/* $NetBSD: rpi_machdep.c,v 1.70.8.3 2018/04/08 06:12:53 snj Exp $ */ /*- * Copyright (c) 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Nick Hudson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: rpi_machdep.c,v 1.70.8.3 2018/04/08 06:12:53 snj Exp $"); #include "opt_arm_debug.h" #include "opt_bcm283x.h" #include "opt_cpuoptions.h" #include "opt_ddb.h" #include "opt_evbarm_boardtype.h" #include "opt_kgdb.h" #include "opt_rpi.h" #include "opt_vcprop.h" #include "sdhc.h" #include "bcmdwctwo.h" #include "bcmspi.h" #include "bsciic.h" #include "plcom.h" #include "genfb.h" #include "ukbd.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef DDB #include #include #include #endif #if NPLCOM > 0 #include #include #endif #if NGENFB > 0 #include #include #include #endif #if NUKBD > 0 #include #endif extern int KERNEL_BASE_phys[]; extern int KERNEL_BASE_virt[]; BootConfig bootconfig; /* Boot config storage */ static char bootargs[VCPROP_MAXCMDLINE]; char *boot_args = NULL; static void rpi_bootparams(void); static void rpi_device_register(device_t, void *); /* * Macros to translate between physical and virtual for a subset of the * kernel address space. *Not* for general use. */ #define KERN_VTOPDIFF KERNEL_BASE_VOFFSET #define KERN_VTOPHYS(va) ((paddr_t)((vaddr_t)va - KERN_VTOPDIFF)) #define KERN_PHYSTOV(pa) ((vaddr_t)((paddr_t)pa + KERN_VTOPDIFF)) #ifndef RPI_FB_WIDTH #define RPI_FB_WIDTH 1280 #endif #ifndef RPI_FB_HEIGHT #define RPI_FB_HEIGHT 720 #endif int uart_clk = BCM2835_UART0_CLK; #define PLCONADDR BCM2835_UART0_BASE #ifndef CONSDEVNAME #define CONSDEVNAME "plcom" #endif #ifndef PLCONSPEED #define PLCONSPEED B115200 #endif #ifndef PLCONMODE #define PLCONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif #ifndef PLCOMCNUNIT #define PLCOMCNUNIT -1 #endif #if (NPLCOM > 0) static const bus_addr_t consaddr = (bus_addr_t)PLCONADDR; int plcomcnspeed = PLCONSPEED; int plcomcnmode = PLCONMODE; #endif #include "opt_kgdb.h" #if (NPLCOM == 0) #error Enable plcom for KGDB support #endif #ifdef KGDB #include static void kgdb_port_init(void); #endif #if (NPLCOM > 0 && (defined(PLCONSOLE) || defined(KGDB))) static struct plcom_instance rpi_pi = { .pi_type = PLCOM_TYPE_PL011, .pi_flags = PLC_FLAG_32BIT_ACCESS, .pi_iot = &bcm2835_bs_tag, .pi_size = BCM2835_UART0_SIZE }; #endif /* Smallest amount of RAM start.elf could give us. */ #define RPI_MINIMUM_SPLIT (128U * 1024 * 1024) static struct __aligned(16) { struct vcprop_buffer_hdr vb_hdr; struct vcprop_tag_clockrate vbt_uartclockrate; struct vcprop_tag_boardrev vbt_boardrev; struct vcprop_tag end; } vb_uart = { .vb_hdr = { .vpb_len = sizeof(vb_uart), .vpb_rcode = VCPROP_PROCESS_REQUEST, }, .vbt_uartclockrate = { .tag = { .vpt_tag = VCPROPTAG_GET_CLOCKRATE, .vpt_len = VCPROPTAG_LEN(vb_uart.vbt_uartclockrate), .vpt_rcode = VCPROPTAG_REQUEST }, .id = VCPROP_CLK_UART }, .vbt_boardrev = { .tag = { .vpt_tag = VCPROPTAG_GET_BOARDREVISION, .vpt_len = VCPROPTAG_LEN(vb_uart.vbt_boardrev), .vpt_rcode = VCPROPTAG_REQUEST }, }, .end = { .vpt_tag = VCPROPTAG_NULL } }; static struct __aligned(16) { struct vcprop_buffer_hdr vb_hdr; struct vcprop_tag_fwrev vbt_fwrev; struct vcprop_tag_boardmodel vbt_boardmodel; struct vcprop_tag_boardrev vbt_boardrev; struct vcprop_tag_macaddr vbt_macaddr; struct vcprop_tag_memory vbt_memory; struct vcprop_tag_boardserial vbt_serial; struct vcprop_tag_dmachan vbt_dmachan; struct vcprop_tag_cmdline vbt_cmdline; struct