/*- * Copyright (c) 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Paul Fleischer * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */ /* * Copyright (c) 2002, 2003 Fujitsu Component Limited * Copyright (c) 2002, 2003, 2005 Genetec Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of The Fujitsu Component Limited nor the name of * Genetec corporation may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC * CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC * CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Copyright (c) 2001,2002 ARM Ltd * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the company may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ARM LTD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependant functions for kernel setup for integrator board * * Created : 24/11/97 */ /* * Machine dependant functions for kernel setup for FriendlyARM MINI2440 */ #include __KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.10 2016/12/22 14:47:55 cherry Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_pmap_debug.h" #include "opt_md.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KGDB #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "ksyms.h" #ifndef SDRAM_START #define SDRAM_START S3C2440_SDRAM_START #endif #ifndef SDRAM_SIZE #define SDRAM_SIZE (64*1024*1024) /* 64 Mb */ #endif /* * Address to map I/O registers in early initialize stage. */ #define MINI2440_IO_VBASE 0xfd000000 /* Kernel text starts 2MB in from the bottom of the kernel address space. */ #define KERNEL_OFFSET 0x00200000 #define KERNEL_TEXT_BASE (KERNEL_BASE + KERNEL_OFFSET) #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xc1000000 - 0xccffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x0C000000 /* Declared extern elsewhere in the kernel */ BootConfig bootconfig; /* Boot config storage */ char *boot_args = NULL; //char *boot_file = NULL; char bootinfo[BOOTINFO_MAXSIZE]; struct btinfo_rootdevice *bi_rdev; struct btinfo_net *bi_net; struct btinfo_bootpath *bi_path; vaddr_t physical_start; vaddr_t physical_freestart; vaddr_t physical_freeend; vaddr_t physical_freeend_low; vaddr_t physical_end; u_int free_pages; vaddr_t pagetables_start; /*int debug_flags;*/ #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ paddr_t msgbufphys; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* L2 table for mapping zero page */ #define KERNEL_PT_KERNEL 1 /* L2 table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM 3 /* L2 tables for mapping kernel VM */ #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; /* Prototypes */ void consinit(void); void kgdb_port_init(void); static void mini2440_ksyms(struct btinfo_symtab *bi_symtab); static void *lookup_bootinfo(int type); static void mini2440_device_register(device_t dev, void *aux); #include "com.h" #if NCOM > 0 #include #include #endif #include "sscom.h" #if NSSCOM > 0 #include "opt_sscom.h" #include #endif /* * Define the default console speed for the board. This is generally * what the firmware provided with the board defaults to. */ #ifndef CONSPEED #define CONSPEED B115200 /* TTYDEF_SPEED */ #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { #ifdef DIAGNOSTIC /* info */ printf("boot: howto=%08x curproc=%p\n", howto, curproc); #endif cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset); /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); cpu_reset(); /* NOTREACHED */ } /* Disable console buffering */ /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the * unmount. It looks like syslogd is getting woken up only to find * that it cannot page part of the binary in as the filesystem has * been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); cpu_reset(); /* NOTREACHED */ } /* * Static device mappings. These peripheral registers are mapped at * fixed virtual addresses very early in initarm() so that we can use * them while booting the kernel , and stay at the same address * throughout whole kernel's life time. * * We use this table twice; once with bootstrap page table, and once * with kernel's page table which we build up in initarm(). * * Since we map these registers into the bootstrap page table using * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map * registers segment-aligned and segment-rounded in order to avoid * using the 2nd page tables. */ #define _A(a) ((a) & ~L1_S_OFFSET) #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) #define _V(n) (MINI2440_IO_VBASE + (n) * L1_S_SIZE) #define GPIO_VBASE _V(0) #define INTCTL_VBASE _V(1) #define CLKMAN_VBASE _V(2) #define UART_VBASE _V(3) static const struct pmap_devmap mini2440_devmap[] = { /* GPIO registers */ { GPIO_VBASE, _A(S3C2440_GPIO_BASE), _S(S3C2440_GPIO_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { INTCTL_VBASE, _A(S3C2440_INTCTL_BASE), _S(S3C2440_INTCTL_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { CLKMAN_VBASE, _A(S3C2440_CLKMAN_BASE), _S(S3C24X0_CLKMAN_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { /* UART registers for UART0, 1, 2. */ UART_VBASE, _A(S3C2440_UART0_BASE), _S(S3C2440_UART_BASE(3) - S3C2440_UART0_BASE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { 0, 0, 0, 0 } }; #undef _A #undef _S static inline pd_entry_t * read_ttb(void) { long ttb; __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r"(ttb)); return (pd_entry_t *)(ttb & ~((1 << 14) - 1)); } #define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v)) /* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; extern int etext __asm("_etext"); extern int end __asm("_end"); uint32_t kerneldatasize; struct btinfo_magic *bi_magic = arg; struct btinfo_bootstring *bi_bootstring; struct btinfo_symtab *bi_symtab; boothowto = 0; /* Copy bootinfo from boot loader into kernel memory where it remains. */ if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) { memcpy(bootinfo, bi_magic, sizeof(bootinfo)); } else { memset(bootinfo, 0, sizeof(bootinfo)); } /* Extract boot_args from bootinfo */ bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING); if (bi_bootstring ) { printf("Bootloader args are %s\n", bi_bootstring->bootstring); boot_args = bi_bootstring->bootstring; parse_mi_bootargs(boot_args); } #define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT)) // 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8 #define __LED(x) (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0)) __LED(0); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* * Map I/O registers that are used in startup. Now we are * still using page table prepared by bootloader. Later we'll * map those registers at the same address in the kernel page * table. */ pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap); #undef pdatb #define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT)) /* Disable all peripheral interrupts */ ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0); __LED(1); /* initialize some variables so that splfoo() doesn't touch illegal address. */ s3c2xx0_intr_bootstrap(INTCTL_VBASE); __LED(2); consinit(); __LED(3); /* Extract information from the bootloader configuration */ bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE); bi_net = lookup_bootinfo(BTINFO_NET); bi_path = lookup_bootinfo(BTINFO_BOOTPATH); #ifdef VERBOSE_INIT_ARM printf("consinit done\n"); #endif #ifdef KGDB kgdb_port_init(); #endif #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/evbarm (MINI2440) booting ...\n"); #endif /* * Ok we have the following memory map * * Physical Address Range Description * ----------------------- ---------------------------------- * 0x30000000 - 0x33ffffff SDRAM (64MB) * * Kernel is loaded by bootloader at 0x30200000 * * The initarm() has the responsibility for creating the kernel * page tables. * It must also set up various memory pointers that are used * by pmap etc. */ /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = SDRAM_START; bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. * We use the 2MB between the physical start and the kernel to * begin with. Allocating from 0x30200000 and downwards * If we get too close to the bottom of SDRAM, we * will panic. We will update physical_freestart and * physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = SDRAM_START; /* XXX */ physical_freeend = SDRAM_START + KERNEL_OFFSET; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); printf("phys_end: 0x%08lx\n", physical_end); #endif /* * XXX * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n", physical_freestart, free_pages, free_pages, physical_freeend); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0) panic("initarm: Failed to align the kernel page directory\n"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); physical_freeend_low = physical_freeend; /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { /* Total size must include symbol table, if it exists. The size of the symbol table can be acquired from the ELF header, to which a pointer is passed in the boot info (ssym). */ size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE; kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE; u_int logical; bi_symtab = lookup_bootinfo(BTINFO_SYMTAB); if (bi_symtab) { Elf_Ehdr *elfHeader; Elf_Shdr *sectionHeader; int nsection; int sz = 0; elfHeader = bi_symtab->ssym; #ifdef VERBOSE_INIT_ARM printf("Symbol table information provided by bootloader\n"); printf("ELF header is at %p\n", elfHeader); #endif sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) + (elfHeader->e_shoff)); nsection = elfHeader->e_shnum; #ifdef VERBOSE_INIT_ARM printf("Number of sections: %d\n", nsection); #endif for(; nsection > 0; nsection--, sectionHeader++) { if (sectionHeader->sh_offset > 0 && (sectionHeader->sh_offset + sectionHeader->sh_size) > sz) sz = sectionHeader->sh_offset + sectionHeader->sh_size; } #ifdef VERBOSE_INIT_ARM printf("Max size of sections: %d\n", sz); #endif kerneldatasize += sz; } #ifdef VERBOSE_INIT_ARM printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize, (uint)kerneldatasize); printf("&etext: 0x%x\n", (uint)&etext); printf("&end: 0x%x\n", (uint)&end); printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE); #endif