/* $NetBSD: rpi_vcmbox.c,v 1.4 2014/10/04 13:18:34 mlelstv Exp $ */ /*- * Copyright (c) 2013 Jared D. McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Raspberry Pi VC Mailbox Interface */ #include __KERNEL_RCSID(0, "$NetBSD: rpi_vcmbox.c,v 1.4 2014/10/04 13:18:34 mlelstv Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include struct vcmbox_temp_request { struct vcprop_buffer_hdr vb_hdr; struct vcprop_tag_temperature vbt_temp; struct vcprop_tag end; } __packed; struct vcmbox_clockrate_request { struct vcprop_buffer_hdr vb_hdr; struct vcprop_tag_clockrate vbt_clockrate; struct vcprop_tag end; } __packed; #define RATE2MHZ(rate) ((rate) / 1000000) #define MHZ2RATE(mhz) ((mhz) * 1000000) #define VCMBOX_INIT_REQUEST(req) \ do { \ memset(&(req), 0, sizeof((req))); \ (req).vb_hdr.vpb_len = sizeof((req)); \ (req).vb_hdr.vpb_rcode = VCPROP_PROCESS_REQUEST; \ (req).end.vpt_tag = VCPROPTAG_NULL; \ } while (0) #define VCMBOX_INIT_TAG(s, t) \ do { \ (s).tag.vpt_tag = (t); \ (s).tag.vpt_rcode = VCPROPTAG_REQUEST; \ (s).tag.vpt_len = VCPROPTAG_LEN(s); \ } while (0) struct vcmbox_softc { device_t sc_dev; /* temperature sensor */ struct sysmon_envsys *sc_sme; #define VCMBOX_SENSOR_TEMP 0 #define VCMBOX_NSENSORS 1 envsys_data_t sc_sensor[VCMBOX_NSENSORS]; /* cpu frequency scaling */ struct sysctllog *sc_log; uint32_t sc_cpu_minrate; uint32_t sc_cpu_maxrate; int sc_node_target; int sc_node_current; int sc_node_min; int sc_node_max; }; static const char *vcmbox_sensor_name[VCMBOX_NSENSORS] = { "temperature", }; static int vcmbox_sensor_id[VCMBOX_NSENSORS] = { VCPROP_TEMP_SOC, }; static int vcmbox_match(device_t, cfdata_t, void *); static void vcmbox_attach(device_t, device_t, void *); static int vcmbox_read_temp(struct vcmbox_softc *, uint32_t, int, uint32_t *); static int vcmbox_read_clockrate(struct vcmbox_softc *, uint32_t, int, uint32_t *); static int vcmbox_write_clockrate(struct vcmbox_softc *, uint32_t, int, uint32_t); static int vcmbox_cpufreq_init(struct vcmbox_softc *); static int vcmbox_cpufreq_sysctl_helper(SYSCTLFN_PROTO); static void vcmbox_create_sensors(struct vcmbox_softc *); static void vcmbox_sensor_get_limits(struct sysmon_envsys *, envsys_data_t *, sysmon_envsys_lim_t *, uint32_t *); static void vcmbox_sensor_refresh(struct sysmon_envsys *, envsys_data_t *); CFATTACH_DECL_NEW(vcmbox, sizeof(struct vcmbox_softc), vcmbox_match, vcmbox_attach, NULL, NULL); static int vcmbox_match(device_t parent, cfdata_t match, void *aux) { return 1; } static void vcmbox_attach(device_t parent, device_t self, void *aux) { struct vcmbox_softc *sc = device_private(self); sc->sc_dev = self; aprint_naive("\n"); aprint_normal("\n"); vcmbox_cpufreq_init(sc); sc->sc_sme = sysmon_envsys_create(); sc->sc_sme->sme_cookie = sc; sc->sc_sme->sme_name = device_xname(sc->sc_dev); sc->sc_sme->sme_refresh = vcmbox_sensor_refresh; sc->sc_sme->sme_get_limits = vcmbox_sensor_get_limits; vcmbox_create_sensors(sc); if (sysmon_envsys_register(sc->sc_sme) == 0) return; aprint_error_dev(self, "unable to register with sysmon\n"); sysmon_envsys_destroy(sc->sc_sme); } static