vcprop_tag_clockrate vbt_emmcclockrate; struct vcprop_tag_clockrate vbt_armclockrate; struct vcprop_tag end; } vb = { .vb_hdr = { .vpb_len = sizeof(vb), .vpb_rcode = VCPROP_PROCESS_REQUEST, }, .vbt_fwrev = { .tag = { .vpt_tag = VCPROPTAG_GET_FIRMWAREREV, .vpt_len = VCPROPTAG_LEN(vb.vbt_fwrev), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_boardmodel = { .tag = { .vpt_tag = VCPROPTAG_GET_BOARDMODEL, .vpt_len = VCPROPTAG_LEN(vb.vbt_boardmodel), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_boardrev = { .tag = { .vpt_tag = VCPROPTAG_GET_BOARDREVISION, .vpt_len = VCPROPTAG_LEN(vb.vbt_boardrev), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_macaddr = { .tag = { .vpt_tag = VCPROPTAG_GET_MACADDRESS, .vpt_len = VCPROPTAG_LEN(vb.vbt_macaddr), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_memory = { .tag = { .vpt_tag = VCPROPTAG_GET_ARMMEMORY, .vpt_len = VCPROPTAG_LEN(vb.vbt_memory), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_serial = { .tag = { .vpt_tag = VCPROPTAG_GET_BOARDSERIAL, .vpt_len = VCPROPTAG_LEN(vb.vbt_serial), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_dmachan = { .tag = { .vpt_tag = VCPROPTAG_GET_DMACHAN, .vpt_len = VCPROPTAG_LEN(vb.vbt_dmachan), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_cmdline = { .tag = { .vpt_tag = VCPROPTAG_GET_CMDLINE, .vpt_len = VCPROPTAG_LEN(vb.vbt_cmdline), .vpt_rcode = VCPROPTAG_REQUEST }, }, .vbt_emmcclockrate = { .tag = { .vpt_tag = VCPROPTAG_GET_CLOCKRATE, .vpt_len = VCPROPTAG_LEN(vb.vbt_emmcclockrate), .vpt_rcode = VCPROPTAG_REQUEST }, .id = VCPROP_CLK_EMMC }, .vbt_armclockrate = { .tag = { .vpt_tag = VCPROPTAG_GET_CLOCKRATE, .vpt_len = VCPROPTAG_LEN(vb.vbt_armclockrate), .vpt_rcode = VCPROPTAG_REQUEST }, .id = VCPROP_CLK_ARM }, .end = { .vpt_tag = VCPROPTAG_NULL } }; #if NGENFB > 0 static struct __aligned(16) { struct vcprop_buffer_hdr vb_hdr; struct vcprop_tag_edidblock vbt_edid; struct vcprop_tag end; } vb_edid = { .vb_hdr = { .vpb_len = sizeof(vb_edid), .vpb_rcode = VCPROP_PROCESS_REQUEST, }, .vbt_edid = { .tag = { .vpt_tag = VCPROPTAG_GET_EDID_BLOCK, .vpt_len = VCPROPTAG_LEN(vb_edid.vbt_edid), .vpt_rcode = VCPROPTAG_REQUEST, }, .blockno = 0, }, .end = { .vpt_tag = VCPROPTAG_NULL } }; static struct __aligned(16) { struct vcprop_buffer_hdr vb_hdr; struct vcprop_tag_fbres vbt_res; struct vcprop_tag_fbres vbt_vres; struct vcprop_tag_fbdepth vbt_depth; struct vcprop_tag_fbalpha vbt_alpha; struct vcprop_tag_allocbuf vbt_allocbuf; struct vcprop_tag_blankscreen vbt_blank; struct vcprop_tag_fbpitch vbt_pitch; struct vcprop_tag end; } vb_setfb = { .vb_hdr = { .vpb_len = sizeof(vb_setfb), .vpb_rcode = VCPROP_PROCESS_REQUEST, }, .vbt_res = { .tag = { .vpt_tag = VCPROPTAG_SET_FB_RES, .vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_res), .vpt_rcode = VCPROPTAG_REQUEST, }, .width = 0, .height = 0, }, .vbt_vres = { .tag = { .vpt_tag = VCPROPTAG_SET_FB_VRES, .vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_vres), .vpt_rcode = VCPROPTAG_REQUEST, }, .width = 0, .height = 0, }, .vbt_depth = { .tag = { .vpt_tag = VCPROPTAG_SET_FB_DEPTH, .vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_depth), .vpt_rcode = VCPROPTAG_REQUEST, }, .bpp = 32, }, .vbt_alpha = { .tag = { .vpt_tag = VCPROPTAG_SET_FB_ALPHA_MODE, .vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_alpha), .vpt_rcode = VCPROPTAG_REQUEST, }, .state = VCPROP_ALPHA_IGNORED, }, .vbt_allocbuf = { .tag = { .vpt_tag = VCPROPTAG_ALLOCATE_BUFFER, .vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_allocbuf), .vpt_rcode = VCPROPTAG_REQUEST, }, .address = PAGE_SIZE, /* alignment */ }, .vbt_blank = { .tag = { .vpt_tag = VCPROPTAG_BLANK_SCREEN, .vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_blank), .vpt_rcode = VCPROPTAG_REQUEST, }, .state = VCPROP_BLANK_OFF, }, .vbt_pitch = { .tag = { .vpt_tag = VCPROPTAG_GET_FB_PITCH, .vpt_len = VCPROPTAG_LEN(vb_setfb.vbt_pitch), .vpt_rcode = VCPROPTAG_REQUEST, }, }, .end = { .vpt_tag = VCPROPTAG_NULL, }, }; extern void bcmgenfb_set_console_dev(device_t dev); void bcmgenfb_set_ioctl(int(*)(void *, void *, u_long, void *, int, struct lwp *)); extern void bcmgenfb_ddb_trap_callback(int where); static int rpi_ioctl(void *, void *, u_long, void *, int, lwp_t *); static int rpi_video_on = WSDISPLAYIO_VIDEO_ON; #if defined(RPI_HWCURSOR) #define CURSOR_BITMAP_SIZE (64 * 8) #define CURSOR_ARGB_SIZE (64 * 64 * 4) static uint32_t hcursor = 0; static bus_addr_t pcursor = 0; static uint32_t *cmem = NULL; static int cursor_x = 0, cursor_y = 0, hot_x = 0, hot_y = 0, cursor_on = 0; static uint32_t cursor_cmap[4]; static uint8_t cursor_mask[8 * 64], cursor_bitmap[8 * 64]; #endif #endif static void rpi_uartinit(void) { const paddr_t pa = BCM2835_PERIPHERALS_BUS_TO_PHYS(BCM2835_ARMMBOX_BASE); const bus_space_tag_t iot = &bcm2835_bs_tag; const bus_space_handle_t ioh = BCM2835_IOPHYSTOVIRT(pa); uint32_t res; bcm2835_mbox_write(iot, ioh, BCMMBOX_CHANARM2VC, KERN_VTOPHYS(&vb_uart)); bcm2835_mbox_read(iot, ioh, BCMMBOX_CHANARM2VC, &res); cpu_dcache_inv_range((vaddr_t)&vb_uart, sizeof(vb_uart)); if (vcprop_tag_success_p(&vb_uart.vbt_boardrev.tag) && (vb_uart.vbt_boardrev.rev & VCPROP_REV_ENCFLAG) != 0) { const uint32_t rev = vb_uart.vbt_boardrev.rev; switch (__SHIFTOUT(rev, VCPROP_REV_MODEL)) { case RPI_MODEL_B_PI3: case RPI_MODEL_ZERO_W: /* Enable UART0 (PL011) on GPIO header */ bcm2835gpio_function_select(14, BCM2835_GPIO_ALT0); bcm2835gpio_function_select(15, BCM2835_GPIO_ALT0); break; } } if (vcprop_tag_success_p(&vb_uart.vbt_uartclockrate.tag)) uart_clk = vb_uart.vbt_uartclockrate.rate; } static void rpi_bootparams(void) { const paddr_t pa = BCM2835_PERIPHERALS_BUS_TO_PHYS(BCM2835_ARMMBOX_BASE); const bus_space_tag_t iot = &bcm2835_bs_tag; const bus_space_handle_t ioh = BCM2835_IOPHYSTOVIRT(pa); uint32_t res; bcm2835_mbox_write(iot, ioh, BCMMBOX_CHANPM, ( #if (NSDHC > 0) (1 << VCPM_POWER_SDCARD) | #endif #if (NPLCOM > 0) (1 << VCPM_POWER_UART0) | #endif #if (NBCMDWCTWO > 0) (1 << VCPM_POWER_USB) | #endif #if (NBSCIIC > 0) (1 << VCPM_POWER_I2C0) | (1 << VCPM_POWER_I2C1) | /* (1 << VCPM_POWER_I2C2) | */ #endif #if (NBCMSPI > 0) (1 << VCPM_POWER_SPI) | #endif 0) << 4); bcm2835_mbox_write(iot, ioh, BCMMBOX_CHANARM2VC, KERN_VTOPHYS(&vb)); bcm2835_mbox_read(iot, ioh, BCMMBOX_CHANARM2VC, &res); cpu_dcache_inv_range((vaddr_t)&vb, sizeof(vb)); if (!vcprop_buffer_success_p(&vb.vb_hdr)) { bootconfig.dramblocks = 1; bootconfig.dram[0].address = 0x0; bootconfig.dram[0].pages = atop(RPI_MINIMUM_SPLIT); return; } struct vcprop_tag_memory *vptp_mem = &vb.vbt_memory; if (vcprop_tag_success_p(&vptp_mem->tag)) { size_t n = vcprop_tag_resplen(&vptp_mem->tag) / sizeof(struct vcprop_memory); bootconfig.dramblocks = 0; for (int i = 0; i < n && i < DRAM_BLOCKS; i++) { bootconfig.dram[i].address = vptp_mem->mem[i].base; bootconfig.dram[i].pages = atop(vptp_mem->mem[i].size); bootconfig.dramblocks++; } } if (vcprop_tag_success_p(&vb.vbt_armclockrate.tag)) curcpu()->ci_data.cpu_cc_freq = vb.vbt_armclockrate.rate; #ifdef VERBOSE_INIT_ARM if (vcprop_tag_success_p(&vb.vbt_fwrev.tag)) printf("%s: firmware rev %x\n", __func__, vb.vbt_fwrev.rev); if (vcprop_tag_success_p(&vb.vbt_macaddr.tag)) printf("%s: mac-address %llx\n", __func__, vb.vbt_macaddr.addr); if (vcprop_tag_success_p(&vb.vbt_boardmodel.tag)) printf("%s: board model %x\n", __func__, vb.vbt_boardmodel.model); if (vcprop_tag_success_p(&vb.vbt_boardrev.tag)) printf("%s: board rev %x\n", __func__, vb.vbt_boardrev.rev); if (vcprop_tag_success_p(&vb.vbt_serial.tag)) printf("%s: board serial %llx\n", __func__, vb.vbt_serial.sn); if (vcprop_tag_success_p(&vb.vbt_dmachan.tag)) printf("%s: DMA channel mask 0x%08x\n", __func__, vb.vbt_dmachan.mask); if (vcprop_tag_success_p(&vb.vbt_cmdline.tag)) printf("%s: cmdline %s\n", __func__, vb.vbt_cmdline.cmdline); #endif } static void rpi_bootstrap(void) { #if defined(BCM2836) arm_cpu_max = 4; extern int cortex_mmuinfo; #ifdef VERBOSE_INIT_ARM printf("%s: %d cpus present\n", __func__, arm_cpu_max); #endif cortex_mmuinfo = armreg_ttbr_read(); #ifdef VERBOSE_INIT_ARM printf("%s: cortex_mmuinfo %x\n", __func__, cortex_mmuinfo); #endif extern void cortex_mpstart(void); for (size_t i = 1; i < arm_cpu_max; i++) { bus_space_tag_t iot = &bcm2835_bs_tag; bus_space_handle_t ioh = BCM2836_ARM_LOCAL_VBASE; bus_space_write_4(iot, ioh, BCM2836_LOCAL_MAILBOX3_SETN(i), (uint32_t)cortex_mpstart); int timeout = 20; while (timeout-- > 0) { uint32_t val; val = bus_space_read_4(iot, ioh, BCM2836_LOCAL_MAILBOX3_CLRN(i)); if (val == 0) break; } } /* Wake up APs in case firmware has placed them in WFE state */ __asm __volatile("sev"); for (int loop = 0; loop < 16; loop++) { if (arm_cpu_hatched == __BITS(arm_cpu_max - 1, 1)) break; gtmr_delay(10000); } for (size_t i = 1; i < arm_cpu_max; i++) { if ((arm_cpu_hatched & (1 << i)) == 0) { printf("%s: warning: cpu%zu failed to hatch\n", __func__, i); } } #endif } /* * Static device mappings. These peripheral registers are mapped at * fixed virtual addresses very early in initarm() so that we can use * them while booting the kernel, and stay at the same address * throughout whole kernel's life time. * * We use this table twice; once with bootstrap page table, and once * with kernel's page table which we build up in initarm(). * * Since we map these registers into the bootstrap page table using * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map * registers segment-aligned and segment-rounded in order to avoid * using the 2nd page tables. */ #define _A(a) ((a) & ~L1_S_OFFSET) #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) static const struct pmap_devmap rpi_devmap[] = { { _A(RPI_KERNEL_IO_VBASE), _A(RPI_KERNEL_IO_PBASE), _S(RPI_KERNEL_IO_VSIZE), /* 16Mb */ VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, #if defined(BCM2836) { _A(RPI_KERNEL_LOCAL_VBASE), _A(RPI_KERNEL_LOCAL_PBASE), _S(RPI_KERNEL_LOCAL_VSIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, #endif { 0, 0, 0, 0, 0 } }; #undef _A #undef _S /* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel */ u_int initarm(void *arg) { /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* map some peripheral registers */ pmap_devmap_bootstrap((vaddr_t)armreg_ttbr_read() & -L1_TABLE_SIZE, rpi_devmap); cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); rpi_uartinit(); consinit(); /* Talk to the user */ #define BDSTR(s) _BDSTR(s) #define _BDSTR(s) #s printf("\nNetBSD/evbarm (" BDSTR(EVBARM_BOARDTYPE) ") booting ...