/* $NetBSD: bus.c,v 1.58.12.1 2018/03/13 13:41:13 martin Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center and by Chris G. Demetriou. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "opt_m68k_arch.h" #include __KERNEL_RCSID(0, "$NetBSD: bus.c,v 1.58.12.1 2018/03/13 13:41:13 martin Exp $"); #include #include #include #include #include #include #include #include #include #define _ATARI_BUS_DMA_PRIVATE #include int bus_dmamem_alloc_range(bus_dma_tag_t tag, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags, paddr_t low, paddr_t high); static int _bus_dmamap_load_buffer(bus_dma_tag_t tag, bus_dmamap_t, void *, bus_size_t, struct vmspace *, int, paddr_t *, int *, int); static int bus_mem_add_mapping(bus_space_tag_t t, bus_addr_t bpa, bus_size_t size, int flags, bus_space_handle_t *bsph); extern struct extent *iomem_ex; extern int iomem_malloc_safe; extern paddr_t avail_end; /* * We need these for the early memory allocator. The idea is this: * Allocate VA-space through ptextra (atari_init.c:startc()). When * The VA & size of this space are known, call bootm_init(). * Until the VM-system is up, bus_mem_add_mapping() allocates its virtual * addresses from this extent-map. * * This allows for the console code to use the bus_space interface at a * very early stage of the system configuration. */ static pt_entry_t *bootm_ptep; static long bootm_ex_storage[EXTENT_FIXED_STORAGE_SIZE(32) / sizeof(long)]; static struct extent *bootm_ex; void bootm_init(vaddr_t, pt_entry_t *, u_long); static vaddr_t bootm_alloc(paddr_t pa, u_long size, int flags); static int bootm_free(vaddr_t va, u_long size); void bootm_init(vaddr_t va, pt_entry_t *ptep, u_long size) { bootm_ex = extent_create("bootmem", va, va + size, (void *)bootm_ex_storage, sizeof(bootm_ex_storage), EX_NOCOALESCE|EX_NOWAIT); bootm_ptep = ptep; } vaddr_t bootm_alloc(paddr_t pa, u_long size, int flags) { pt_entry_t *pg, *epg; pt_entry_t pg_proto; vaddr_t va, rva; if (extent_alloc(bootm_ex, size, PAGE_SIZE, 0, EX_NOWAIT, &rva)) { printf("bootm_alloc fails! Not enough fixed extents?\n"); printf("Requested extent: pa=%lx, size=%lx\n", (u_long)pa, size); return 0; } pg = &bootm_ptep[btoc(rva - bootm_ex->ex_start)]; epg = &pg[btoc(size)]; va = rva; pg_proto = pa | PG_RW | PG_V; if (!(flags & BUS_SPACE_MAP_CACHEABLE)) pg_proto |= PG_CI; while (pg < epg) { *pg++ = pg_proto; pg_proto += PAGE_SIZE; #if defined(M68040) || defined(M68060) if (mmutype == MMU_68040) { DCFP(pa); pa += PAGE_SIZE; } #endif TBIS(va); va += PAGE_SIZE; } return rva; } int bootm_free(vaddr_t va, u_long size) { if ((va < bootm_ex->ex_start) || ((va + size) > bootm_ex->ex_end)) return 0; /* Not for us! */ extent_free(bootm_ex, va, size, EX_NOWAIT); return 1; } int bus_space_map(bus_space_tag_t t, bus_addr_t bpa, bus_size_t size, int flags, bus_space_handle_t *mhp) { int error; /* * Before we go any further, let's make sure that this * region is available. */ error = extent_alloc_region(iomem_ex, bpa + t->base, size, EX_NOWAIT | (iomem_malloc_safe ? EX_MALLOCOK : 0)); if (error) return error; error = bus_mem_add_mapping(t, bpa, size, flags, mhp); if (error) { if (extent_free(iomem_ex, bpa + t->base, size, EX_NOWAIT | (iomem_malloc_safe ? EX_MALLOCOK : 0))) { printf("bus_space_map: pa 0x%lx, size 0x%lx\n", bpa, size); printf("bus_space_map: can't free region\n"); } } return error; } int bus_space_alloc(bus_space_tag_t t, bus_addr_t rstart, bus_addr_t rend, bus_size_t size, bus_size_t alignment, bus_size_t boundary, int flags, bus_addr_t *bpap, bus_space_handle_t *bshp) { u_long bpa; int error; #ifdef DIAGNOSTIC /* * Sanity check the allocation against the extent's boundaries. * XXX: Since we manage the whole of memory in a single map, * this is nonsense for now! Brace it DIAGNOSTIC.... */ if ((rstart + t->base) < iomem_ex->ex_start || (rend + t->base) > iomem_ex->ex_end) panic("bus_space_alloc: bad region start/end"); #endif /* DIAGNOSTIC */ /* * Do the requested allocation. */ error = extent_alloc_subregion(iomem_ex, rstart + t->base, rend + t->base, size, alignment, boundary, EX_FAST | EX_NOWAIT | (iomem_malloc_safe ? EX_MALLOCOK : 0), &bpa); if (error) return error; /* * Map the bus physical address to a kernel virtual address. */ error = bus_mem_add_mapping(t, bpa, size, flags, bshp); if (error) { if (extent_free(iomem_ex, bpa, size, EX_NOWAIT | (iomem_malloc_safe ? EX_MALLOCOK : 0))) { printf("bus_space_alloc: pa 0x%lx, size 0x%lx\n", bpa, size); printf("bus_space_alloc: can't free region\n"); } } *bpap = bpa; return error; } static int bus_mem_add_mapping(bus_space_tag_t t, bus_addr_t bpa, bus_size_t size, int flags, bus_space_handle_t *bshp) { vaddr_t va; paddr_t pa, endpa; pa = m68k_trunc_page(bpa + t->base); endpa = m68k_round_page((bpa + t->base + size) - 1); #ifdef DIAGNOSTIC if (endpa <= pa) panic("bus_mem_add_mapping: overflow"); #endif if (kernel_map == NULL) { /* * The VM-system is not yet operational, allocate from * a special pool. */ va = bootm_alloc(pa, endpa - pa, flags); if (va == 0) return ENOMEM; *bshp = va + (bpa & PGOFSET); return 0; } va = uvm_km_alloc(kernel_map, endpa - pa, 0, UVM_KMF_VAONLY | UVM_KMF_NOWAIT); if (va == 0) return ENOMEM; *bshp = va + (bpa & PGOFSET); for (; pa < endpa; pa += PAGE_SIZE, va += PAGE_SIZE) { u_int *ptep, npte; pmap_enter(pmap_kernel(), (vaddr_t)va, pa, VM_PROT_READ|VM_PROT_WRITE, VM_PROT_READ|VM_PROT_WRITE); ptep = kvtopte(va); npte = *ptep & ~PG_CMASK; if ((flags & BUS_SPACE_MAP_CACHEABLE) == 0) npte |= PG_CI; else if (mmutype == MMU_68040) npte |= PG_CCB; *ptep = npte; } pmap_update(pmap_kernel()); TBIAS(); return 0; } void bus_space_unmap(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t size) { vaddr_t va, endva; paddr_t bpa; va = m68k_trunc_page(bsh); endva = m68k_round_page(((char *)bsh + size) - 1); #ifdef DIAGNOSTIC if (endva < va) panic("unmap_iospace: overflow"); #endif (void)pmap_extract(pmap_kernel(), va, &bpa); bpa += ((u_long)bsh & PGOFSET); /* * Free the kernel virtual mapping. */ if (!bootm_free(va, endva - va)) { pmap_remove(pmap_kernel(), va, endva); pmap_update(pmap_kernel()); uvm_km_free(kernel_map, va, endva - va, UVM_KMF_VAONLY); } /* * Mark as free in the extent map. */ if (extent_free(iomem_ex, bpa, size, EX_NOWAIT | (iomem_malloc_safe ? EX_MALLOCOK : 0))) { printf("bus_space_unmap: pa 0x%lx, size 0x%lx\n", bpa, size); printf("bus_space_unmap: can't free region\n"); } } /* * Get a new handle for a subregion of an already-mapped area of bus space. */ int bus_space_subregion(bus_space_tag_t t, bus_space_handle_t memh, bus_size_t off, bus_size_t sz, bus_space_handle_t *mhp) { *mhp = memh + off; return 0; } paddr_t bus_space_mmap(bus_space_tag_t t, bus_addr_t addr, off_t off, int prot, int flags) { /* * "addr" is the base address of the device we're mapping. * "off" is the offset into that device. * * Note we are called for each "page" in the device that * the upper layers want to map. */ return m68k_btop(addr + off); } /* * Common function for DMA map creation. May be called by bus-specific * DMA