/* $NetBSD: zs.c,v 1.19 2014/03/24 18:56:43 christos Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. */ #include __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.19 2014/03/24 18:56:43 christos Exp $"); #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ioconf.h" int zs_getc(void *); void zs_putc(void*, int); static struct zs_chanstate zs_conschan_store; static int zs_hwflags[2][2]; static uint8_t zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ 0x18 + ZSHARD_PRI, /* IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, 11, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE | ZSWR15_DCD_IE, }; static int zsc_print(void *, const char *); int zscngetc(dev_t); void zscnputc(dev_t, int); static struct consdev zscons = { NULL, NULL, zscngetc, zscnputc, nullcnpollc, NULL, NULL, NULL, NODEV, 1 }; void zs_config(struct zsc_softc *zsc, char *base) { struct zsc_attach_args zsc_args; struct zs_chanstate *cs; int zsc_unit, channel, s; zsc_unit = device_unit(zsc->zsc_dev); aprint_normal(": Zilog 8530 SCC\n"); /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { zsc_args.channel = channel; zsc_args.hwflags = zs_hwflags[zsc_unit][channel]; /* * If we're the console, copy the channel state, and * adjust the console channel pointer. */ if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) { cs = &zs_conschan_store; } else { cs = malloc(sizeof(struct zs_chanstate), M_DEVBUF, M_NOWAIT | M_ZERO); if(channel==0){ cs->cs_reg_csr = base + 7; cs->cs_reg_data = base + 15; } else { cs->cs_reg_csr = base + 3; cs->cs_reg_data = base + 11; } memcpy(cs->cs_creg, zs_init_reg, 16); memcpy(cs->cs_preg, zs_init_reg, 16); cs->cs_defspeed = 9600; } zsc->zsc_cs[channel] = cs; zs_lock_init(cs); cs->cs_defcflag = CREAD | CS8 | HUPCL; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = 4000000 / 16; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ if (!config_found(zsc->zsc_dev, (void *)&zsc_args, zsc_print)) { /* No sub-driver. Just reset it. */ uint8_t reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; s = splzs(); zs_write_reg(cs, 9, reset); splx(s); } } } static int zsc_print(void *aux, const char *name) { struct zsc_attach_args *args = aux; if (name != NULL) aprint_normal("%s: ", name); if (args->channel != -1) aprint_normal(" channel %d", args->channel); return UNCONF; } int zshard(void *arg) { struct zsc_softc *zsc; int unit, rval; rval = 0; for (unit = 0; unit < zsc_cd.cd_ndevs; unit++) { zsc = device_lookup_private(&zsc_cd, unit); if (zsc == NULL) continue; rval |= zsc_intr_hard(zsc); if ((zsc->zsc_cs[0]->cs_softreq) || (zsc->zsc_cs[1]->cs_softreq)) { softint_schedule(zsc->zsc_softintr_cookie); } } return (rval); } uint8_t zs_read_reg(struct zs_chanstate *cs, uint8_t reg) { uint8_t val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_reg(struct zs_chanstate *cs, uint8_t reg, uint8_t val) { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } uint8_t zs_read_csr(struct zs_chanstate *cs) { uint8_t val; val = *cs->cs_reg_csr; ZS_DELAY(); return val; } void zs_write_csr(struct zs_chanstate *cs, uint8_t val) { *cs->cs_reg_csr = val; ZS_DELAY(); } uint8_t zs_read_data(struct zs_chanstate *cs) { uint8_t val; val = *cs->cs_reg_data; ZS_DELAY(); return val; } void zs_write_data(struct zs_chanstate *cs, uint8_t val) { *cs->cs_reg_data = val; ZS_DELAY(); } int zs_set_speed(struct zs_chanstate *cs, int bps) { int tconst; tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); #if 0 /* Convert back to make sure we can do it. */ int real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); /* XXX - Allow some tolerance here? */ if (real_bps != bps) return (EINVAL); #endif cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; return (0); } int zs_set_modes(struct zs_chanstate *cs, int cflag) { int s; /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ s = splzs(); #if 0 /* XXX - See below. */ if (cflag & CLOCAL) { cs->cs_rr0_dcd = 0; cs->cs_preg[15] &= ~ZSWR15_DCD_IE; } else { /* XXX - Need to notice DCD change here... */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_preg[15] |= ZSWR15_DCD_IE; } #endif /* XXX */ if (cflag & CRTSCTS) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; cs->cs_preg[15] |= ZSWR15_CTS_IE; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; cs->cs_preg[15] &= ~ZSWR15_CTS_IE; } splx(s); /* Caller will stuff the pending registers. */ return (0); } /* * Handle user request to enter kernel debugger. */ void zs_abort(struct zs_chanstate *cs) { int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); #ifdef DDB console_debugger(); #endif } /* * Polled input char. */ int zs_getc(void *arg) { struct zs_chanstate *cs = arg; int s, c; uint8_t rr0, stat; s = splhigh(); top: /* Wait for a character to arrive. */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); /* Read error register. */ stat = zs_read_reg(cs, 1) & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE); if (stat) { zs_write_csr(cs, ZSM_RESET_ERR); goto top; } /* Read character. */ c = *cs->cs_reg_data; ZS_DELAY(); splx(s); return (c); } /* * Polled output char. */ void zs_putc(void *arg, int c) { struct zs_chanstate *cs = arg; int s; uint8_t rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = *cs->cs_reg_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); *cs->cs_reg_data = c; ZS_DELAY(); splx(s); } int zscngetc(dev_t dev) { struct zs_chanstate *cs = &zs_conschan_store; int c; c = zs_getc(cs); return (c); } void zscnputc(dev_t dev, int c) { struct zs_chanstate *cs = &zs_conschan_store; zs_putc(cs, c); } /* * Common parts of console init. */ void zs_cninit(void *base) { struct zs_chanstate *cs; /* * Pointer to channel state. Later, the console channel * state is copied into the softc, and the console channel * pointer adjusted to point to the new copy. */ cs = &zs_conschan_store; zs_hwflags[0][0] = ZS_HWFLAG_CONSOLE; /* Setup temporary chanstate. */ cs->cs_reg_csr = (uint8_t *)base + 7; cs->cs_reg_data = (uint8_t *)base + 15; /* Initialize the pending registers. */ memcpy(cs->cs_preg, zs_init_reg, 16); cs->cs_preg[5] |= (ZSWR5_DTR | ZSWR5_RTS); /* XXX: Preserve BAUD rate from boot loader. */ /* XXX: Also, why reset the chip here? -gwr */ /* cs->cs_defspeed = zs_get_speed(cs); */ cs->cs_defspeed = 9600; /* XXX */ /* Clear the master interrupt enable. */ zs_write_reg(cs, 9, 0); /* Reset the whole SCC chip. */ zs_write_reg(cs, 9, ZSWR9_HARD_RESET); /* Copy "pending" to "current" and H/W. */ zs_loadchannelregs(cs); /* Point the console at the SCC. */ cn_tab = &zscons; }