int vcmbox_read_temp(struct vcmbox_softc *sc, uint32_t tag, int id, uint32_t *val) { struct vcmbox_temp_request vb; uint32_t res; int error; VCMBOX_INIT_REQUEST(vb); VCMBOX_INIT_TAG(vb.vbt_temp, tag); vb.vbt_temp.id = id; error = bcmmbox_request(BCMMBOX_CHANARM2VC, &vb, sizeof(vb), &res); if (error) return error; if (!vcprop_buffer_success_p(&vb.vb_hdr) || !vcprop_tag_success_p(&vb.vbt_temp.tag)) { return EIO; } *val = vb.vbt_temp.value; return 0; } static int vcmbox_read_clockrate(struct vcmbox_softc *sc, uint32_t tag, int id, uint32_t *val) { struct vcmbox_clockrate_request vb; uint32_t res; int error; VCMBOX_INIT_REQUEST(vb); VCMBOX_INIT_TAG(vb.vbt_clockrate, tag); vb.vbt_clockrate.id = id; error = bcmmbox_request(BCMMBOX_CHANARM2VC, &vb, sizeof(vb), &res); if (error) return error; if (!vcprop_buffer_success_p(&vb.vb_hdr) || !vcprop_tag_success_p(&vb.vbt_clockrate.tag)) { return EIO; } *val = vb.vbt_clockrate.rate; return 0; } static int vcmbox_write_clockrate(struct vcmbox_softc *sc, uint32_t tag, int id, uint32_t val) { struct vcmbox_clockrate_request vb; uint32_t res; int error; VCMBOX_INIT_REQUEST(vb); VCMBOX_INIT_TAG(vb.vbt_clockrate, tag); vb.vbt_clockrate.id = id; vb.vbt_clockrate.rate = val; error = bcmmbox_request(BCMMBOX_CHANARM2VC, &vb, sizeof(vb), &res); if (error) return error; if (!vcprop_buffer_success_p(&vb.vb_hdr) || !vcprop_tag_success_p(&vb.vbt_clockrate.tag)) { return EIO; } return 0; } static int vcmbox_cpufreq_init(struct vcmbox_softc *sc) { const struct sysctlnode *node, *cpunode, *freqnode; int error; error = vcmbox_read_clockrate(sc, VCPROPTAG_GET_MIN_CLOCKRATE, VCPROP_CLK_ARM, &sc->sc_cpu_minrate); if (error) { aprint_error_dev(sc->sc_dev, "couldn't read min clkrate (%d)\n", error); return error; } error = vcmbox_read_clockrate(sc, VCPROPTAG_GET_MAX_CLOCKRATE, VCPROP_CLK_ARM, &sc->sc_cpu_maxrate); if (error) { aprint_error_dev(sc->sc_dev, "couldn't read max clkrate (%d)\n", error); return error; } error = sysctl_createv(&sc->sc_log, 0, NULL, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL, NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL); if (error) goto sysctl_failed; error = sysctl_createv(&sc->sc_log, 0, &node, &cpunode, 0, CTLTYPE_NODE, "cpu", NULL, NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); if (error) goto sysctl_failed; error = sysctl_createv(&sc->sc_log, 0, &cpunode, &freqnode, 0, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL); if (error) goto sysctl_failed; error = sysctl_createv(&sc->sc_log, 0, &freqnode, &node, CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL, vcmbox_cpufreq_sysctl_helper, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL); if (error) goto sysctl_failed; sc->sc_node_target = node->sysctl_num; error = sysctl_createv(&sc->sc_log, 0, &freqnode, &node, 0, CTLTYPE_INT, "current", NULL, vcmbox_cpufreq_sysctl_helper, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL); if (error) goto sysctl_failed; sc->sc_node_current = node->sysctl_num; error = sysctl_createv(&sc->sc_log, 0, &freqnode, &node, 