ch_index; void (*ch_callback)(void *); void *ch_callbackarg; u_int ch_portid; bus_dma_segment_t ch_dmasegs[1]; bus_dmamap_t ch_dmamap; void *ch_dmadesc; bus_size_t ch_dmadesclen; }; struct sun6idma_softc { device_t sc_dev; bus_space_tag_t sc_bst; bus_space_handle_t sc_bsh; bus_dma_tag_t sc_dmat; int sc_phandle; void *sc_ih; kmutex_t sc_lock; struct sun6idma_channel *sc_chan; u_int sc_nchan; }; #define DMA_READ(sc, reg) \ bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg)) #define DMA_WRITE(sc, reg, val) \ bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val)) static void * sun6idma_acquire(device_t dev, const void *data, size_t len, void (*cb)(void *), void *cbarg) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = NULL; uint32_t irqen; uint8_t index; if (len != 4) return NULL; const u_int portid = be32dec(data); if (portid > __SHIFTOUT_MASK(DMA_CFG_SRC_DRQ_TYPE)) return NULL; mutex_enter(&sc->sc_lock); for (index = 0; index < sc->sc_nchan; index++) { if (sc->sc_chan[index].ch_callback == NULL) { ch = &sc->sc_chan[index]; ch->ch_callback = cb; ch->ch_callbackarg = cbarg; ch->ch_portid = portid; irqen = DMA_READ(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG); irqen |= (index < 8 ? DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) : DMA_IRQ_EN_REG1_PKG_IRQ_EN(index)); DMA_WRITE(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG, irqen); break; } } mutex_exit(&sc->sc_lock); return ch; } static void sun6idma_release(device_t dev, void *priv) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = priv; uint32_t irqen; uint8_t index = ch->ch_index; mutex_enter(&sc->sc_lock); irqen = DMA_READ(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG); irqen &= ~(index < 8 ? DMA_IRQ_EN_REG0_PKG_IRQ_EN(index) : DMA_IRQ_EN_REG1_PKG_IRQ_EN(index)); DMA_WRITE(sc, index < 8 ? DMA_IRQ_EN_REG0_REG : DMA_IRQ_EN_REG1_REG, irqen); ch->ch_callback = NULL; ch->ch_callbackarg = NULL; mutex_exit(&sc->sc_lock); } static int sun6idma_transfer(device_t dev, void *priv, struct fdtbus_dma_req *req) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = priv; struct sun6idma_desc *desc = ch->ch_dmadesc; uint32_t src, dst, len, cfg, mem_cfg, dev_cfg; uint32_t mem_width, dev_width, mem_burst, dev_burst; if (req->dreq_nsegs != 1) return EINVAL; mem_width = DMA_CFG_DATA_WIDTH(req->dreq_mem_opt.opt_bus_width); dev_width = DMA_CFG_DATA_WIDTH(req->dreq_dev_opt.opt_bus_width); mem_burst = DMA_CFG_BST_LEN(req->dreq_mem_opt.opt_burst_len); dev_burst = DMA_CFG_BST_LEN(req->dreq_dev_opt.opt_burst_len); mem_cfg = __SHIFTIN(mem_width, DMA_CFG_SRC_DATA_WIDTH) | __SHIFTIN(mem_burst, DMA_CFG_SRC_BST_LEN) | __SHIFTIN(DMA_CFG_ADDR_MODE_LINEAR, DMA_CFG_SRC_ADDR_MODE) | __SHIFTIN(DMA_CFG_DRQ_TYPE_SDRAM, DMA_CFG_SRC_DRQ_TYPE); dev_cfg = __SHIFTIN(dev_width, DMA_CFG_SRC_DATA_WIDTH) | __SHIFTIN(dev_burst, DMA_CFG_SRC_BST_LEN) | __SHIFTIN(DMA_CFG_ADDR_MODE_IO, DMA_CFG_SRC_ADDR_MODE) | __SHIFTIN(ch->ch_portid, DMA_CFG_SRC_DRQ_TYPE); if (req->dreq_dir == FDT_DMA_READ) { src = req->dreq_dev_phys; dst = req->dreq_segs[0].ds_addr; cfg = mem_cfg << 16 | dev_cfg; } else { src = req->dreq_segs[0].ds_addr; dst = req->dreq_dev_phys; cfg = dev_cfg << 