/* $NetBSD: plcom.c,v 1.52 2015/04/13 21:18:41 riastradh Exp $ */ /*- * Copyright (c) 2001 ARM Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum and Nick Hudson. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1991 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)com.c 7.5 (Berkeley) 5/16/91 */ /* * COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to * the 16C550, but have a completely different programmer's model. * Derived from the NS16550AF com driver. */ #include __KERNEL_RCSID(0, "$NetBSD: plcom.c,v 1.52 2015/04/13 21:18:41 riastradh Exp $"); #include "opt_plcom.h" #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_lockdebug.h" #include "opt_multiprocessor.h" /* * Override cnmagic(9) macro before including . * We need to know if cn_check_magic triggered debugger, so set a flag. * Callers of cn_check_magic must declare int cn_trapped = 0; * XXX: this is *ugly*! */ #define cn_trap() \ do { \ console_debugger(); \ cn_trapped = 1; \ } while (/* CONSTCOND */ 0) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef RND_COM #include #endif #include #include #include static void plcom_enable_debugport (struct plcom_softc *); void plcom_config (struct plcom_softc *); void plcom_shutdown (struct plcom_softc *); int pl010comspeed (long, long); int pl011comspeed (long, long); static u_char cflag2lcr (tcflag_t); int plcomparam (struct tty *, struct termios *); void plcomstart (struct tty *); int plcomhwiflow (struct tty *, int); void plcom_loadchannelregs (struct plcom_softc *); void plcom_hwiflow (struct plcom_softc *); void plcom_break (struct plcom_softc *, int); void plcom_modem (struct plcom_softc *, int); void tiocm_to_plcom (struct plcom_softc *, u_long, int); int plcom_to_tiocm (struct plcom_softc *); void plcom_iflush (struct plcom_softc *); int plcom_common_getc (dev_t, struct plcom_instance *); void plcom_common_putc (dev_t, struct plcom_instance *, int); int plcominit (struct plcom_instance *, int, int, tcflag_t); dev_type_open(plcomopen); dev_type_close(plcomclose); dev_type_read(plcomread); dev_type_write(plcomwrite); dev_type_ioctl(plcomioctl); dev_type_stop(plcomstop); dev_type_tty(plcomtty); dev_type_poll(plcompoll); int plcomcngetc (dev_t); void plcomcnputc (dev_t, int); void plcomcnpollc (dev_t, int); #define integrate static inline void plcomsoft (void *); integrate void plcom_rxsoft (struct plcom_softc *, struct tty *); integrate void plcom_txsoft (struct plcom_softc *, struct tty *); integrate void plcom_stsoft (struct plcom_softc *, struct tty *); integrate void plcom_schedrx (struct plcom_softc *); void plcomdiag (void *); bool plcom_intstatus(struct plcom_instance *, u_int *); extern struct cfdriver plcom_cd; const struct cdevsw plcom_cdevsw = { .d_open = plcomopen, .d_close = plcomclose, .d_read = plcomread, .d_write = plcomwrite, .d_ioctl = plcomioctl, .d_stop = plcomstop, .d_tty = plcomtty, .d_poll = plcompoll, .d_mmap = nommap, .d_kqfilter = ttykqfilter, .d_discard = nodiscard, .d_flag = D_TTY }; /* * Make this an option variable one can patch. * But be warned: this must be a power of 2! */ u_int plcom_rbuf_size = PLCOM_RING_SIZE; /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4; u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4; static int plcomconsunit = -1; static struct plcom_instance plcomcons_info; static int plcomconsattached; static int plcomconsrate; static tcflag_t plcomconscflag; static struct cnm_state plcom_cnm_state; static int ppscap = PPS_TSFMT_TSPEC | PPS_CAPTUREASSERT | PPS_CAPTURECLEAR | #ifdef PPS_SYNC PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR | #endif /* PPS_SYNC */ PPS_OFFSETASSERT | PPS_OFFSETCLEAR; #ifdef KGDB #include static struct plcom_instance plcomkgdb_info; static int plcom_kgdb_attached; int plcom_kgdb_getc (void *); void plcom_kgdb_putc (void *, int); #endif /* KGDB */ #define PLCOMDIALOUT_MASK TTDIALOUT_MASK #define PLCOMUNIT(x) TTUNIT(x) #define PLCOMDIALOUT(x) TTDIALOUT(x) #define PLCOM_ISALIVE(sc) ((sc)->enabled != 0 && \ device_is_active((sc)->sc_dev)) #define BR BUS_SPACE_BARRIER_READ #define BW BUS_SPACE_BARRIER_WRITE #define PLCOM_BARRIER(pi, f) \ bus_space_barrier((pi)->pi_iot, (pi)->pi_ioh, 0, (pi)->pi_size, (f)) static uint8_t pread1(struct plcom_instance *pi, bus_size_t reg) { if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) return bus_space_read_1(pi->pi_iot, pi->pi_ioh, reg); return bus_space_read_4(pi->pi_iot, pi->pi_ioh, reg & -4) >> (8 * (reg & 3)); } int nhcr; static void pwrite1(struct plcom_instance *pi, bus_size_t o, uint8_t val) { if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) { bus_space_write_1(pi->pi_iot, pi->pi_ioh, o, val); } else { const size_t shift = 8 * (o & 3); o &= -4; uint32_t tmp = bus_space_read_4(pi->pi_iot, pi->pi_ioh, o); tmp = (val << shift) | (tmp & ~(0xff << shift)); bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, tmp); } } static void pwritem1(struct plcom_instance *pi, bus_size_t o, const uint8_t *datap, bus_size_t count) { if (!ISSET(pi->pi_flags, PLC_FLAG_32BIT_ACCESS)) { bus_space_write_multi_1(pi->pi_iot, pi->pi_ioh, o, datap, count); } else { KASSERT((o & 3) == 0); while (count--) { bus_space_write_4(pi->pi_iot, pi->pi_ioh, o, *datap++); }; } } #define PREAD1(pi, reg) pread1(pi, reg) #define PREAD4(pi, reg) \ (bus_space_read_4((pi)->pi_iot, (pi)->pi_ioh, (reg))) #define PWRITE1(pi, reg, val) pwrite1(pi, reg, val) #define PWRITEM1(pi, reg, d, c) pwritem1(pi, reg, d, c) #define PWRITE4(pi, reg, val) \ (bus_space_write_4((pi)->pi_iot, (pi)->pi_ioh, (reg), (val))) int pl010comspeed(long speed, long frequency) { #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */ int x, err; #if 0 if (speed == 0) return 0; #endif if (speed <= 0) return -1; x = divrnd(frequency / 16, speed); if (x <= 0) return -1; err = divrnd(((quad_t)frequency) * 1000 / 16, speed * x) - 1000; if (err < 0) err = -err; if (err > PLCOM_TOLERANCE) return -1; return x; #undef divrnd } int pl011comspeed(long speed, long frequency) { int denom = 16 * speed; int div = frequency / denom; int rem = frequency % denom; int ibrd = div << 6; int fbrd = (((8 * rem) / speed) + 1) / 2; /* Tolerance? */ return ibrd | fbrd; } #ifdef PLCOM_DEBUG int