/* $NetBSD: ixm1200_machdep.c,v 1.57 2016/12/22 14:47:55 cherry Exp $ */ /* * Copyright (c) 2002, 2003 * Ichiro FUKUHARA . * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY ICHIRO FUKUHARA ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL ICHIRO FUKUHARA OR THE VOICES IN HIS HEAD BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ixm1200_machdep.c,v 1.57 2016/12/22 14:47:55 cherry Exp $"); #include "opt_ddb.h" #include "opt_modular.h" #include "opt_pmap_debug.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ksyms.h" #if NKSYMS || defined(DDB) || defined(MODULAR) #include #include #include #ifndef DB_ELFSIZE #error Must define DB_ELFSIZE! #endif #define ELFSIZE DB_ELFSIZE #include #endif #include #include #include #include #include #include #include #include #include #include #include /* XXX for consinit related hacks */ #include void ixp12x0_reset(void) __attribute__((noreturn)); /* Kernel text starts 2MB in from the bottom of the kernel address space. */ #define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xc1000000 - 0xccffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x0C000000 /* * Address to call from cpu_reset() to reset the machine. * This is machine architecture dependent as it varies depending * on where the ROM appears when you turn the MMU off. */ /* * Define the default console speed for the board. */ #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB)) | CS8) /* 8N1 */ #endif #ifndef CONSPEED #define CONSPEED B38400 #endif #ifndef CONADDR #define CONADDR IXPCOM_UART_BASE #endif BootConfig bootconfig; /* Boot config storage */ char *boot_args = NULL; char *boot_file = NULL; vaddr_t physical_start; vaddr_t physical_freestart; vaddr_t physical_freeend; vaddr_t physical_end; u_int free_pages; /*int debug_flags;*/ #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ paddr_t msgbufphys; extern int end; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif /* PMAP_DEBUG */ #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 2 #define KERNEL_PT_IO (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) /* Page table for mapping IO */ #define KERNEL_PT_VMDATA (KERNEL_PT_IO + 1) /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; #ifdef CPU_IXP12X0 #define CPU_IXP12X0_CACHE_CLEAN_SIZE (0x4000 * 2) extern unsigned int ixp12x0_cache_clean_addr; extern unsigned int ixp12x0_cache_clean_size; static vaddr_t ixp12x0_cc_base; #endif /* CPU_IXP12X0 */ /* Prototypes */ void consinit(void); u_int cpu_get_control(void); void ixdp_ixp12x0_cc_setup(void); /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); pmf_system_shutdown(boothowto); printf("Halted while still in the ICE age.\n"); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); ixp12x0_reset(); } /* Disable console buffering */ cnpollc(1); /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the unmount. * It looks like syslogd is getting woken up only to find that it cannot * page part of the binary in as the filesystem has been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); pmf_system_shutdown(boothowto); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); /* all interrupts are disabled */ disable_interrupts(I32_bit); ixp12x0_reset(); /* ...and if that didn't work, just croak. */ printf("RESET FAILED!\n"); for (;;); } /* Static device mappings. */ static const struct pmap_devmap ixm1200_devmap[] = { /* StrongARM System and Peripheral Registers */ { IXP12X0_SYS_VBASE, IXP12X0_SYS_HWBASE, IXP12X0_SYS_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* PCI Registers Accessible Through StrongARM Core */ { IXP12X0_PCI_VBASE, IXP12X0_PCI_HWBASE, IXP12X0_PCI_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* PCI Registers Accessible Through I/O Cycle Access */ { IXP12X0_PCI_IO_VBASE, IXP12X0_PCI_IO_HWBASE, IXP12X0_PCI_IO_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* PCI Type0 Configuration Space */ { IXP12X0_PCI_TYPE0_VBASE, IXP12X0_PCI_TYPE0_HWBASE, IXP12X0_PCI_TYPE0_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, /* PCI Type1 Configuration Space */ { IXP12X0_PCI_TYPE1_VBASE, IXP12X0_PCI_TYPE1_HWBASE, IXP12X0_PCI_TYPE1_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0, 0 }, }; /* * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { int loop; int loop1; u_int kerneldatasize, symbolsize; vaddr_t l1pagetable; vaddr_t freemempos; #if NKSYMS || defined(DDB) || defined(MODULAR) Elf_Shdr *sh; #endif cpu_reset_address = ixp12x0_reset; /* * Since we map v0xf0000000 == p0x90000000, it's possible for * us to initialize the console now. */ consinit(); #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (IXM1200) booting ...\n"); #endif /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("CPU not recognized!"); /* XXX overwrite bootconfig to hardcoded values */ bootconfig.dram[0].address = 0xc0000000; bootconfig.dram[0].pages = 0x10000000 / PAGE_SIZE; /* SDRAM 256MB */ bootconfig.dramblocks = 1; kerneldatasize = (uint32_t)&end - (uint32_t)KERNEL_TEXT_BASE; symbolsize = 0; #ifdef PMAP_DEBUG pmap_debug(-1); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) if (! memcmp(&end, "\177ELF", 4)) { sh = (Elf_Shdr *)((char *)&end + ((Elf_Ehdr *)&end)->e_shoff); loop = ((Elf_Ehdr *)&end)->e_shnum; for(; loop; loop--, sh++) if (sh->sh_offset > 0 && (sh->sh_offset + sh->sh_size) > symbolsize) symbolsize = sh->sh_offset + sh->sh_size; } #endif #ifdef VERBOSE_INIT_ARM printf("kernsize=0x%x\n", kerneldatasize); #endif kerneldatasize += symbolsize; kerneldatasize = ((kerneldatasize - 1) & ~(PAGE_SIZE * 4 - 1)) + PAGE_SIZE * 8; /* * Set up the variables that define the availablilty of physcial * memory */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = physical_start + (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; physical_freeend = physical_end; physmem = (physical_end - physical_start) / PAGE_SIZE; freemempos = 0xc0000000; #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("CP15 Register1 = 0x%08x\n", cpu_get_control()); printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); printf("physical_start = 0x%08lx, physical_end = 0x%08lx\n", physical_start, physical_end); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ (var) = freemempos; \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); \ freemempos += (np) * PAGE_SIZE; loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } #ifdef DIAGNOSTIC /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); #endif /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); #ifdef CPU_IXP12X0 /* * XXX totally stuffed hack to work round problems introduced * in recent versions of the pmap code. Due to the calls used there * we cannot allocate virtual memory during bootstrap. */ for(;;) { alloc_pages(ixp12x0_cc_base, 1); if (! (ixp12x0_cc_base & (CPU_IXP12X0_CACHE_CLEAN_SIZE - 1))) break; } { vaddr_t dummy; alloc_pages(dummy, CPU_IXP12X0_CACHE_CLEAN_SIZE / PAGE_SIZE - 1); } ixp12x0_cache_clean_addr = ixp12x0_cc_base; ixp12x0_cache_clean_size = CPU_IXP12X0_CACHE_CLEAN_SIZE / 2; #endif /* CPU_IXP12X0 */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1), &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); pmap_link_l2pt(l1pagetable, IXP12X0_IO_VBASE, &kernel_pt_table[KERNEL_PT_IO]); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif #if XXX /* Now we fill in the L2 pagetable for the kernel code/data */ { extern char etext[], _end[]; size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0x00200000; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #else { pmap_map_chunk(l1pagetable, KERNEL_TEXT_BASE, KERNEL_TEXT_BASE, kerneldatasize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #endif #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #ifdef VERBOSE_INIT_ARM printf("systempage (vector page): p0x%08lx v0x%08lx\n", systempage.pv_pa, vector_page); #endif /* Map the statically mapped devices. */ pmap_devmap_bootstrap(l1pagetable, ixm1200_devmap); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif /* * Map the Dcache Flush page. * Hw Ref Manual 3.2.4.5 Software Dcache Flush */ pmap_map_chunk(l1pagetable, ixp12x0_cache_clean_addr, 0xe0000000, CPU_IXP12X0_CACHE_CLEAN_SIZE, VM_PROT_READ, PTE_CACHE); /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved here from cpu_startup() as data_abort_handler() references * this during init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); /* * We must now clean the cache again.... * Cleaning may be done by reading new data to displace any * dirty data in the cache. This will have happened in cpu_setttb() * but since we are boot strapping the addresses used for the read * may have just been remapped and thus the cache could be out * of sync. A re-clean after the switch will cure this. * After booting there are no gross reloations of the kernel thus * this problem will not occur after initarm(). */ cpu_idcache_wbinv_all(); arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); #ifdef PMAP_DEBUG if (pmap_debug_level >= 0) printf("kstack V%08lx P%08lx\n", kernelstack.pv_va, kernelstack.pv_pa); #endif /* PMAP_DEBUG */ /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. Until then we will use a handler that just panics but * tells us why. * Initialisation of the vetcors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; #ifdef VERBOSE_INIT_ARM printf("\ndata_abort_handler_address = %08x\n", data_abort_handler_address); printf("prefetch_abort_handler_address = %08x\n", prefetch_abort_handler_address); printf("undefined_handler_address = %08x\n", undefined_handler_address); #endif /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_md_init(); uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Setup the IRQ system */ #ifdef VERBOSE_INIT_ARM printf("irq "); #endif ixp12x0_intr_init(); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("freemempos=%08lx\n", freemempos); printf("switching to new L1 page table @%#lx... \n", kernel_l1pt.pv_pa); #endif consinit(); #ifdef VERBOSE_INIT_ARM printf("consinit \n"); #endif ixdp_ixp12x0_cc_setup(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) ksyms_addsyms_elf(symbolsize, ((int *)&end), ((char *)&end) + symbolsize); #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } void consinit(void) { static int consinit_called = 0; if (consinit_called != 0) return; consinit_called = 1; pmap_devmap_register(ixm1200_devmap); if (ixpcomcnattach(&ixp12x0_bs_tag, IXPCOM_UART_HWBASE, IXPCOM_UART_VBASE, CONSPEED, CONMODE)) panic("can't init serial console @%lx", IXPCOM_UART_HWBASE); } /* * For optimal cache cleaning we need two 16K banks of * virtual address space that NOTHING else will access * and then we alternate the cache cleaning between the * two banks. * The cache cleaning code requires requires 2 banks aligned * on total size boundry so the banks can be alternated by * eorring the size bit (assumes the bank size is a power of 2) */ void ixdp_ixp12x0_cc_setup(void) { int loop; paddr_t kaddr; (void) pmap_extract(pmap_kernel(), KERNEL_TEXT_BASE, &kaddr); for (loop = 0; loop < CPU_IXP12X0_CACHE_CLEAN_SIZE; loop += PAGE_SIZE) { pt_entry_t * const ptep = vtopte(ixp12x0_cc_base + loop); const pt_entry_t npte = L2_S_PROTO | kaddr | L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode; l2pte_set(ptep, npte, 0); PTE_SYNC(ptep); } ixp12x0_cache_clean_addr = ixp12x0_cc_base; ixp12x0_cache_clean_size = CPU_IXP12X0_CACHE_CLEAN_SIZE / 2; }