map creation functions. */ int _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments, bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp) { struct atari_bus_dmamap *map; void *mapstore; size_t mapsize; /* * Allocate and initialize the DMA map. The end of the map * is a variable-sized array of segments, so we allocate enough * room for them in one shot. * * Note we don't preserve the WAITOK or NOWAIT flags. Preservation * of ALLOCNOW notifies others that we've reserved these resources, * and they are not to be freed. * * The bus_dmamap_t includes one bus_dma_segment_t, hence * the (nsegments - 1). */ mapsize = sizeof(struct atari_bus_dmamap) + (sizeof(bus_dma_segment_t) * (nsegments - 1)); if ((mapstore = malloc(mapsize, M_DMAMAP, (flags & BUS_DMA_NOWAIT) ? M_NOWAIT : M_WAITOK)) == NULL) return ENOMEM; memset(mapstore, 0, mapsize); map = (struct atari_bus_dmamap *)mapstore; map->_dm_size = size; map->_dm_segcnt = nsegments; map->_dm_maxmaxsegsz = maxsegsz; map->_dm_boundary = boundary; map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT); map->dm_maxsegsz = maxsegsz; map->dm_mapsize = 0; /* no valid mappings */ map->dm_nsegs = 0; *dmamp = map; return 0; } /* * Common function for DMA map destruction. May be called by bus-specific * DMA map destruction functions. */ void _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map) { free(map, M_DMAMAP); } /* * Common function for loading a DMA map with a linear buffer. May * be called by bus-specific DMA map load functions. */ int _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf, bus_size_t buflen, struct proc *p, int flags) { paddr_t lastaddr; int seg, error; struct vmspace *vm; /* * Make sure that on error condition we return "no valid mappings". */ map->dm_mapsize = 0; map->dm_nsegs = 0; KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz); if (buflen > map->_dm_size) return EINVAL; if (p != NULL) { vm = p->p_vmspace; } else { vm = vmspace_kernel(); } seg = 0; error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags, &lastaddr, &seg, 1); if (error == 0) { map->dm_mapsize = buflen; map->dm_nsegs = seg + 1; } return error; } /* * Like _bus_dmamap_load(), but for mbufs. */ int _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0, int flags) { paddr_t lastaddr; int seg, error, first; struct mbuf *m; /* * Make sure that on error condition we return "no valid mappings." */ map->dm_mapsize = 0; map->dm_nsegs = 0; KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz); #ifdef DIAGNOSTIC if ((m0->m_flags & M_PKTHDR) == 0) panic("_bus_dmamap_load_mbuf: no packet header"); #endif if (m0->m_pkthdr.len > map->_dm_size) return EINVAL; first = 1; seg = 0; error = 0; for (m = m0; m != NULL && error == 0; m = m->m_next) { if (m->m_len == 0) continue; error = _bus_dmamap_load_buffer(t, map, m->m_data, m->m_len, vmspace_kernel(), flags, &lastaddr, &seg, first); first = 0; } if (error == 0) { map->dm_mapsize = m0->m_pkthdr.len; map->dm_nsegs = seg + 1; } return error; } /* * Like _bus_dmamap_load(), but for uios. */ int _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio, int flags) { paddr_t lastaddr; int seg, i, error, first; bus_size_t minlen, resid; struct iovec *iov; void *addr; /* * Make sure that on error condition we return "no valid mappings." */ map->dm_mapsize = 0; map->dm_nsegs = 0; KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz); resid = uio->uio_resid; iov = uio->uio_iov; first = 1; seg = 0; error = 0; for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) { /* * Now