plcom_debug = 0; void plcomstatus (struct plcom_softc *, const char *); void plcomstatus(struct plcom_softc *sc, const char *str) { struct tty *tp = sc->sc_tty; printf("%s: %s %sclocal %sdcd %sts_carr_on %sdtr %stx_stopped\n", device_xname(sc->sc_dev), str, ISSET(tp->t_cflag, CLOCAL) ? "+" : "-", ISSET(sc->sc_msr, PL01X_MSR_DCD) ? "+" : "-", ISSET(tp->t_state, TS_CARR_ON) ? "+" : "-", ISSET(sc->sc_mcr, PL01X_MCR_DTR) ? "+" : "-", sc->sc_tx_stopped ? "+" : "-"); printf("%s: %s %scrtscts %scts %sts_ttstop %srts %xrx_flags\n", device_xname(sc->sc_dev), str, ISSET(tp->t_cflag, CRTSCTS) ? "+" : "-", ISSET(sc->sc_msr, PL01X_MSR_CTS) ? "+" : "-", ISSET(tp->t_state, TS_TTSTOP) ? "+" : "-", ISSET(sc->sc_mcr, PL01X_MCR_RTS) ? "+" : "-", sc->sc_rx_flags); } #endif #if 0 int plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh) { int data; /* Disable the UART. */ bus_space_write_1(iot, ioh, plcom_cr, 0); /* Make sure the FIFO is off. */ bus_space_write_1(iot, ioh, plcom_lcr, PL01X_LCR_8BITS); /* Disable interrupts. */ bus_space_write_1(iot, ioh, plcom_iir, 0); /* Make sure we swallow anything in the receiving register. */ data = bus_space_read_1(iot, ioh, plcom_dr); if (bus_space_read_1(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS) return 0; data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE); if (data != PL01X_FR_RXFE) return 0; return 1; } #endif /* * No locking in this routine; it is only called during attach, * or with the port already locked. */ static void plcom_enable_debugport(struct plcom_softc *sc) { struct plcom_instance *pi = &sc->sc_pi; sc->sc_cr = PL01X_CR_UARTEN; SET(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS); /* Turn on line break interrupt, set carrier. */ switch (pi->pi_type) { case PLCOM_TYPE_PL010: SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE); PWRITE1(pi, PL010COM_CR, sc->sc_cr); if (sc->sc_set_mcr) { /* XXX device_unit() abuse */ sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev), sc->sc_mcr); } break; case PLCOM_TYPE_PL011: sc->sc_imsc = PL011_INT_RX | PL011_INT_RT; SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE); SET(sc->sc_cr, PL011_MCR(sc->sc_mcr)); PWRITE4(pi, PL011COM_CR, sc->sc_cr); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); break; } } void plcom_attach_subr(struct plcom_softc *sc) { struct plcom_instance *pi = &sc->sc_pi; struct tty *tp; aprint_naive("\n"); callout_init(&sc->sc_diag_callout, 0); mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH); switch (pi->pi_type) { case PLCOM_TYPE_PL010: case PLCOM_TYPE_PL011: break; default: aprint_error_dev(sc->sc_dev, "Unknown plcom type: %d\n", pi->pi_type); return; } /* Disable interrupts before configuring the device. */ sc->sc_cr = 0; sc->sc_imsc = 0; if (bus_space_is_equal(pi->pi_iot, plcomcons_info.pi_iot) && pi->pi_iobase == plcomcons_info.pi_iobase) { plcomconsattached = 1; /* Make sure the console is always "hardwired". */ delay(1000); /* wait for output to finish */ SET(sc->sc_hwflags, PLCOM_HW_CONSOLE); SET(sc->sc_swflags, TIOCFLAG_SOFTCAR); /* * Must re-enable the console immediately, or we will * hang when trying to print. */ sc->sc_cr = PL01X_CR_UARTEN; if (pi->pi_type == PLCOM_TYPE_PL011) SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE); } switch (pi->pi_type) { case PLCOM_TYPE_PL010: PWRITE1(pi, PL010COM_CR, sc->sc_cr); break; case PLCOM_TYPE_PL011: PWRITE4(pi, PL011COM_CR, sc->sc_cr); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); break; } if (sc->sc_fifolen == 0) { switch (pi->pi_type) { case PLCOM_TYPE_PL010: /* * The PL010 has a 16-byte fifo, but the tx interrupt * triggers when there is space for 8 more bytes. */ sc->sc_fifolen = 8; break; case PLCOM_TYPE_PL011: /* Some revisions have a 32 byte TX FIFO */ sc->sc_fifolen = 16; break; } } aprint_normal("\n"); if (ISSET(sc->sc_hwflags, PLCOM_HW_TXFIFO_DISABLE)) { sc->sc_fifolen = 1; aprint_normal_dev(sc->sc_dev, "txfifo disabled\n"); } if (sc->sc_fifolen > 1) SET(sc->sc_hwflags, PLCOM_HW_FIFO); tp = tty_alloc(); tp->t_oproc = plcomstart; tp->t_param = plcomparam; tp->t_hwiflow = plcomhwiflow; sc->sc_tty = tp; sc->sc_rbuf = malloc(plcom_rbuf_size << 1, M_DEVBUF, M_NOWAIT); sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; sc->sc_rbavail = plcom_rbuf_size; if (sc->sc_rbuf == NULL) { aprint_error_dev(sc->sc_dev, "unable to allocate ring buffer\n"); return; } sc->sc_ebuf = sc->sc_rbuf + (plcom_rbuf_size << 1); tty_attach(tp); if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { int maj; /* locate the major number */ maj = cdevsw_lookup_major(&plcom_cdevsw); tp->t_dev = cn_tab->cn_dev = makedev(maj, device_unit(sc->sc_dev)); aprint_normal_dev(sc->sc_dev, "console\n"); } #ifdef KGDB /* * Allow kgdb to "take over" this port. If this is * the kgdb device, it has exclusive use. */ if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) && pi->pi_iobase == plcomkgdb_info.pi_iobase) { if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { plcom_kgdb_attached = 1; SET(sc->sc_hwflags, PLCOM_HW_KGDB); } aprint_normal_dev(sc->sc_dev, "kgdb\n"); } #endif sc->sc_si = softint_establish(SOFTINT_SERIAL, plcomsoft, sc); #ifdef RND_COM rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), RND_TYPE_TTY, RND_FLAG_DEFAULT); #endif /* * if there are no enable/disable functions, assume the device * is always enabled */ if (!sc->enable) sc->enabled = 1; plcom_config(sc); SET(sc->sc_hwflags, PLCOM_HW_DEV_OK); } void plcom_config(struct plcom_softc *sc) { struct plcom_instance *pi = &sc->sc_pi; /* Disable interrupts before configuring the device. */ sc->sc_cr = 0; sc->sc_imsc = 0; switch (pi->pi_type) { case PLCOM_TYPE_PL010: PWRITE1(pi, PL010COM_CR, sc->sc_cr); break; case PLCOM_TYPE_PL011: PWRITE4(pi, PL011COM_CR, sc->sc_cr); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); break; } if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) plcom_enable_debugport(sc); } int plcom_detach(device_t self, int flags) { struct plcom_softc *sc = device_private(self); int maj, mn; if (sc->sc_hwflags & (PLCOM_HW_CONSOLE|PLCOM_HW_KGDB)) return EBUSY; if (sc->disable != NULL && sc->enabled != 0) { (*sc->disable)(sc); sc->enabled = 0; } /* locate the major number */ maj = cdevsw_lookup_major(&plcom_cdevsw); /* Nuke the vnodes for any open instances. */ mn = device_unit(self); vdevgone(maj, mn, mn, VCHR); mn |= PLCOMDIALOUT_MASK; vdevgone(maj, mn, mn, VCHR); if (sc->sc_rbuf == NULL) { /* * Ring buffer allocation failed in the plcom_attach_subr, * only the tty is allocated, and nothing else. */ tty_free(sc->sc_tty); return 0; } /* Free the receive buffer. */ free(sc->sc_rbuf, M_DEVBUF); /* Detach and free the tty. */ tty_detach(sc->sc_tty); tty_free(sc->sc_tty); /* Unhook the soft interrupt handler. */ softint_disestablish(sc->sc_si); #ifdef RND_COM /* Unhook the entropy source. */ rnd_detach_source(&sc->rnd_source); #endif callout_destroy(&sc->sc_diag_callout); /* Destroy the lock. */ mutex_destroy(&sc->sc_lock); return 0; } int plcom_activate(device_t self, enum devact act) { struct plcom_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: sc->enabled = 0; return 0; default: return EOPNOTSUPP; } } void plcom_shutdown(struct plcom_softc *sc) { struct plcom_instance *pi = &sc->sc_pi; struct tty *tp = sc->sc_tty; mutex_spin_enter(&sc->sc_lock); /* If we were asserting flow control, then deassert it. */ SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); plcom_hwiflow(sc); /* Clear any break condition set with TIOCSBRK. */ plcom_break(sc, 0); /* Turn off PPS capture on last close. */ mutex_spin_enter(&timecounter_lock); sc->sc_ppsmask = 0; sc->ppsparam.mode = 0; mutex_spin_exit(&timecounter_lock); /* * Hang up if necessary. Wait a bit, so the other side has time to * notice even if we immediately open the port again. * Avoid tsleeping above splhigh(). */ if (ISSET(tp->t_cflag, HUPCL)) { plcom_modem(sc, 0); mutex_spin_exit(&sc->sc_lock); /* XXX will only timeout */ (void) kpause(ttclos, false, hz, NULL); mutex_spin_enter(&sc->sc_lock); } sc->sc_cr = 0; sc->sc_imsc = 0; /* Turn off interrupts. */ if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { /* interrupt on break */ sc->sc_cr = PL01X_CR_UARTEN; sc->sc_imsc = 0; switch (pi->pi_type) { case PLCOM_TYPE_PL010: SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE); break; case PLCOM_TYPE_PL011: SET(sc->sc_cr, PL011_CR_RXE); SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX); break; } } switch (pi->pi_type) { case PLCOM_TYPE_PL010: SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE); PWRITE1(pi, PL010COM_CR, sc->sc_cr); break; case PLCOM_TYPE_PL011: SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE); SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX); PWRITE4(pi, PL011COM_CR, sc->sc_cr); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); break; } mutex_spin_exit(&sc->sc_lock); if (sc->disable) { #ifdef DIAGNOSTIC if (!sc->enabled) panic("plcom_shutdown: not enabled?"); #endif (*sc->disable)(sc); sc->enabled = 0; } } int plcomopen(dev_t dev, int flag, int mode, struct lwp *l) { struct plcom_softc *sc; struct plcom_instance *pi; struct tty *tp; int s; int error; sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); if (sc == NULL || !ISSET(sc->sc_hwflags, PLCOM_HW_DEV_OK) || sc->sc_rbuf == NULL) return ENXIO; if (!device_is_active(sc->sc_dev)) return ENXIO; pi = &sc->sc_pi; #ifdef KGDB /* * If this is the kgdb port, no other use is permitted. */ if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB)) return EBUSY; #endif tp = sc->sc_tty; if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)) return (EBUSY); s = spltty(); /* * Do the following iff this is a first open. */ if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { struct termios t; tp->t_dev = dev; if (sc->enable) { if ((*sc->enable)(sc)) { splx(s); aprint_error_dev(sc->sc_dev, "device enable failed\n"); return EIO; } mutex_spin_enter(&sc->sc_lock); sc->enabled = 1; plcom_config(sc); } else { mutex_spin_enter(&sc->sc_lock); } /* Turn on interrupts. */ /* IER_ERXRDY | IER_ERLS | IER_EMSC; */ /* Fetch the current modem control status, needed later. */ sc->sc_cr = PL01X_CR_UARTEN; switch (pi->pi_type) { case PLCOM_TYPE_PL010: SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE | PL010_CR_MSIE); PWRITE1(pi, PL010COM_CR, sc->sc_cr); sc->sc_msr = PREAD1(pi, PL01XCOM_FR); break; case PLCOM_TYPE_PL011: SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE); SET(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX | PL011_INT_MSMASK); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); sc->sc_msr = PREAD4(pi, PL01XCOM_FR); break; } /* Clear PPS capture state on first open. */ mutex_spin_enter(&timecounter_lock); sc->sc_ppsmask = 0; sc->ppsparam.mode = 0; mutex_spin_exit(&timecounter_lock); mutex_spin_exit(&sc->sc_lock); /* * Initialize the termios status to the defaults. Add in the * sticky bits from TIOCSFLAGS. */ if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { t.c_ospeed = plcomconsrate; t.c_cflag = plcomconscflag; } else { t.c_ospeed = TTYDEF_SPEED; t.c_cflag = TTYDEF_CFLAG; } t.c_ispeed = t.c_ospeed; if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) SET(t.c_cflag, CLOCAL); if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) SET(t.c_cflag, CRTSCTS); if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF)) SET(t.c_cflag, MDMBUF); /* Make sure plcomparam() will do something. */ tp->t_ospeed = 0; (void) plcomparam(tp, &t); tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_lflag = TTYDEF_LFLAG; ttychars(tp); ttsetwater(tp); mutex_spin_enter(&sc->sc_lock); /* * Turn on DTR. We must always do this, even if carrier is not * present, because otherwise we'd have to use TIOCSDTR * immediately after setting CLOCAL, which applications do not * expect. We always assert DTR while the device is open * unless explicitly requested to deassert it. */ plcom_modem(sc, 1); /* Clear the input ring, and unblock. */ sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf; sc->sc_rbavail = plcom_rbuf_size; plcom_iflush(sc); CLR(sc->sc_rx_flags, RX_ANY_BLOCK); plcom_hwiflow(sc); #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomopen "); #endif mutex_spin_exit(&sc->sc_lock); } splx(s); error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK)); if (error) goto bad; error = (*tp->t_linesw->l_open)(dev, tp); if (error) goto bad; return 0; bad: if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { /* * We failed to open the device, and nobody else had it opened. * Clean up the state as appropriate. */ plcom_shutdown(sc); } return error; } int plcomclose(dev_t dev, int flag, int mode, struct lwp *l) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; /* XXX This is for cons.c. */ if (!ISSET(tp->t_state, TS_ISOPEN)) return 0; (*tp->t_linesw->l_close)(tp, flag); ttyclose(tp); if (PLCOM_ISALIVE(sc) == 0) return 0; if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { /* * Although we got a last close, the device may still be in * use; e.g. if this was the dialout node, and there are still * processes waiting for carrier on the non-dialout node. */ plcom_shutdown(sc); } return 0; } int plcomread(dev_t dev, struct uio *uio, int flag) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; if (PLCOM_ISALIVE(sc) == 0) return EIO; return (*tp->t_linesw->l_read)(tp, uio, flag); } int plcomwrite(dev_t dev, struct uio *uio, int flag) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; if (PLCOM_ISALIVE(sc) == 0) return EIO; return (*tp->t_linesw->l_write)(tp, uio, flag); } int plcompoll(dev_t dev, int events, struct lwp *l) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; if (PLCOM_ISALIVE(sc) == 0) return EIO; return (*tp->t_linesw->l_poll)(tp, events, l); } struct tty * plcomtty(dev_t dev) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp = sc->sc_tty; return tp; } int plcomioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(dev)); struct tty *tp; int error; if (sc == NULL) return ENXIO; if (PLCOM_ISALIVE(sc) == 0) return EIO; tp = sc->sc_tty; error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l); if (error != EPASSTHROUGH) return error; error = ttioctl(tp, cmd, data, flag, l); if (error != EPASSTHROUGH) return error; error = 0; switch (cmd) { case TIOCSFLAGS: error = kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_PRIVSET, tp); break; default: /* nothing */ break; } if (error) { return error; } mutex_spin_enter(&sc->sc_lock); switch (cmd) { case TIOCSBRK: plcom_break(sc, 1); break; case TIOCCBRK: plcom_break(sc, 0); break; case TIOCSDTR: plcom_modem(sc, 1); break; case TIOCCDTR: plcom_modem(sc, 0); break; case TIOCGFLAGS: *(int *)data = sc->sc_swflags; break; case TIOCSFLAGS: sc->sc_swflags = *(int *)data; break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: tiocm_to_plcom(sc, cmd, *(int *)data); break; case TIOCMGET: *(int *)data = plcom_to_tiocm(sc); break; case PPS_IOC_CREATE: break; case PPS_IOC_DESTROY: break; case PPS_IOC_GETPARAMS: { pps_params_t *pp; pp = (pps_params_t *)data; mutex_spin_enter(&timecounter_lock); *pp = sc->ppsparam; mutex_spin_exit(&timecounter_lock); break; } case PPS_IOC_SETPARAMS: { pps_params_t *pp; int mode; pp = (pps_params_t *)data; mutex_spin_enter(&timecounter_lock); if (pp->mode & ~ppscap) { error = EINVAL; mutex_spin_exit(&timecounter_lock); break; } sc->ppsparam = *pp; /* * Compute msr masks from user-specified timestamp state. */ mode = sc->ppsparam.mode; #ifdef PPS_SYNC if (mode & PPS_HARDPPSONASSERT) { mode |= PPS_CAPTUREASSERT; /* XXX revoke any previous HARDPPS source */ } if (mode & PPS_HARDPPSONCLEAR) { mode |= PPS_CAPTURECLEAR; /* XXX revoke any previous HARDPPS source */ } #endif /* PPS_SYNC */ switch (mode & PPS_CAPTUREBOTH) { case 0: sc->sc_ppsmask = 0; break; case PPS_CAPTUREASSERT: sc->sc_ppsmask = PL01X_MSR_DCD; sc->sc_ppsassert = PL01X_MSR_DCD; sc->sc_ppsclear = -1; break; case PPS_CAPTURECLEAR: sc->sc_ppsmask = PL01X_MSR_DCD; sc->sc_ppsassert = -1; sc->sc_ppsclear = 0; break; case PPS_CAPTUREBOTH: sc->sc_ppsmask = PL01X_MSR_DCD; sc->sc_ppsassert = PL01X_MSR_DCD; sc->sc_ppsclear = 0; break; default: error = EINVAL; break; } mutex_spin_exit(&timecounter_lock); break; } case PPS_IOC_GETCAP: *(int*)data = ppscap; break; case PPS_IOC_FETCH: { pps_info_t *pi; pi = (pps_info_t *)data; mutex_spin_enter(&timecounter_lock); *pi = sc->ppsinfo; mutex_spin_exit(&timecounter_lock); break; } case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ /* * Some GPS clocks models use the falling rather than * rising edge as the on-the-second signal. * The old API has no way to specify PPS polarity. */ mutex_spin_enter(&timecounter_lock); sc->sc_ppsmask = PL01X_MSR_DCD; #ifndef PPS_TRAILING_EDGE sc->sc_ppsassert = PL01X_MSR_DCD; sc->sc_ppsclear = -1; TIMESPEC_TO_TIMEVAL((struct timeval *)data, &sc->ppsinfo.assert_timestamp); #else sc->sc_ppsassert = -1 sc->sc_ppsclear = 0; TIMESPEC_TO_TIMEVAL((struct timeval *)data, &sc->ppsinfo.clear_timestamp); #endif mutex_spin_exit(&timecounter_lock); break; default: error = EPASSTHROUGH; break; } mutex_spin_exit(&sc->sc_lock); #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomioctl "); #endif return error; } integrate void plcom_schedrx(struct plcom_softc *sc) { sc->sc_rx_ready = 1; /* Wake up the poller. */ softint_schedule(sc->sc_si); } void plcom_break(struct plcom_softc *sc, int onoff) { if (onoff) SET(sc->sc_lcr, PL01X_LCR_BRK); else CLR(sc->sc_lcr, PL01X_LCR_BRK); if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } } void plcom_modem(struct plcom_softc *sc, int onoff) { if (sc->sc_mcr_dtr == 0) return; if (onoff) SET(sc->sc_mcr, sc->sc_mcr_dtr); else CLR(sc->sc_mcr, sc->sc_mcr_dtr); if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } } void tiocm_to_plcom(struct plcom_softc *sc, u_long how, int ttybits) { u_char plcombits; plcombits = 0; if (ISSET(ttybits, TIOCM_DTR)) SET(plcombits, PL01X_MCR_DTR); if (ISSET(ttybits, TIOCM_RTS)) SET(plcombits, PL01X_MCR_RTS); switch (how) { case TIOCMBIC: CLR(sc->sc_mcr, plcombits); break; case TIOCMBIS: SET(sc->sc_mcr, plcombits); break; case TIOCMSET: CLR(sc->sc_mcr, PL01X_MCR_DTR | PL01X_MCR_RTS); SET(sc->sc_mcr, plcombits); break; } if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } } int plcom_to_tiocm(struct plcom_softc *sc) { u_char plcombits; int ttybits = 0; plcombits = sc->sc_mcr; if (ISSET(plcombits, PL01X_MCR_DTR)) SET(ttybits, TIOCM_DTR); if (ISSET(plcombits, PL01X_MCR_RTS)) SET(ttybits, TIOCM_RTS); plcombits = sc->sc_msr; if (ISSET(plcombits, PL01X_MSR_DCD)) SET(ttybits, TIOCM_CD); if (ISSET(plcombits, PL01X_MSR_CTS)) SET(ttybits, TIOCM_CTS); if (ISSET(plcombits, PL01X_MSR_DSR)) SET(ttybits, TIOCM_DSR); if (ISSET(plcombits, PL011_MSR_RI)) SET(ttybits, TIOCM_RI); if (sc->sc_cr != 0) SET(ttybits, TIOCM_LE); return ttybits; } static u_char cflag2lcr(tcflag_t cflag) { u_char lcr = 0; switch (ISSET(cflag, CSIZE)) { case CS5: SET(lcr, PL01X_LCR_5BITS); break; case CS6: SET(lcr, PL01X_LCR_6BITS); break; case CS7: SET(lcr, PL01X_LCR_7BITS); break; case CS8: SET(lcr, PL01X_LCR_8BITS); break; } if (ISSET(cflag, PARENB)) { SET(lcr, PL01X_LCR_PEN); if (!ISSET(cflag, PARODD)) SET(lcr, PL01X_LCR_EPS); } if (ISSET(cflag, CSTOPB)) SET(lcr, PL01X_LCR_STP2); return lcr; } int plcomparam(struct tty *tp, struct termios *t) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); struct plcom_instance *pi = &sc->sc_pi; int ospeed = -1; u_char lcr; if (PLCOM_ISALIVE(sc) == 0) return EIO; switch (pi->pi_type) { case PLCOM_TYPE_PL010: ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency); break; case PLCOM_TYPE_PL011: ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency); break; } /* Check requested parameters. */ if (ospeed < 0) return EINVAL; if (t->c_ispeed && t->c_ispeed != t->c_ospeed) return EINVAL; /* * For the console, always force CLOCAL and !HUPCL, so that the port * is always active. */ if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) || ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) { SET(t->c_cflag, CLOCAL); CLR(t->c_cflag, HUPCL); } /* * If there were no changes, don't do anything. This avoids dropping * input and improves performance when all we did was frob things like * VMIN and VTIME. */ if (tp->t_ospeed == t->c_ospeed && tp->t_cflag == t->c_cflag) return 0; lcr = ISSET(sc->sc_lcr, PL01X_LCR_BRK) | cflag2lcr(t->c_cflag); mutex_spin_enter(&sc->sc_lock); sc->sc_lcr = lcr; /* * PL010 has a fixed-length FIFO trigger point. */ if (ISSET(sc->sc_hwflags, PLCOM_HW_FIFO)) sc->sc_fifo = 1; else sc->sc_fifo = 0; if (sc->sc_fifo) SET(sc->sc_lcr, PL01X_LCR_FEN); /* * If we're not in a mode that assumes a connection is present, then * ignore carrier changes. */ if (ISSET(t->c_cflag, CLOCAL | MDMBUF)) sc->sc_msr_dcd = 0; else sc->sc_msr_dcd = PL01X_MSR_DCD; /* * Set the flow control pins depending on the current flow control * mode. */ if (ISSET(t->c_cflag, CRTSCTS)) { sc->sc_mcr_dtr = PL01X_MCR_DTR; sc->sc_mcr_rts = PL01X_MCR_RTS; sc->sc_msr_cts = PL01X_MSR_CTS; } else if (ISSET(t->c_cflag, MDMBUF)) { /* * For DTR/DCD flow control, make sure we don't toggle DTR for * carrier detection. */ sc->sc_mcr_dtr = 0; sc->sc_mcr_rts = PL01X_MCR_DTR; sc->sc_msr_cts = PL01X_MSR_DCD; } else { /* * If no flow control, then always set RTS. This will make * the other side happy if it mistakenly thinks we're doing * RTS/CTS flow control. */ sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS; sc->sc_mcr_rts = 0; sc->sc_msr_cts = 0; if (ISSET(sc->sc_mcr, PL01X_MCR_DTR)) SET(sc->sc_mcr, PL01X_MCR_RTS); else CLR(sc->sc_mcr, PL01X_MCR_RTS); } sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd; #if 0 if (ospeed == 0) CLR(sc->sc_mcr, sc->sc_mcr_dtr); else SET(sc->sc_mcr, sc->sc_mcr_dtr); #endif switch (pi->pi_type) { case PLCOM_TYPE_PL010: sc->sc_ratel = ospeed & 0xff; sc->sc_rateh = (ospeed >> 8) & 0xff; break; case PLCOM_TYPE_PL011: sc->sc_ratel = ospeed & ((1 << 6) - 1); sc->sc_rateh = ospeed >> 6; break; } /* And copy to tty. */ tp->t_ispeed = t->c_ospeed; tp->t_ospeed = t->c_ospeed; tp->t_cflag = t->c_cflag; if (!sc->sc_heldchange) { if (sc->sc_tx_busy) { sc->sc_heldtbc = sc->sc_tbc; sc->sc_tbc = 0; sc->sc_heldchange = 1; } else plcom_loadchannelregs(sc); } if (!ISSET(t->c_cflag, CHWFLOW)) { /* Disable the high water mark. */ sc->sc_r_hiwat = 0; sc->sc_r_lowat = 0; if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); plcom_schedrx(sc); } if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); plcom_hwiflow(sc); } } else { sc->sc_r_hiwat = plcom_rbuf_hiwat; sc->sc_r_lowat = plcom_rbuf_lowat; } mutex_spin_exit(&sc->sc_lock); /* * Update the tty layer's idea of the carrier bit, in case we changed * CLOCAL or MDMBUF. We don't hang up here; we only do that by * explicit request. */ (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD)); #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomparam "); #endif if (!ISSET(t->c_cflag, CHWFLOW)) { if (sc->sc_tx_stopped) { sc->sc_tx_stopped = 0; plcomstart(tp); } } return 0; } void plcom_iflush(struct plcom_softc *sc) { struct plcom_instance *pi = &sc->sc_pi; #ifdef DIAGNOSTIC int reg; #endif int timo; #ifdef DIAGNOSTIC reg = 0xffff; #endif timo = 50000; /* flush any pending I/O */ while (! ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE) && --timo) #ifdef DIAGNOSTIC reg = #else (void) #endif PREAD1(pi, PL01XCOM_DR); #ifdef DIAGNOSTIC if (!timo) aprint_error_dev(sc->sc_dev, ": %s timeout %02x\n", __func__, reg); #endif } void plcom_loadchannelregs(struct plcom_softc *sc) { struct plcom_instance *pi = &sc->sc_pi; /* XXXXX necessary? */ plcom_iflush(sc); switch (pi->pi_type) { case PLCOM_TYPE_PL010: PWRITE1(pi, PL010COM_CR, 0); PWRITE1(pi, PL010COM_DLBL, sc->sc_ratel); PWRITE1(pi, PL010COM_DLBH, sc->sc_rateh); PWRITE1(pi, PL010COM_LCR, sc->sc_lcr); /* XXX device_unit() abuse */ if (sc->sc_set_mcr) sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev), sc->sc_mcr_active = sc->sc_mcr); PWRITE1(pi, PL010COM_CR, sc->sc_cr); break; case PLCOM_TYPE_PL011: PWRITE4(pi, PL011COM_CR, 0); PWRITE1(pi, PL011COM_FBRD, sc->sc_ratel); PWRITE4(pi, PL011COM_IBRD, sc->sc_rateh); PWRITE1(pi, PL011COM_LCRH, sc->sc_lcr); sc->sc_mcr_active = sc->sc_mcr; CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR)); SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active)); PWRITE4(pi, PL011COM_CR, sc->sc_cr); break; } } int plcomhwiflow(struct tty *tp, int block) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); if (PLCOM_ISALIVE(sc) == 0) return 0; if (sc->sc_mcr_rts == 0) return 0; mutex_spin_enter(&sc->sc_lock); if (block) { if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { SET(sc->sc_rx_flags, RX_TTY_BLOCKED); plcom_hwiflow(sc); } } else { if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED); plcom_schedrx(sc); } if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { CLR(sc->sc_rx_flags, RX_TTY_BLOCKED); plcom_hwiflow(sc); } } mutex_spin_exit(&sc->sc_lock); return 1; } /* * (un)block input via hw flowcontrol */ void plcom_hwiflow(struct plcom_softc *sc) { struct plcom_instance *pi = &sc->sc_pi; if (sc->sc_mcr_rts == 0) return; if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) { CLR(sc->sc_mcr, sc->sc_mcr_rts); CLR(sc->sc_mcr_active, sc->sc_mcr_rts); } else { SET(sc->sc_mcr, sc->sc_mcr_rts); SET(sc->sc_mcr_active, sc->sc_mcr_rts); } switch (pi->pi_type) { case PLCOM_TYPE_PL010: if (sc->sc_set_mcr) /* XXX device_unit() abuse */ sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev), sc->sc_mcr_active); break; case PLCOM_TYPE_PL011: CLR(sc->sc_cr, PL011_MCR(PL01X_MCR_RTS | PL01X_MCR_DTR)); SET(sc->sc_cr, PL011_MCR(sc->sc_mcr_active)); PWRITE4(pi, PL011COM_CR, sc->sc_cr); break; } } void plcomstart(struct tty *tp) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); struct plcom_instance *pi = &sc->sc_pi; int s; if (PLCOM_ISALIVE(sc) == 0) return; s = spltty(); if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) goto out; if (sc->sc_tx_stopped) goto out; if (!ttypull(tp)) goto out; /* Grab the first contiguous region of buffer space. */ { u_char *tba; int tbc; tba = tp->t_outq.c_cf; tbc = ndqb(&tp->t_outq, 0); mutex_spin_enter(&sc->sc_lock); sc->sc_tba = tba; sc->sc_tbc = tbc; } SET(tp->t_state, TS_BUSY); sc->sc_tx_busy = 1; /* Enable transmit completion interrupts if necessary. */ switch (pi->pi_type) { case PLCOM_TYPE_PL010: if (!ISSET(sc->sc_cr, PL010_CR_TIE)) { SET(sc->sc_cr, PL010_CR_TIE); PWRITE1(pi, PL010COM_CR, sc->sc_cr); } break; case PLCOM_TYPE_PL011: if (!ISSET(sc->sc_imsc, PL011_INT_TX)) { SET(sc->sc_imsc, PL011_INT_TX); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); } break; } /* Output the first chunk of the contiguous buffer. */ { int n; n = sc->sc_tbc; if (n > sc->sc_fifolen) n = sc->sc_fifolen; PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n); sc->sc_tbc -= n; sc->sc_tba += n; } mutex_spin_exit(&sc->sc_lock); out: splx(s); return; } /* * Stop output on a line. */ void plcomstop(struct tty *tp, int flag) { struct plcom_softc *sc = device_lookup_private(&plcom_cd, PLCOMUNIT(tp->t_dev)); mutex_spin_enter(&sc->sc_lock); if (ISSET(tp->t_state, TS_BUSY)) { /* Stop transmitting at the next chunk. */ sc->sc_tbc = 0; sc->sc_heldtbc = 0; if (!ISSET(tp->t_state, TS_TTSTOP)) SET(tp->t_state, TS_FLUSH); } mutex_spin_exit(&sc->sc_lock); } void plcomdiag(void *arg) { struct plcom_softc *sc = arg; int overflows, floods; mutex_spin_enter(&sc->sc_lock); overflows = sc->sc_overflows; sc->sc_overflows = 0; floods = sc->sc_floods; sc->sc_floods = 0; sc->sc_errors = 0; mutex_spin_exit(&sc->sc_lock); log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", device_xname(sc->sc_dev), overflows, overflows == 1 ? "" : "s", floods, floods == 1 ? "" : "s"); } integrate void plcom_rxsoft(struct plcom_softc *sc, struct tty *tp) { int (*rint) (int, struct tty *) = tp->t_linesw->l_rint; struct plcom_instance *pi = &sc->sc_pi; u_char *get, *end; u_int cc, scc; u_char rsr; int code; end = sc->sc_ebuf; get = sc->sc_rbget; scc = cc = plcom_rbuf_size - sc->sc_rbavail; if (cc == plcom_rbuf_size) { sc->sc_floods++; if (sc->sc_errors++ == 0) callout_reset(&sc->sc_diag_callout, 60 * hz, plcomdiag, sc); } while (cc) { code = get[0]; rsr = get[1]; if (ISSET(rsr, PL01X_RSR_ERROR)) { if (ISSET(rsr, PL01X_RSR_OE)) { sc->sc_overflows++; if (sc->sc_errors++ == 0) callout_reset(&sc->sc_diag_callout, 60 * hz, plcomdiag, sc); } if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE)) SET(code, TTY_FE); if (ISSET(rsr, PL01X_RSR_PE)) SET(code, TTY_PE); } if ((*rint)(code, tp) == -1) { /* * The line discipline's buffer is out of space. */ if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) { /* * We're either not using flow control, or the * line discipline didn't tell us to block for * some reason. Either way, we have no way to * know when there's more space available, so * just drop the rest of the data. */ get += cc << 1; if (get >= end) get -= plcom_rbuf_size << 1; cc = 0; } else { /* * Don't schedule any more receive processing * until the line discipline tells us there's * space available (through plcomhwiflow()). * Leave the rest of the data in the input * buffer. */ SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED); } break; } get += 2; if (get >= end) get = sc->sc_rbuf; cc--; } if (cc != scc) { sc->sc_rbget = get; mutex_spin_enter(&sc->sc_lock); cc = sc->sc_rbavail += scc - cc; /* Buffers should be ok again, release possible block. */ if (cc >= sc->sc_r_lowat) { if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); switch (pi->pi_type) { case PLCOM_TYPE_PL010: SET(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE); PWRITE1(pi, PL010COM_CR, sc->sc_cr); break; case PLCOM_TYPE_PL011: SET(sc->sc_imsc, PL011_INT_RX | PL011_INT_RT); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); break; } } if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) { CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED); plcom_hwiflow(sc); } } mutex_spin_exit(&sc->sc_lock); } } integrate void plcom_txsoft(struct plcom_softc *sc, struct tty *tp) { CLR(tp->t_state, TS_BUSY); if (ISSET(tp->t_state, TS_FLUSH)) CLR(tp->t_state, TS_FLUSH); else ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf)); (*tp->t_linesw->l_start)(tp); } integrate void plcom_stsoft(struct plcom_softc *sc, struct tty *tp) { u_char msr, delta; mutex_spin_enter(&sc->sc_lock); msr = sc->sc_msr; delta = sc->sc_msr_delta; sc->sc_msr_delta = 0; mutex_spin_exit(&sc->sc_lock); if (ISSET(delta, sc->sc_msr_dcd)) { /* * Inform the tty layer that carrier detect changed. */ (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, PL01X_MSR_DCD)); } if (ISSET(delta, sc->sc_msr_cts)) { /* Block or unblock output according to flow control. */ if (ISSET(msr, sc->sc_msr_cts)) { sc->sc_tx_stopped = 0; (*tp->t_linesw->l_start)(tp); } else { sc->sc_tx_stopped = 1; } } #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcom_stsoft"); #endif } void plcomsoft(void *arg) { struct plcom_softc *sc = arg; struct tty *tp; if (PLCOM_ISALIVE(sc) == 0) return; tp = sc->sc_tty; if (sc->sc_rx_ready) { sc->sc_rx_ready = 0; plcom_rxsoft(sc, tp); } if (sc->sc_st_check) { sc->sc_st_check = 0; plcom_stsoft(sc, tp); } if (sc->sc_tx_done) { sc->sc_tx_done = 0; plcom_txsoft(sc, tp); } } bool plcom_intstatus(struct plcom_instance *pi, u_int *istatus) { bool ret = false; u_int stat = 0; switch (pi->pi_type) { case PLCOM_TYPE_PL010: stat = PREAD1(pi, PL010COM_IIR); ret = ISSET(stat, PL010_IIR_IMASK); break; case PLCOM_TYPE_PL011: stat = PREAD4(pi, PL011COM_MIS); ret = ISSET(stat, PL011_INT_ALLMASK); break; } *istatus = stat; return ret; } int plcomintr(void *arg) { struct plcom_softc *sc = arg; struct plcom_instance *pi = &sc->sc_pi; u_char *put, *end; u_int cc; u_int istatus = 0; u_char rsr; bool intr = false; PLCOM_BARRIER(pi, BR | BW); if (PLCOM_ISALIVE(sc) == 0) return 0; mutex_spin_enter(&sc->sc_lock); intr = plcom_intstatus(pi, &istatus); if (!intr) { mutex_spin_exit(&sc->sc_lock); return 0; } end = sc->sc_ebuf; put = sc->sc_rbput; cc = sc->sc_rbavail; do { u_int msr = 0, delta, fr; bool rxintr = false, txintr = false, msintr; /* don't need RI here*/ fr = PREAD1(pi, PL01XCOM_FR); if (!ISSET(fr, PL01X_FR_RXFE) && !ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) { while (cc > 0) { int cn_trapped = 0; put[0] = PREAD1(pi, PL01XCOM_DR); rsr = PREAD1(pi, PL01XCOM_RSR); /* Clear any error status. */ if (ISSET(rsr, PL01X_RSR_ERROR)) PWRITE1(pi, PL01XCOM_ECR, 0); if (ISSET(rsr, PL01X_RSR_BE)) { cn_trapped = 0; cn_check_magic(sc->sc_tty->t_dev, CNC_BREAK, plcom_cnm_state); if (cn_trapped) continue; #if defined(KGDB) if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB)) { kgdb_connect(1); continue; } #endif } put[1] = rsr; cn_trapped = 0; cn_check_magic(sc->sc_tty->t_dev, put[0], plcom_cnm_state); if (cn_trapped) { fr = PREAD1(pi, PL01XCOM_FR); if (ISSET(fr, PL01X_FR_RXFE)) break; continue; } put += 2; if (put >= end) put = sc->sc_rbuf; cc--; /* don't need RI here*/ fr = PREAD1(pi, PL01XCOM_FR); if (ISSET(fr, PL01X_FR_RXFE)) break; } /* * Current string of incoming characters ended because * no more data was available or we ran out of space. * Schedule a receive event if any data was received. * If we're out of space, turn off receive interrupts. */ sc->sc_rbput = put; sc->sc_rbavail = cc; if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) sc->sc_rx_ready = 1; /* * See if we are in danger of overflowing a buffer. If * so, use hardware flow control to ease the pressure. */ if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) && cc < sc->sc_r_hiwat) { SET(sc->sc_rx_flags, RX_IBUF_BLOCKED); plcom_hwiflow(sc); } /* * If we're out of space, disable receive interrupts * until the queue has drained a bit. */ if (!cc) { SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED); switch (pi->pi_type) { case PLCOM_TYPE_PL010: CLR(sc->sc_cr, PL010_CR_RIE | PL010_CR_RTIE); PWRITE1(pi, PL010COM_CR, sc->sc_cr); break; case PLCOM_TYPE_PL011: CLR(sc->sc_imsc, PL011_INT_RT | PL011_INT_RX); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); break; } } } else { switch (pi->pi_type) { case PLCOM_TYPE_PL010: rxintr = ISSET(istatus, PL010_IIR_RIS); if (rxintr) { PWRITE1(pi, PL010COM_CR, 0); delay(10); PWRITE1(pi, PL010COM_CR, sc->sc_cr); continue; } break; case PLCOM_TYPE_PL011: rxintr = ISSET(istatus, PL011_INT_RX); if (rxintr) { PWRITE4(pi, PL011COM_CR, 0); delay(10); PWRITE4(pi, PL011COM_CR, sc->sc_cr); continue; } break; } } switch (pi->pi_type) { case PLCOM_TYPE_PL010: msr = PREAD1(pi, PL01XCOM_FR); break; case PLCOM_TYPE_PL011: msr = PREAD4(pi, PL01XCOM_FR); break; } delta = msr ^ sc->sc_msr; sc->sc_msr = msr; /* Clear any pending modem status interrupt. */ switch (pi->pi_type) { case PLCOM_TYPE_PL010: msintr = ISSET(istatus, PL010_IIR_MIS); if (msintr) { PWRITE1(pi, PL010COM_ICR, 0); } break; case PLCOM_TYPE_PL011: msintr = ISSET(istatus, PL011_INT_MSMASK); if (msintr) { PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK); } break; } /* * Pulse-per-second (PSS) signals on edge of DCD? * Process these even if line discipline is ignoring DCD. */ if (delta & sc->sc_ppsmask) { struct timeval tv; mutex_spin_enter(&timecounter_lock); if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) { /* XXX nanotime() */ microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, &sc->ppsinfo.assert_timestamp); if (sc->ppsparam.mode & PPS_OFFSETASSERT) { timespecadd(&sc->ppsinfo.assert_timestamp, &sc->ppsparam.assert_offset, &sc->ppsinfo.assert_timestamp); } #ifdef PPS_SYNC if (sc->ppsparam.mode & PPS_HARDPPSONASSERT) hardpps(&tv, tv.tv_usec); #endif sc->ppsinfo.assert_sequence++; sc->ppsinfo.current_mode = sc->ppsparam.mode; } else if ((msr & sc->sc_ppsmask) == sc->sc_ppsclear) { /* XXX nanotime() */ microtime(&tv); TIMEVAL_TO_TIMESPEC(&tv, &sc->ppsinfo.clear_timestamp); if (sc->ppsparam.mode & PPS_OFFSETCLEAR) { timespecadd(&sc->ppsinfo.clear_timestamp, &sc->ppsparam.clear_offset, &sc->ppsinfo.clear_timestamp); } #ifdef PPS_SYNC if (sc->ppsparam.mode & PPS_HARDPPSONCLEAR) hardpps(&tv, tv.tv_usec); #endif sc->ppsinfo.clear_sequence++; sc->ppsinfo.current_mode = sc->ppsparam.mode; } mutex_spin_exit(&timecounter_lock); } /* * Process normal status changes */ if (ISSET(delta, sc->sc_msr_mask)) { SET(sc->sc_msr_delta, delta); /* * Stop output immediately if we lose the output * flow control signal or carrier detect. */ if (ISSET(~msr, sc->sc_msr_mask)) { sc->sc_tbc = 0; sc->sc_heldtbc = 0; #ifdef PLCOM_DEBUG if (plcom_debug) plcomstatus(sc, "plcomintr "); #endif } sc->sc_st_check = 1; } /* * Done handling any receive interrupts. See if data * can be transmitted as well. Schedule tx done * event if no data left and tty was marked busy. */ switch (pi->pi_type) { case PLCOM_TYPE_PL010: txintr = ISSET(istatus, PL010_IIR_TIS); break; case PLCOM_TYPE_PL011: txintr = ISSET(istatus, PL011_INT_TX); break; } if (txintr) { /* * If we've delayed a parameter change, do it * now, and restart * output. */ // PWRITE4(pi, PL011COM_ICR, PL011_INT_TX); if (sc->sc_heldchange) { plcom_loadchannelregs(sc); sc->sc_heldchange = 0; sc->sc_tbc = sc->sc_heldtbc; sc->sc_heldtbc = 0; } /* * Output the next chunk of the contiguous * buffer, if any. */ if (sc->sc_tbc > 0) { int n; n = sc->sc_tbc; if (n > sc->sc_fifolen) n = sc->sc_fifolen; PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n); sc->sc_tbc -= n; sc->sc_tba += n; } else { /* * Disable transmit completion * interrupts if necessary. */ switch (pi->pi_type) { case PLCOM_TYPE_PL010: if (ISSET(sc->sc_cr, PL010_CR_TIE)) { CLR(sc->sc_cr, PL010_CR_TIE); PWRITE1(pi, PL010COM_CR, sc->sc_cr); } break; case PLCOM_TYPE_PL011: if (ISSET(sc->sc_imsc, PL011_INT_TX)) { CLR(sc->sc_imsc, PL011_INT_TX); PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc); } break; } if (sc->sc_tx_busy) { sc->sc_tx_busy = 0; sc->sc_tx_done = 1; } } } } while (plcom_intstatus(pi, &istatus)); mutex_spin_exit(&sc->sc_lock); /* Wake up the poller. */ softint_schedule(sc->sc_si); #ifdef RND_COM rnd_add_uint32(&sc->rnd_source, istatus | rsr); #endif PLCOM_BARRIER(pi, BR | BW); return 1; } /* * The following functions are polled getc and putc routines, shared * by the console and kgdb glue. * * The read-ahead code is so that you can detect pending in-band * cn_magic in polled mode while doing output rather than having to * wait until the kernel decides it needs input. */ #define MAX_READAHEAD 20 static int plcom_readahead[MAX_READAHEAD]; static int plcom_readaheadcount = 0; int plcom_common_getc(dev_t dev, struct plcom_instance *pi) { int s = splserial(); u_char stat, c; /* got a character from reading things earlier */ if (plcom_readaheadcount > 0) { int i; c = plcom_readahead[0]; for (i = 1; i < plcom_readaheadcount; i++) { plcom_readahead[i-1] = plcom_readahead[i]; } plcom_readaheadcount--; splx(s); return c; } /* block until a character becomes available */ while (ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) ; c = PREAD1(pi, PL01XCOM_DR); { int cn_trapped __unused = 0; #ifdef DDB extern int db_active; if (!db_active) #endif cn_check_magic(dev, c, plcom_cnm_state); } splx(s); return c; } void plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c) { int s = splserial(); int timo; int cin, stat; if (plcom_readaheadcount < MAX_READAHEAD && !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) { int cn_trapped __unused = 0; cin = PREAD1(pi, PL01XCOM_DR); cn_check_magic(dev, cin, plcom_cnm_state); plcom_readahead[plcom_readaheadcount++] = cin; } /* wait for any pending transmission to finish */ timo = 150000; while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo) continue; PWRITE1(pi, PL01XCOM_DR, c); PLCOM_BARRIER(pi, BR | BW); /* wait for this transmission to complete */ timo = 1500000; while (!ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFE) && --timo) continue; splx(s); } /* * Initialize UART for use as console or KGDB line. */ int plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag) { u_char lcr; switch (pi->pi_type) { case PLCOM_TYPE_PL010: if (pi->pi_size == 0) pi->pi_size = PL010COM_UART_SIZE; break; case PLCOM_TYPE_PL011: if (pi->pi_size == 0) pi->pi_size = PL011COM_UART_SIZE; break; default: panic("Unknown plcom type"); } if (bus_space_map(pi->pi_iot, pi->pi_iobase, pi->pi_size, 0, &pi->pi_ioh)) return ENOMEM; /* ??? */ lcr = cflag2lcr(cflag) | PL01X_LCR_FEN; switch (pi->pi_type) { case PLCOM_TYPE_PL010: PWRITE1(pi, PL010COM_CR, 0); rate = pl010comspeed(rate, frequency); PWRITE1(pi, PL010COM_DLBL, (rate & 0xff)); PWRITE1(pi, PL010COM_DLBH, ((rate >> 8) & 0xff)); PWRITE1(pi, PL010COM_LCR, lcr); PWRITE1(pi, PL010COM_CR, PL01X_CR_UARTEN); break; case PLCOM_TYPE_PL011: PWRITE4(pi, PL011COM_CR, 0); rate = pl011comspeed(rate, frequency); PWRITE1(pi, PL011COM_FBRD, rate & ((1 << 6) - 1)); PWRITE4(pi, PL011COM_IBRD, rate >> 6); PWRITE1(pi, PL011COM_LCRH, lcr); PWRITE4(pi, PL011COM_CR, PL01X_CR_UARTEN | PL011_CR_RXE | PL011_CR_TXE); break; } #if 0 /* Ought to do something like this, but we have no sc to dereference. */ /* XXX device_unit() abuse */ sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev), PL01X_MCR_DTR | PL01X_MCR_RTS); #endif return 0; } /* * Following are all routines needed for PLCOM to act as console */ struct consdev plcomcons = { NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL }; int plcomcnattach(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag, int unit) { int res; plcomcons_info = *pi; res = plcominit(&plcomcons_info, rate, frequency, cflag); if (res) return res; cn_tab = &plcomcons; cn_init_magic(&plcom_cnm_state); cn_set_magic("\047\001"); /* default magic is BREAK */ plcomconsunit = unit; plcomconsrate = rate; plcomconscflag = cflag; return 0; } void plcomcndetach(void) { bus_space_unmap(plcomcons_info.pi_iot, plcomcons_info.pi_ioh, plcomcons_info.pi_size); plcomcons_info.pi_iot = NULL; cn_tab = NULL; } int plcomcngetc(dev_t dev) { return plcom_common_getc(dev, &plcomcons_info); } /* * Console kernel output character routine. */ void plcomcnputc(dev_t dev, int c) { plcom_common_putc(dev, &plcomcons_info, c); } void plcomcnpollc(dev_t dev, int on) { plcom_readaheadcount = 0; } #ifdef KGDB int plcom_kgdb_attach(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag, int unit) { int res; if (pi->pi_iot == plcomcons_info.pi_iot && pi->pi_iobase == plcomcons_info.pi_iobase) return EBUSY; /* cannot share with console */ res = plcominit(pi, rate, frequency, cflag); if (res) return res; kgdb_attach(plcom_kgdb_getc, plcom_kgdb_putc, NULL); kgdb_dev = 123; /* unneeded, only to satisfy some tests */ plcomkgdb_info.pi_iot = pi->pi_iot; plcomkgdb_info.pi_ioh = pi->pi_ioh; plcomkgdb_info.pi_iobase = pi->pi_iobase; return 0; } /* ARGSUSED */ int plcom_kgdb_getc(void *arg) { return plcom_common_getc(NODEV, &plcomkgdb_info); } /* ARGSUSED */ void plcom_kgdb_putc(void *arg, int c) { plcom_common_putc(NODEV, &plcomkgdb_info, c); } #endif /* KGDB */ /* helper function to identify the plcom ports used by console or KGDB (and not yet autoconf attached) */ int plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase, bus_space_handle_t *ioh) { bus_space_handle_t help; if (!plcomconsattached && bus_space_is_equal(iot, plcomcons_info.pi_iot) && iobase == plcomcons_info.pi_iobase) help = plcomcons_info.pi_ioh; #ifdef KGDB else if (!plcom_kgdb_attached && bus_space_is_equal(iot, plcomkgdb_info.pi_iot) && iobase == plcomkgdb_info.pi_iobase) help = plcomkgdb_info.pi_ioh; #endif else return 0; if (ioh) *ioh = help; return 1; }