/* $NetBSD: becc_timer.c,v 1.15 2011/07/01 20:32:51 dyoung Exp $ */ /* * Copyright (c) 2001, 2002 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Timer/clock support for the ADI Engineering Big Endian Companion Chip. */ #include __KERNEL_RCSID(0, "$NetBSD: becc_timer.c,v 1.15 2011/07/01 20:32:51 dyoung Exp $"); #include #include #include #include #include #include #include #include #include #include #include void (*becc_hardclock_hook)(void); /* * Note, since COUNTS_PER_USEC doesn't divide evenly, we round up. */ #define COUNTS_PER_SEC BECC_PERIPH_CLOCK #define COUNTS_PER_USEC ((COUNTS_PER_SEC / 1000000) + 1) static void *clock_ih; static u_int becc_get_timecount(struct timecounter *); static struct timecounter becc_timecounter = { becc_get_timecount, /* get_timecount */ 0, /* no poll_pps */ 0xffffffff, /* counter_mask */ COUNTS_PER_SEC, /* frequency */ "becc", /* name */ 100, /* quality */ NULL, /* prev */ NULL, /* next */ }; static volatile uint32_t becc_base; /* * Since the timer interrupts when the counter underflows, we need to * subtract 1 from counts_per_hz when loading the preload register. */ static uint32_t counts_per_hz; int clockhandler(void *); /* * becc_calibrate_delay: * * Calibrate the delay loop. */ void becc_calibrate_delay(void) { /* * Just use hz=100 for now -- we'll adjust it, if necessary, * in cpu_initclocks(). */ counts_per_hz = COUNTS_PER_SEC / 100; /* Stop both timers, clear interrupts. */ BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF); BECC_CSR_WRITE(BECC_TSCRB, TSCRx_TIF); /* Set the timer preload value. */ BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1); /* Start the timer. */ BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM); } /* * cpu_initclocks: * * Initialize the clock and get them going. */ void cpu_initclocks(void) { u_int oldirqstate; #if 0 if (hz < 50 || COUNTS_PER_SEC % hz) { printf("Cannot get %d Hz clock; using 100 Hz\n", hz); hz = 100; } #endif /* * We only have one timer available; stathz and profhz are * always left as 0 (the upper-layer clock code deals with * this situation). */ if (stathz != 0) printf("Cannot get %d Hz statclock\n", stathz); stathz = 0; if (profhz != 0) printf("Cannot get %d Hz profclock\n", profhz); profhz = 0; /* Report the clock frequency. */ aprint_normal("clock: hz=%d stathz=%d profhz=%d\n", hz, stathz, profhz); oldirqstate = disable_interrupts(I32_bit); /* Hook up the clock interrupt handler. */ clock_ih = becc_intr_establish(ICU_TIMERA, IPL_CLOCK, clockhandler, NULL); if (clock_ih == NULL) panic("cpu_initclocks: unable to register timer interrupt"); /* Set up the new clock parameters. */ /* Stop timer, clear interrupt */ BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TIF); counts_per_hz = COUNTS_PER_SEC / hz; /* Set the timer preload value. */ BECC_CSR_WRITE(BECC_TPRA, counts_per_hz - 1); /* ...and start it in motion. */ BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM); #ifdef __HAVE_FAST_SOFTINTS /* register soft interrupt handler as well */ becc_intr_establish(ICU_SOFT, IPL_SOFTCLOCK, becc_softint, NULL); #endif restore_interrupts(oldirqstate); tc_init(&becc_timecounter); } /* * setstatclockrate: * * Set the rate of the statistics clock. * * We assume that hz is either stathz or profhz, and that neither * will change after being set by cpu_initclocks(). We could * recalculate the intervals here, but that would be a pain. */ void setstatclockrate(int new_hz) { /* * XXX Use TMR1? */ } static u_int becc_get_timecount(struct timecounter *tc) { uint32_t counter, base; u_int oldirqstate; oldirqstate = disable_interrupts(I32_bit); counter = BECC_CSR_READ(BECC_TCVRA); base = becc_base; restore_interrupts(oldirqstate); return base - counter; } /* * delay: * * Delay for at least N microseconds. */ void delay(u_int n) { uint32_t cur, last, delta, usecs; /* * This works by polling the timer and counting the * number of microseconds that go by. */ last = BECC_CSR_READ(BECC_TCVRA); delta = usecs = 0; while (n > usecs) { cur = BECC_CSR_READ(BECC_TCVRA); /* Check to see if the timer has wrapped around. */ if (last < cur) delta += (last + (counts_per_hz - cur)); else delta += (last - cur); last = cur; if (delta >= COUNTS_PER_USEC) { usecs += delta / COUNTS_PER_USEC; delta %= COUNTS_PER_USEC; } } } /* * clockhandler: * * Handle the hardclock interrupt. */ int clockhandler(void *arg) { struct clockframe *frame = arg; /* ACK the interrupt. */ BECC_CSR_WRITE(BECC_TSCRA, TSCRx_TE | TSCRx_CM | TSCRx_TIF); hardclock(frame); atomic_add_32(&becc_base, counts_per_hz); if (becc_hardclock_hook != NULL) (*becc_hardclock_hook)(); return (1); }