\n"); #ifdef CORTEX_PMC cortex_pmc_ccnt_init(); #endif rpi_bootparams(); rpi_bootstrap(); if (vcprop_tag_success_p(&vb.vbt_armclockrate.tag)) { curcpu()->ci_data.cpu_cc_freq = vb.vbt_armclockrate.rate; #ifdef VERBOSE_INIT_ARM printf("%s: arm clock %d\n", __func__, vb.vbt_armclockrate.rate); #endif } #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif psize_t ram_size = bootconfig.dram[0].pages * PAGE_SIZE; #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS if (ram_size > KERNEL_VM_BASE - KERNEL_BASE) { printf("%s: dropping RAM size from %luMB to %uMB\n", __func__, (unsigned long) (ram_size >> 20), (KERNEL_VM_BASE - KERNEL_BASE) >> 20); ram_size = KERNEL_VM_BASE - KERNEL_BASE; } #endif /* * If MEMSIZE specified less than what we really have, limit ourselves * to that. */ #ifdef MEMSIZE if (ram_size == 0 || ram_size > (unsigned)MEMSIZE * 1024 * 1024) ram_size = (unsigned)MEMSIZE * 1024 * 1024; #else KASSERTMSG(ram_size > 0, "RAM size unknown and MEMSIZE undefined"); #endif arm32_bootmem_init(bootconfig.dram[0].address, ram_size, (uintptr_t)KERNEL_BASE_phys); #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS const bool mapallmem_p = true; KASSERT(ram_size <= KERNEL_VM_BASE - KERNEL_BASE); #else const bool mapallmem_p = false; #endif arm32_kernel_vm_init(KERNEL_VM_BASE, ARM_VECTORS_HIGH, 0, rpi_devmap, mapallmem_p); cpu_reset_address = bcm2835_system_reset; #ifdef VERBOSE_INIT_ARM printf("done.\n"); #endif #ifdef KGDB kgdb_port_init(); #endif #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif if (vcprop_tag_success_p(&vb.vbt_cmdline.tag)) strlcpy(bootargs, vb.vbt_cmdline.cmdline, sizeof(bootargs)); boot_args = bootargs; parse_mi_bootargs(boot_args); #ifdef BOOTHOWTO boothowto |= BOOTHOWTO; #endif /* we've a specific device_register routine */ evbarm_device_register = rpi_device_register; return initarm_common(KERNEL_VM_BASE, KERNEL_VM_SIZE, NULL, 0); } void consinit(void) { static int consinit_called = 0; if (consinit_called != 0) return; consinit_called = 1; #if (NPLCOM > 0 && defined(PLCONSOLE)) /* * Initialise the diagnostic serial console * This allows a means of generating output during initarm(). */ rpi_pi.pi_iobase = consaddr; plcomcnattach(&rpi_pi, plcomcnspeed, uart_clk, plcomcnmode, PLCOMCNUNIT); #endif } #ifdef KGDB #if !defined(KGDB_PLCOMUNIT) || !defined(KGDB_DEVRATE) || !defined(KGDB_CONMODE) #error Specify KGDB_PLCOMUNIT, KGDB_DEVRATE and KGDB_CONMODE for KGDB. #endif void static kgdb_port_init(void) { static int kgdbsinit_called = 0; int res; if (kgdbsinit_called != 0) return; kgdbsinit_called = 1; rpi_pi.pi_iobase = consaddr; res = plcom_kgdb_attach(&rpi_pi, KGDB_DEVRATE, uart_clk, KGDB_CONMODE, KGDB_PLCOMUNIT); if (res) panic("KGDB uart can not be initialized, err=%d.", res); } #endif #if NGENFB > 0 static bool rpi_fb_parse_mode(const char *s, uint32_t *pwidth, uint32_t *pheight) { char *x; if (strncmp(s, "disable", 7) == 0) return false; x = strchr(s, 'x'); if (x) { *pwidth = strtoul(s, NULL, 10); *pheight = strtoul(x + 1, NULL, 10); } return true; } static bool rpi_fb_get_edid_mode(uint32_t *pwidth, uint32_t *pheight) { struct edid_info ei; uint8_t edid_data[1024]; uint32_t res; int error; error = bcmmbox_request(BCMMBOX_CHANARM2VC, &vb_edid, sizeof(vb_edid), &res); if (error) { printf("%s: mbox request failed (%d)\n", __func__, error); return false; } if (!vcprop_buffer_success_p(&vb_edid.vb_hdr) || !vcprop_tag_success_p(&vb_edid.vbt_edid.tag) || vb_edid.vbt_edid.status != 0) return false; memset(edid_data, 0, sizeof(edid_data)); memcpy(edid_data, vb_edid.vbt_edid.data, sizeof(vb_edid.vbt_edid.data)); edid_parse(edid_data, &ei); #ifdef VERBOSE_INIT_ARM edid_print(&ei); #endif if (ei.edid_preferred_mode) { *pwidth = ei.edid_preferred_mode->hdisplay; *pheight = ei.edid_preferred_mode->vdisplay; } return true; } /* * Initialize framebuffer console. * * Some notes about boot parameters: * - If "fb=disable" is present, ignore framebuffer completely. * - If "fb=x is present, use the specified mode. * - If "console=fb" is present, attach framebuffer to console. */ static bool rpi_fb_init(prop_dictionary_t dict, void *aux) { uint32_t width = 0, height = 0; uint32_t res; char *ptr; int integer; int error; bool is_bgr = true; if (get_bootconf_option(boot_args, "fb", BOOTOPT_TYPE_STRING, &ptr)) { if (rpi_fb_parse_mode(ptr, &width, &height) == false) return false; } if (width == 0 || height == 0) { rpi_fb_get_edid_mode(&width, &height); } if (width == 0 || height == 0) { width = RPI_FB_WIDTH; height = RPI_FB_HEIGHT; } vb_setfb.vbt_res.width = width; vb_setfb.vbt_res.height = height; vb_setfb.vbt_vres.width = width; vb_setfb.vbt_vres.height = height; error = bcmmbox_request(BCMMBOX_CHANARM2VC, &vb_setfb, sizeof(vb_setfb), &res); if (error) { printf("%s: mbox request failed (%d)\n", __func__, error); return false; } if (!vcprop_buffer_success_p(&vb_setfb.vb_hdr) || !vcprop_tag_success_p(&vb_setfb.vbt_res.tag) || !vcprop_tag_success_p(&vb_setfb.vbt_vres.tag) || !vcprop_tag_success_p(&vb_setfb.vbt_depth.tag) || !vcprop_tag_success_p(&vb_setfb.vbt_allocbuf.tag) || !vcprop_tag_success_p(&vb_setfb.vbt_blank.tag) || !vcprop_tag_success_p(&vb_setfb.vbt_pitch.tag)) { printf("%s: prop tag failed\n", __func__); return false; } #ifdef VERBOSE_INIT_ARM printf("%s: addr = 0x%x size = %d\n", __func__, vb_setfb.vbt_allocbuf.address, vb_setfb.vbt_allocbuf.size); printf("%s: depth = %d\n", __func__, vb_setfb.vbt_depth.bpp); printf("%s: pitch = %d\n", __func__, vb_setfb.vbt_pitch.linebytes); printf("%s: width = %d height = %d\n", __func__, vb_setfb.vbt_res.width, vb_setfb.vbt_res.height); printf("%s: vwidth = %d vheight = %d\n", __func__, vb_setfb.vbt_vres.width, vb_setfb.vbt_vres.height); #endif if (vb_setfb.vbt_allocbuf.address == 0 || vb_setfb.vbt_allocbuf.size == 0 || vb_setfb.vbt_res.width == 0 || vb_setfb.vbt_res.height == 0 || vb_setfb.vbt_vres.width == 0 || vb_setfb.vbt_vres.height == 0 || vb_setfb.vbt_pitch.linebytes == 0) { printf("%s: failed to set mode %ux%u\n", __func__, width, height); return false; } prop_dictionary_set_uint32(dict, "width", vb_setfb.vbt_res.width); prop_dictionary_set_uint32(dict, "height", vb_setfb.vbt_res.height); prop_dictionary_set_uint8(dict, "depth", vb_setfb.vbt_depth.bpp); prop_dictionary_set_uint16(dict, "linebytes", vb_setfb.vbt_pitch.linebytes); prop_dictionary_set_uint32(dict, "address", vb_setfb.vbt_allocbuf.address); /* * Old firmware uses BGR. New firmware uses RGB. The get and set * pixel order mailbox properties don't seem to work. The firmware * adds a kernel cmdline option bcm2708_fb.fbswap=<0|1>, so use it * to determine pixel order. 