0, CTLTYPE_INT, "min", NULL, vcmbox_cpufreq_sysctl_helper, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL); if (error) goto sysctl_failed; sc->sc_node_min = node->sysctl_num; error = sysctl_createv(&sc->sc_log, 0, &freqnode, &node, 0, CTLTYPE_INT, "max", NULL, vcmbox_cpufreq_sysctl_helper, 0, (void *)sc, 0, CTL_CREATE, CTL_EOL); if (error) goto sysctl_failed; sc->sc_node_max = node->sysctl_num; return 0; sysctl_failed: aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes (%d)\n", error); sysctl_teardown(&sc->sc_log); return error; } static int vcmbox_cpufreq_sysctl_helper(SYSCTLFN_ARGS) { struct sysctlnode node; struct vcmbox_softc *sc; int fq, oldfq = 0, error; uint32_t rate; node = *rnode; sc = node.sysctl_data; node.sysctl_data = &fq; if (rnode->sysctl_num == sc->sc_node_target || rnode->sysctl_num == sc->sc_node_current) { error = vcmbox_read_clockrate(sc, VCPROPTAG_GET_CLOCKRATE, VCPROP_CLK_ARM, &rate); if (error) return error; fq = RATE2MHZ(rate); if (rnode->sysctl_num == sc->sc_node_target) oldfq = fq; } else if (rnode->sysctl_num == sc->sc_node_min) { fq = RATE2MHZ(sc->sc_cpu_minrate); } else if (rnode->sysctl_num == sc->sc_node_max) { fq = RATE2MHZ(sc->sc_cpu_maxrate); } else return EOPNOTSUPP; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target) return 0; if (fq < RATE2MHZ(sc->sc_cpu_minrate)) fq = RATE2MHZ(sc->sc_cpu_minrate); if (fq > RATE2MHZ(sc->sc_cpu_maxrate)) fq = RATE2MHZ(sc->sc_cpu_maxrate); return vcmbox_write_clockrate(sc, VCPROPTAG_SET_CLOCKRATE, VCPROP_CLK_ARM, MHZ2RATE(fq)); } static void vcmbox_create_sensors(struct vcmbox_softc *sc) { uint32_t val; sc->sc_sensor[VCMBOX_SENSOR_TEMP].sensor = VCMBOX_SENSOR_TEMP; sc->sc_sensor[VCMBOX_SENSOR_TEMP].units = ENVSYS_STEMP; sc->sc_sensor[VCMBOX_SENSOR_TEMP].state = ENVSYS_SINVALID; sc->sc_sensor[VCMBOX_SENSOR_TEMP].flags = ENVSYS_FMONLIMITS | ENVSYS_FHAS_ENTROPY; strlcpy(sc->sc_sensor[VCMBOX_SENSOR_TEMP].desc, vcmbox_sensor_name[VCMBOX_SENSOR_TEMP], sizeof(sc->sc_sensor[VCMBOX_SENSOR_TEMP].desc)); if (vcmbox_read_temp(sc, VCPROPTAG_GET_MAX_TEMPERATURE, vcmbox_sensor_id[VCMBOX_SENSOR_TEMP], &val) == 0) { sc->sc_sensor[VCMBOX_SENSOR_TEMP].value_max = val * 1000 + 273150000; sc->sc_sensor[VCMBOX_SENSOR_TEMP].flags |= ENVSYS_FVALID_MAX; } sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor[VCMBOX_SENSOR_TEMP]); } static void vcmbox_sensor_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata, sysmon_envsys_lim_t *limits, uint32_t *props) { struct vcmbox_softc *sc = sme->sme_cookie; uint32_t val; *props = 0; if (edata->units == ENVSYS_STEMP) { if (vcmbox_read_temp(sc, VCPROPTAG_GET_MAX_TEMPERATURE, vcmbox_sensor_id[edata->sensor], &val)) return; *props = PROP_CRITMAX; limits->sel_critmax = val * 1000 + 273150000; } } static void vcmbox_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { struct vcmbox_softc *sc = sme->sme_cookie; uint32_t val; edata->state = ENVSYS_SINVALID; if (edata->units == ENVSYS_STEMP) { if (vcmbox_read_temp(sc, VCPROPTAG_GET_TEMPERATURE, vcmbox_sensor_id[edata->sensor], &val)) return; edata->value_cur = val * 1000 + 273150000; edata->state = ENVSYS_SVALID; } }