textsize = (textsize + PGOFSET) & ~PGOFSET; kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET; logical = KERNEL_OFFSET; /* offset of kernel in RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, kerneldatasize - textsize, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ #if 0 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE); #endif /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, mini2440_devmap); /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ physical_freestart = physical_start + (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize; physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); cpu_idcache_wbinv_all(); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_md_init(); uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low), atop(SDRAM_START), atop(physical_freeend_low), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef BOOTHOWTO boothowto |= BOOTHOWTO; #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif mini2440_ksyms(bi_symtab); #ifdef DDB /*db_machine_init();*/ if (boothowto & RB_KDB) Debugger(); #endif evbarm_device_register = mini2440_device_register; /* We return the new stack pointer address */ return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); } void consinit(void) { static int consinit_done = 0; #if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE) bus_space_tag_t iot = &s3c2xx0_bs_tag; #endif int pclk; if (consinit_done != 0) return; consinit_done = 1; s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); #if NSSCOM > 0 #ifdef SSCOM0CONSOLE if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed, pclk, comcnmode)) return; #endif #ifdef SSCOM1CONSOLE if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed, pclk, comcnmode)) return; #endif #endif /* NSSCOM */ #if NCOM>0 && defined(CONCOMADDR) if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed, COM_FREQ, COM_TYPE_NORMAL, comcnmode)) panic("can't init serial console @%x", CONCOMADDR); return; #endif consinit_done = 0; } #ifdef KGDB #if (NSSCOM > 0) #ifdef KGDB_DEVNAME const char kgdb_devname[] = KGDB_DEVNAME; #else const char kgdb_devname[] = ""; #endif #ifndef KGDB_DEVMODE #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */ #endif int kgdb_sscom_mode = KGDB_DEVMODE; #endif /* NSSCOM */ void kgdb_port_init(void) { #if (NSSCOM > 0) int unit = -1; int pclk; if (strcmp(kgdb_devname, "sscom0") == 0) unit = 0; else if (strcmp(kgdb_devname, "sscom1") == 0) unit = 1; if (unit >= 0) { s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk); s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag, unit, kgdb_rate, pclk, kgdb_sscom_mode); } #endif } #endif static struct arm32_dma_range mini2440_dma_ranges[1]; bus_dma_tag_t s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template) { extern paddr_t physical_start, physical_end; struct arm32_bus_dma_tag *dmat; mini2440_dma_ranges[0].dr_sysbase = physical_start; mini2440_dma_ranges[0].dr_busbase = physical_start; mini2440_dma_ranges[0].dr_len = physical_end - physical_start; #if 1 dmat = dma_tag_template; #else dmat = malloc(sizeof *dmat, M_DEVBUF, M_NOWAIT); if (dmat == NULL) return NULL; *dmat = *dma_tag_template; #endif dmat->_ranges = mini2440_dma_ranges; dmat->_nranges = 1; return dmat; } void mini2440_ksyms(struct btinfo_symtab *bi_symtab) { #if NKSYMS || defined(DDB) || defined(LKM) extern int end; #ifdef DDB db_machine_init(); #endif if (bi_symtab == NULL) { return; } #ifdef VERBOSE_INIT_ARM printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n", bi_symtab->nsym, bi_symtab->ssym, bi_symtab->esym); #endif ksyms_addsyms_elf(bi_symtab->nsym, (int*)bi_symtab->ssym, (int*)bi_symtab->esym); #endif } void * lookup_bootinfo(int type) { struct btinfo_common *bt; struct btinfo_common *help = (struct btinfo_common *)bootinfo; if (help->next == 0) return (NULL); /* bootinfo[] was not made */ do { bt = help; if (bt->type == type) return (help); help = (struct btinfo_common *)((char*)help + bt->next); } while (bt->next && (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE); return (NULL); } extern char *booted_kernel; static void mini2440_device_register(device_t dev, void *aux) { if (device_class(dev) == DV_IFNET) { #ifndef MEMORY_DISK_IS_ROOT if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) { booted_device = dev; rootfstype = MOUNT_NFS; if( bi_path != NULL ) { booted_kernel = bi_path->bootpath; } } #endif if (bi_net != NULL && device_is_a(dev, bi_net->devname)) { prop_data_t pd; pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN); KASSERT(pd != NULL); if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) { printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev)); } prop_object_release(pd); bi_net = NULL; } } #ifndef MEMORY_DISK_IS_ROOT if (bi_rdev != NULL && device_class(dev) == DV_DISK && device_is_a(dev, bi_rdev->devname) && device_unit(dev) == bi_rdev->cookie) { booted_device = dev; booted_partition = bi_rdev->partition; rootfstype = ROOT_FSTYPE_ANY; if( bi_path != NULL ) { booted_kernel = bi_path->bootpath; } } #endif }