0 means BGR, 1 means RGB. * * See https://github.com/raspberrypi/linux/issues/514 */ if (get_bootconf_option(boot_args, "bcm2708_fb.fbswap", BOOTOPT_TYPE_INT, &integer)) { is_bgr = integer == 0; } prop_dictionary_set_bool(dict, "is_bgr", is_bgr); /* if "genfb.type=" is passed in cmdline, override wsdisplay type */ if (get_bootconf_option(boot_args, "genfb.type", BOOTOPT_TYPE_INT, &integer)) { prop_dictionary_set_uint32(dict, "wsdisplay_type", integer); } #if defined(RPI_HWCURSOR) struct amba_attach_args *aaa = aux; bus_space_handle_t hc; hcursor = rpi_alloc_mem(CURSOR_ARGB_SIZE, PAGE_SIZE, MEM_FLAG_L1_NONALLOCATING | MEM_FLAG_HINT_PERMALOCK); pcursor = rpi_lock_mem(hcursor); #ifdef RPI_IOCTL_DEBUG printf("hcursor: %08x\n", hcursor); printf("pcursor: %08x\n", (uint32_t)pcursor); printf("fb: %08x\n", (uint32_t)vb_setfb.vbt_allocbuf.address); #endif if (bus_space_map(aaa->aaa_iot, pcursor, CURSOR_ARGB_SIZE, BUS_SPACE_MAP_LINEAR|BUS_SPACE_MAP_PREFETCHABLE, &hc) != 0) { printf("couldn't map cursor memory\n"); } else { int i, j, k; cmem = bus_space_vaddr(aaa->aaa_iot, hc); k = 0; for (j = 0; j < 64; j++) { for (i = 0; i < 64; i++) { cmem[i + k] = ((i & 8) ^ (j & 8)) ? 0xa0ff0000 : 0xa000ff00; } k += 64; } cpu_dcache_wb_range((vaddr_t)cmem, CURSOR_ARGB_SIZE); rpi_fb_initcursor(pcursor, 0, 0); #ifdef RPI_IOCTL_DEBUG rpi_fb_movecursor(600, 400, 1); #else rpi_fb_movecursor(cursor_x, cursor_y, cursor_on); #endif } #endif return true; } #if defined(RPI_HWCURSOR) static int rpi_fb_do_cursor(struct wsdisplay_cursor *cur) { int pos = 0; int shape = 0; if (cur->which & WSDISPLAY_CURSOR_DOCUR) { if (cursor_on != cur->enable) { cursor_on = cur->enable; pos = 1; } } if (cur->which & WSDISPLAY_CURSOR_DOHOT) { hot_x = cur->hot.x; hot_y = cur->hot.y; pos = 1; shape = 1; } if (cur->which & WSDISPLAY_CURSOR_DOPOS) { cursor_x = cur->pos.x; cursor_y = cur->pos.y; pos = 1; } if (cur->which & WSDISPLAY_CURSOR_DOCMAP) { int i; uint32_t val; for (i = 0; i < min(cur->cmap.count, 3); i++) { val = (cur->cmap.red[i] << 16 ) | (cur->cmap.green[i] << 8) | (cur->cmap.blue[i] ) | 0xff000000; cursor_cmap[i + cur->cmap.index + 2] = val; } shape = 1; } if (cur->which & WSDISPLAY_CURSOR_DOSHAPE) { int err; err = copyin(cur->mask, cursor_mask, CURSOR_BITMAP_SIZE); err += copyin(cur->image, cursor_bitmap, CURSOR_BITMAP_SIZE); if (err != 0) return EFAULT; shape = 1; } if (shape) { int i, j, idx; uint8_t mask; for (i = 0; i < CURSOR_BITMAP_SIZE; i++) { mask = 0x01; for (j = 0; j < 8; j++) { idx = ((cursor_mask[i] & mask) ? 2 : 0) | ((cursor_bitmap[i] & mask) ? 1 : 0); cmem[i * 8 + j] = cursor_cmap[idx]; mask = mask << 1; } } /* just in case */ cpu_dcache_wb_range((vaddr_t)cmem, CURSOR_ARGB_SIZE); rpi_fb_initcursor(pcursor, hot_x, hot_y); } if (pos) { rpi_fb_movecursor(cursor_x, cursor_y, cursor_on); } return 0; } #endif static int rpi_ioctl(void *v, void *vs, u_long cmd, void *data, int flag, lwp_t *l) { switch (cmd) { case WSDISPLAYIO_SVIDEO: { int d = *(int *)data; if (d == rpi_video_on) return 0; rpi_video_on = d; rpi_fb_set_video(d); #if defined(RPI_HWCURSOR) rpi_fb_movecursor(cursor_x, cursor_y, d ? cursor_on : 0); #endif } return 0; case WSDISPLAYIO_GVIDEO: *(int *)data = rpi_video_on; return 0; #if defined(RPI_HWCURSOR) case WSDISPLAYIO_GCURPOS: { struct wsdisplay_curpos *cp = (void *)data; cp->x = cursor_x; cp->y = cursor_y; } return 0; case WSDISPLAYIO_SCURPOS: { struct wsdisplay_curpos *cp = (void *)data; cursor_x = cp->x; cursor_y = cp->y; rpi_fb_movecursor(cursor_x, cursor_y, cursor_on); } return 0; case