16 | mem_cfg; } len = req->dreq_segs[0].ds_len; desc->dma_config = htole32(cfg); desc->dma_srcaddr = htole32(src); desc->dma_dstaddr = htole32(dst); desc->dma_bcnt = htole32(len); desc->dma_para = htole32(0); desc->dma_next = htole32(DMA_NULL); bus_dmamap_sync(sc->sc_dmat, ch->ch_dmamap, 0, ch->ch_dmadesclen, BUS_DMASYNC_PREWRITE); DMA_WRITE(sc, DMA_START_ADDR_REG(ch->ch_index), ch->ch_dmamap->dm_segs[0].ds_addr); DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), DMA_EN_EN); if ((DMA_READ(sc, DMA_EN_REG(ch->ch_index)) & DMA_EN_EN) == 0) { aprint_error_dev(sc->sc_dev, "DMA Channel %u failed to start\n", ch->ch_index); return EIO; } return 0; } static void sun6idma_halt(device_t dev, void *priv) { struct sun6idma_softc *sc = device_private(dev); struct sun6idma_channel *ch = priv; DMA_WRITE(sc, DMA_EN_REG(ch->ch_index), 0); } static const struct fdtbus_dma_controller_func sun6idma_funcs = { .acquire = sun6idma_acquire, .release = sun6idma_release, .transfer = sun6idma_transfer, .halt = sun6idma_halt }; static int sun6idma_intr(void *priv) { struct sun6idma_softc *sc = priv; uint32_t pend0, pend1, bit; uint64_t pend, mask; uint8_t index; pend0 = DMA_READ(sc, DMA_IRQ_PEND_REG0_REG); pend1 = DMA_READ(sc, DMA_IRQ_PEND_REG1_REG); if (!pend0 && !pend1) return 0; DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, pend0); DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, pend1); pend = pend0 | ((uint64_t)pend1 << 32); while ((bit = ffs64(pend & DMA_IRQ_PKG_MASK)) != 0) { mask = __BIT(bit - 1); pend &= ~mask; index = (bit - 1) / 4; if (sc->sc_chan[index].ch_callback == NULL) continue; sc->sc_chan[index].ch_callback( sc->sc_chan[index].ch_callbackarg); } return 1; } static int sun6idma_match(device_t parent, cfdata_t cf, void *aux) { struct fdt_attach_args * const faa = aux; return of_match_compat_data(faa->faa_phandle, compat_data); } static void sun6idma_attach(device_t parent, device_t self, void *aux) { struct sun6idma_softc * const sc = device_private(self); struct fdt_attach_args * const faa = aux; const int phandle = faa->faa_phandle; const size_t desclen = sizeof(struct sun6idma_desc); struct fdtbus_reset *rst; struct clk *clk; char intrstr[128]; bus_addr_t addr; bus_size_t size; int error, nsegs; u_int index; if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) { aprint_error(": couldn't get registers\n"); return; } if ((clk = fdtbus_clock_get_index(phandle, 0)) == NULL || clk_enable(clk) != 0) { aprint_error(": couldn't enable clock\n"); return; } if ((rst = fdtbus_reset_get_index(phandle, 0)) == NULL || fdtbus_reset_deassert(rst) != 0) { aprint_error(": couldn't de-assert reset\n"); return; } sc->sc_dev = self; sc->sc_phandle = phandle; sc->sc_dmat = faa->faa_dmat; sc->sc_bst = faa->faa_bst; if (bus_space_map(sc->sc_bst, addr, size, 0, &sc->sc_bsh) != 0) { aprint_error(": couldn't map registers\n"); return; } mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SCHED); if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) { aprint_error(": failed to decode interrupt\n"); return; } sc->sc_nchan = of_search_compatible(phandle, compat_data)->data; sc->sc_chan = kmem_alloc(sizeof(*sc->sc_chan) * sc->sc_nchan, KM_SLEEP); aprint_naive("\n"); aprint_normal(": DMA controller (%u channels)\n", sc->sc_nchan); DMA_WRITE(sc, DMA_IRQ_EN_REG0_REG, 0); DMA_WRITE(sc, DMA_IRQ_EN_REG1_REG, 0); DMA_WRITE(sc, DMA_IRQ_PEND_REG0_REG, ~0); DMA_WRITE(sc, DMA_IRQ_PEND_REG1_REG, ~0); for (index = 0; index < sc->sc_nchan; index++) { struct sun6idma_channel *ch = &sc->sc_chan[index]; ch->ch_index = index; ch->ch_callback = NULL; ch->ch_callbackarg = NULL; ch->ch_dmadesclen = desclen; error = bus_dmamem_alloc(sc->sc_dmat, desclen, 0, 0, ch->ch_dmasegs, 1, &nsegs, BUS_DMA_WAITOK); if (error) panic("bus_dmamem_alloc failed: %d", error); error = bus_dmamem_map(sc->sc_dmat, ch->ch_dmasegs, nsegs, desclen, &ch->ch_dmadesc, BUS_DMA_WAITOK); if (error) panic("bus_dmamem_map failed: %d", error); error = bus_dmamap_create(sc->sc_dmat, desclen, 1, desclen, 0, BUS_DMA_WAITOK, &ch->ch_dmamap); if (error) panic("bus_dmamap_create failed: %d", error); error = bus_dmamap_load(sc->sc_dmat, ch->ch_dmamap, ch->ch_dmadesc, desclen, NULL, BUS_DMA_WAITOK); if (error) panic("bus_dmamap_load failed: %d", error); DMA_WRITE(sc, DMA_EN_REG(index), 0); } sc->sc_ih = fdtbus_intr_establish(phandle, 0, IPL_SCHED, FDT_INTR_MPSAFE, sun6idma_intr, sc); if (sc->sc_ih == NULL) { aprint_error_dev(sc->sc_dev, "couldn't establish interrupt on %s\n", intrstr); return; } aprint_normal_dev(sc->sc_dev, "interrupting on %s\n", intrstr); fdtbus_register_dma_controller(self, phandle, &sun6idma_funcs); } CFATTACH_DECL_NEW(sun6i_dma, sizeof(struct sun6idma_softc), sun6idma_match, sun6idma_attach, NULL, NULL); #ifdef DDB void sun6idma_dump(void); void sun6idma_dump(void) { struct sun6idma_softc *sc; device_t dev; u_int index; dev = device_find_by_driver_unit("sun6idma", 0); if (dev == NULL) return; sc = device_private(dev); device_printf(dev, "DMA_IRQ_EN_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG0_REG)); device_printf(dev, "DMA_IRQ_EN_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_EN_REG1_REG)); device_printf(dev, "DMA_IRQ_PEND_REG0_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG0_REG)); device_printf(dev, "DMA_IRQ_PEND_REG1_REG: %08x\n", DMA_READ(sc, DMA_IRQ_PEND_REG1_REG)); device_printf(dev, "DMA_STA_REG: %08x\n", DMA_READ(sc, DMA_STA_REG)); for (index = 0; index < sc->sc_nchan; index++) { struct sun6idma_channel *ch = &sc->sc_chan[index]; if (ch->ch_callback == NULL) continue; device_printf(dev, " %2d: DMA_EN_REG: %08x\n", index, DMA_READ(sc, DMA_EN_REG(index))); device_printf(dev, " %2d: DMA_PAU_REG: %08x\n", index, DMA_READ(sc, DMA_PAU_REG(index))); device_printf(dev, " %2d: DMA_START_ADDR_REG: %08x\n", index, DMA_READ(sc, DMA_START_ADDR_REG(index))); device_printf(dev, " %2d: DMA_CFG_REG: %08x\n", index, DMA_READ(sc, DMA_CFG_REG(index))); device_printf(dev, " %2d: DMA_CUR_SRC_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_SRC_REG(index))); device_printf(dev, " %2d: DMA_CUR_DEST_REG: %08x\n", index, DMA_READ(sc, DMA_CUR_DEST_REG(index))); device_printf(dev, " %2d: DMA_BCNT_LEFT_REG: %08x\n", index, DMA_READ(sc, DMA_BCNT_LEFT_REG(index))); device_printf(dev, " %2d: DMA_PARA_REG: %08x\n", index, DMA_READ(sc, DMA_PARA_REG(index))); } } #endif