at the first iovec to load. Load each iovec * until we have exhausted the residual count. */ minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len; addr = (void *)iov[i].iov_base; error = _bus_dmamap_load_buffer(t, map, addr, minlen, uio->uio_vmspace, flags, &lastaddr, &seg, first); first = 0; resid -= minlen; } if (error == 0) { map->dm_mapsize = uio->uio_resid; map->dm_nsegs = seg + 1; } return error; } /* * Like _bus_dmamap_load(), but for raw memory allocated with * bus_dmamem_alloc(). */ int _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map, bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags) { panic("bus_dmamap_load_raw: not implemented"); } /* * Common function for unloading a DMA map. May be called by * bus-specific DMA map unload functions. */ void _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map) { /* * No resources to free; just mark the mappings as * invalid. */ map->dm_maxsegsz = map->_dm_maxmaxsegsz; map->dm_mapsize = 0; map->dm_nsegs = 0; } /* * Common function for DMA map synchronization. May be called * by bus-specific DMA map synchronization functions. */ void _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset, bus_size_t len, int ops) { #if defined(M68040) || defined(M68060) bus_addr_t p, e, ps, pe; bus_size_t seglen; bus_dma_segment_t *seg; int i; #endif #if defined(M68020) || defined(M68030) #if defined(M68040) || defined(M68060) if (cputype == CPU_68020 || cputype == CPU_68030) #endif /* assume no L2 physical cache */ return; #endif #if defined(M68040) || defined(M68060) /* If the whole DMA map is uncached, do nothing. */ if ((map->_dm_flags & BUS_DMA_COHERENT) != 0) return; /* Short-circuit for unsupported `ops' */ if ((ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) == 0) return; /* * flush/purge the cache. */ for (i = 0; i < map->dm_nsegs && len != 0; i++) { seg = &map->dm_segs[i]; if (seg->ds_len <= offset) { /* Segment irrelevant - before requested offset */ offset -= seg->ds_len; continue; } /* * Now at the first segment to sync; nail * each segment until we have exhausted the * length. */ seglen = seg->ds_len - offset; if (seglen > len) seglen = len; ps = seg->ds_addr + offset; pe = ps + seglen; if (ops & BUS_DMASYNC_PREWRITE) { p = ps & ~CACHELINE_MASK; e = (pe + CACHELINE_MASK) & ~CACHELINE_MASK; /* flush cacheline */ while ((p < e) && (p & (CACHELINE_SIZE * 8 - 1)) != 0) { DCFL(p); p += CACHELINE_SIZE; } /* flush cachelines per 128bytes */ while ((p < e) && (p & PAGE_MASK) != 0) { DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; } /* flush page */ while (p + PAGE_SIZE <= e) { DCFP(p); p += PAGE_SIZE; } /* flush cachelines per 128bytes */ while (p + CACHELINE_SIZE * 8 <= e) { DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; DCFL(p); p += CACHELINE_SIZE; } /* flush cacheline */ while (p < e) { DCFL(p); p += CACHELINE_SIZE; } } /* * Normally, the `PREREAD' flag instructs us to purge the * cache for the specified offset and length. However, if * the offset/length is not aligned to a cacheline boundary, * we may end up purging some legitimate data from the * start/end of the cache. In such a case, *flush* the * cachelines at the start and end of the required region. */ else if (ops & BUS_DMASYNC_PREREAD) { /* flush cacheline on start boundary */ if (ps & CACHELINE_MASK) { DCFL(ps & ~CACHELINE_MASK); } p = (ps + CACHELINE_MASK) & ~CACHELINE_MASK; e = pe & ~CACHELINE_MASK; /* purge cacheline */ while ((p < e) && (p & (CACHELINE_SIZE * 8 - 1)) != 0) { DCPL(p); p += CACHELINE_SIZE; } /* purge cachelines per 128bytes */ while ((p < e) && (p & PAGE_MASK) != 0) { DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; } /* purge page */ while (p + PAGE_SIZE <= e) { DCPP(p); p += PAGE_SIZE; } /* purge cachelines per 128bytes */ while (p + CACHELINE_SIZE * 8 <= e) { DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; DCPL(p); p += CACHELINE_SIZE; } /* purge cacheline */ while (p < e) { DCPL(p); p += CACHELINE_SIZE; } /* flush cacheline on end boundary */ if (p < pe) { DCFL(p); } } offset = 0; len -= seglen; } #endif /* defined(M68040) || defined(M68060) */ } /* * Common function for DMA-safe memory allocation. May be called * by bus-specific DMA memory allocation functions. */ int bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags) { return bus_dmamem_alloc_range(t, size, alignment, boundary, segs, nsegs, rsegs, flags, 0, trunc_page(avail_end)); } /* * Common function for freeing DMA-safe memory. May be called by * bus-specific DMA memory free functions. */ void bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs) { struct vm_page *m; bus_addr_t addr, offset; struct pglist mlist; int curseg; offset = t->_displacement; /* * Build a list of pages to free back to the VM system. */ TAILQ_INIT(&mlist); for (curseg = 0; curseg < nsegs; curseg++) { for (addr = segs[curseg].ds_addr; addr < (segs[curseg].ds_addr + segs[curseg].ds_len); addr += PAGE_SIZE) { m = PHYS_TO_VM_PAGE(addr - offset); TAILQ_INSERT_TAIL(&mlist, m, pageq.queue); } } uvm_pglistfree(&mlist); } /* * Common function for mapping DMA-safe memory. May be called by * bus-specific DMA memory map functions. */ int bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs, size_t size, void **kvap, int flags) { vaddr_t va; bus_addr_t addr, offset; int curseg; const uvm_flag_t kmflags = (flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0; offset = t->_displacement; size = round_page(size); va = uvm_km_alloc(kernel_map, size, 0, UVM_KMF_VAONLY | kmflags); if (va == 0) return ENOMEM; *kvap = (void *)va; for (curseg = 0; curseg < nsegs; curseg++) { for (addr = segs[curseg].ds_addr; addr < (segs[curseg].ds_addr + segs[curseg].ds_len); addr += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) { if (size == 0) panic("_bus_dmamem_map: size botch"); pmap_enter(pmap_kernel(), va, addr - offset, VM_PROT_READ | VM_PROT_WRITE, VM_PROT_READ | VM_PROT_WRITE); } } pmap_update(pmap_kernel()); return 0; } /* * Common function for unmapping DMA-safe memory. May be called by * bus-specific DMA memory unmapping functions. */ void bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size) { #ifdef DIAGNOSTIC if ((u_long)kva & PGOFSET) panic("_bus_dmamem_unmap"); #endif size = round_page(size); pmap_remove(pmap_kernel(), (vaddr_t)kva, (vaddr_t)kva + size); pmap_update(pmap_kernel()); uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY); } /* * Common functin for mmap(2)'ing DMA-safe memory. May be called by * bus-specific DMA mmap(2)'ing functions. */ paddr_t bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs, off_t off, int prot, int flags) { int i, offset; offset = t->_displacement; for (i = 0; i < nsegs; i++) { #ifdef DIAGNOSTIC if (off & PGOFSET) panic("_bus_dmamem_mmap: offset unaligned"); if (segs[i].ds_addr & PGOFSET) panic("_bus_dmamem_mmap: segment unaligned"); if (segs[i].ds_len & PGOFSET) panic("_bus_dmamem_mmap: segment size not multiple" " of page size"); #endif if (off >= segs[i].ds_len) { off -= segs[i].ds_len; continue; } return (m68k_btop((char *)segs[i].ds_addr - offset + off)); } /* Page not found. */ return -1; } /********************************************************************** * DMA utility functions **********************************************************************/ /* * Utility function to load a linear buffer. lastaddrp holds state * between invocations (for multiple-buffer loads). segp contains * the starting segment on entrace, and the ending segment on exit. * first indicates if this is the first invocation of this function. */ static int _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf, bus_size_t buflen, struct vmspace *vm, int flags, paddr_t *lastaddrp, int *segp, int first) { bus_size_t sgsize; bus_addr_t curaddr, lastaddr, offset, baddr, bmask; vaddr_t vaddr = (vaddr_t)buf; int seg; pmap_t pmap; offset = t->_displacement; pmap = vm_map_pmap(&vm->vm_map); lastaddr = *lastaddrp; bmask = ~(map->_dm_boundary - 1); for (seg = *segp; buflen > 0 ; ) { /* * Get the physical address for this segment. */ (void) pmap_extract(pmap, vaddr, &curaddr); /* * Compute the segment size, and adjust counts. */ sgsize = PAGE_SIZE - ((u_long)vaddr & PGOFSET); if (buflen < sgsize) sgsize = buflen; /* * Make sure we don't cross any boundaries. */ if (map->_dm_boundary > 0) { baddr = (curaddr + map->_dm_boundary) & bmask; if (sgsize > (baddr - curaddr)) sgsize = (baddr - curaddr); } /* * Insert chunk into a segment, coalescing with * previous segment if possible. */ if (first) { map->dm_segs[seg].ds_addr = curaddr + offset; map->dm_segs[seg].ds_len = sgsize; first = 0; } else { if (curaddr == lastaddr && (map->dm_segs[seg].ds_len + sgsize) <= map->dm_maxsegsz && (map->_dm_boundary == 0 || (map->dm_segs[seg].ds_addr & bmask) == (curaddr & bmask))) map->dm_segs[seg].ds_len += sgsize; else { if (++seg >= map->_dm_segcnt) break; map->dm_segs[seg].ds_addr = curaddr + offset; map->dm_segs[seg].ds_len = sgsize; } } lastaddr = curaddr + sgsize; vaddr += sgsize; buflen -= sgsize; } *segp = seg; *lastaddrp = lastaddr; /* * Did we fit? */ if (buflen != 0) return EFBIG; /* XXX better return value here? */ return 0; } /* * Allocate physical memory from the given physical address range. * Called by DMA-safe memory allocation methods. */ int bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment, bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs, int flags, paddr_t low, paddr_t high) { paddr_t curaddr, lastaddr; bus_addr_t offset; struct vm_page *m; struct pglist mlist; int curseg, error; offset = t->_displacement; /* Always round the size. */ size = round_page(size); /* * Allocate pages from the VM system. */ error = uvm_pglistalloc(size, low, high, alignment, boundary, &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0); if (error) return error; /* * Compute the location, size, and number of segments actually * returned by the VM code. */ m = mlist.tqh_first; curseg = 0; lastaddr = VM_PAGE_TO_PHYS(m); segs[curseg].ds_addr = lastaddr + offset; segs[curseg].ds_len = PAGE_SIZE; m = m->pageq.queue.tqe_next; for (; m != NULL; m = m->pageq.queue.tqe_next) { curaddr = VM_PAGE_TO_PHYS(m); #ifdef DIAGNOSTIC if (curaddr < low || curaddr >= high) { printf("uvm_pglistalloc returned non-sensical" " address 0x%lx\n", curaddr); panic("_bus_dmamem_alloc_range"); } #endif if (curaddr == (lastaddr + PAGE_SIZE)) segs[curseg].ds_len += PAGE_SIZE; else { curseg++; segs[curseg].ds_addr = curaddr + offset; segs[curseg].ds_len = PAGE_SIZE; } lastaddr = curaddr; } *rsegs = curseg + 1; return 0; }