WSDISPLAYIO_GCURMAX: { struct wsdisplay_curpos *cp = (void *)data; cp->x = 64; cp->y = 64; } return 0; case WSDISPLAYIO_SCURSOR: { struct wsdisplay_cursor *cursor = (void *)data; return rpi_fb_do_cursor(cursor); } #endif default: return EPASSTHROUGH; } } #endif static void rpi_device_register(device_t dev, void *aux) { prop_dictionary_t dict = device_properties(dev); #if defined(BCM2836) if (device_is_a(dev, "armgtmr")) { /* * The frequency of the generic timer is the reference * frequency. */ prop_dictionary_set_uint32(dict, "frequency", RPI_REF_FREQ); return; } #endif if (device_is_a(dev, "plcom") && vcprop_tag_success_p(&vb_uart.vbt_uartclockrate.tag) && vb_uart.vbt_uartclockrate.rate > 0) { prop_dictionary_set_uint32(dict, "frequency", vb_uart.vbt_uartclockrate.rate); } if (device_is_a(dev, "bcmdmac") && vcprop_tag_success_p(&vb.vbt_dmachan.tag)) { prop_dictionary_set_uint32(dict, "chanmask", vb.vbt_dmachan.mask); } #if NSDHC > 0 if (device_is_a(dev, "sdhc") && vcprop_tag_success_p(&vb.vbt_emmcclockrate.tag) && vb.vbt_emmcclockrate.rate > 0) { prop_dictionary_set_uint32(dict, "frequency", vb.vbt_emmcclockrate.rate); } if (booted_device == NULL && device_is_a(dev, "ld") && device_is_a(device_parent(dev), "sdmmc")) { booted_partition = 0; booted_device = dev; } #endif if (device_is_a(dev, "usmsc") && vcprop_tag_success_p(&vb.vbt_macaddr.tag)) { const uint8_t enaddr[ETHER_ADDR_LEN] = { (vb.vbt_macaddr.addr >> 0) & 0xff, (vb.vbt_macaddr.addr >> 8) & 0xff, (vb.vbt_macaddr.addr >> 16) & 0xff, (vb.vbt_macaddr.addr >> 24) & 0xff, (vb.vbt_macaddr.addr >> 32) & 0xff, (vb.vbt_macaddr.addr >> 40) & 0xff }; prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN); KASSERT(pd != NULL); if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) { aprint_error_dev(dev, "WARNING: Unable to set mac-address property\n"); } prop_object_release(pd); } #if NGENFB > 0 if (device_is_a(dev, "genfb")) { char *ptr; bcmgenfb_set_console_dev(dev); bcmgenfb_set_ioctl(&rpi_ioctl); #ifdef DDB db_trap_callback = bcmgenfb_ddb_trap_callback; #endif if (rpi_fb_init(dict, aux) == false) return; if (get_bootconf_option(boot_args, "console", BOOTOPT_TYPE_STRING, &ptr) && strncmp(ptr, "fb", 2) == 0) { prop_dictionary_set_bool(dict, "is_console", true); #if NUKBD > 0 /* allow ukbd to be the console keyboard */ ukbd_cnattach(); #endif } else { prop_dictionary_set_bool(dict, "is_console", false); } } #endif /* BSC0 is used internally on some boards */ if (device_is_a(dev, "bsciic") && ((struct amba_attach_args *)aux)->aaa_addr == BCM2835_BSC0_BASE) { const uint32_t rev = vb.vbt_boardrev.rev; if ((rev & VCPROP_REV_ENCFLAG) != 0) { switch (__SHIFTOUT(rev, VCPROP_REV_MODEL)) { case RPI_MODEL_B_PI3: case RPI_MODEL_ZERO_W: prop_dictionary_set_bool(dict, "disable", true); break; } } } } SYSCTL_SETUP(sysctl_machdep_rpi, "sysctl machdep subtree setup (rpi)") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL, NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "firmware_revision", NULL, NULL, 0, &vb.vbt_fwrev.rev, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "board_model", NULL, NULL, 0, &vb.vbt_boardmodel.model, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY, CTLTYPE_INT, "board_revision", NULL, NULL, 0, &vb.vbt_boardrev.rev, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_HEX|CTLFLAG_PRIVATE, CTLTYPE_QUAD, "serial", NULL, NULL, 0, &vb.vbt_serial.sn, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL); }