/* $NetBSD: fpu_emulate.h,v 1.26 2016/12/06 05:58:19 isaki Exp $ */ /* * Copyright (c) 1995 Gordon Ross * Copyright (c) 1995 Ken Nakata * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * 4. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Gordon Ross * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _FPU_EMULATE_H_ #define _FPU_EMULATE_H_ #include #include #include #include #include #include /* * Floating point emulator (tailored for SPARC/modified for m68k, but * structurally machine-independent). * * Floating point numbers are carried around internally in an `expanded' * or `unpacked' form consisting of: * - sign * - unbiased exponent * - mantissa (`1.' + 80-bit fraction + guard + round) * - sticky bit * Any implied `1' bit is inserted, giving a 81-bit mantissa that is * always nonzero. Additional low-order `guard' and `round' bits are * scrunched in, making the entire mantissa 83 bits long. This is divided * into three 32-bit words, with `spare' bits left over in the upper part * of the top word (the high bits of fp_mant[0]). An internal `exploded' * number is thus kept within the half-open interval [1.0,2.0) (but see * the `number classes' below). This holds even for denormalized numbers: * when we explode an external denorm, we normalize it, introducing low-order * zero bits, so that the rest of the code always sees normalized values. * * Note that a number of our algorithms use the `spare' bits at the top. * The most demanding algorithm---the one for sqrt---depends on two such * bits, so that it can represent values up to (but not including) 8.0, * and then it needs a carry on top of that, so that we need three `spares'. * * The sticky-word is 32 bits so that we can use `OR' operators to goosh * whole words from the mantissa into it. * * All operations are done in this internal extended precision. According * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is, * it is OK to do a+b in extended precision and then round the result to * single precision---provided single, double, and extended precisions are * `far enough apart' (they always are), but we will try to avoid any such * extra work where possible. */ struct fpn { int fp_class; /* see below */ int fp_sign; /* 0 => positive, 1 => negative */ int fp_exp; /* exponent (unbiased) */ int fp_sticky; /* nonzero bits lost at right end */ uint32_t fp_mant[3]; /* 83-bit mantissa */ }; #define FP_NMANT 83 /* total bits in mantissa (incl g,r) */ #define FP_NG 2 /* number of low-order guard bits */ #define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */ #define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */ #define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */ #define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */ static inline void CPYFPN(struct fpn *, const struct fpn *); static inline void CPYFPN(struct fpn *dst, const struct fpn *src) { if (dst != src) { *dst = *src; } } /* * Number classes. Since zero, Inf, and NaN cannot be represented using * the above layout, we distinguish these from other numbers via a class. */ #define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */ #define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */ #define FPC_ZERO 0 /* zero (sign matters) */ #define FPC_NUM 1 /* number (sign matters) */ #define FPC_INF 2 /* infinity (sign matters) */ #define ISNAN(fp) ((fp)->fp_class < 0) #define ISZERO(fp) ((fp)->fp_class == 0) #define ISINF(fp) ((fp)->fp_class == FPC_INF) /* * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points * to the `more significant' operand for our purposes. Appendix N says that * the result of a computation involving two numbers are: * * If both are SNaN: operand 2, converted to Quiet * If only one is SNaN: the SNaN operand, converted to Quiet * If both are QNaN: operand 2 * If only one is QNaN: the QNaN operand * * In addition, in operations with an Inf operand, the result is usually * Inf. The class numbers are carefully arranged so that if * (unsigned)class(op1) > (unsigned)class(op2) * then op1 is the one we want; otherwise op2 is the one we want. */ #define ORDER(x, y) { \ if ((uint32_t)(x)->fp_class > (uint32_t)(y)->fp_class) \ SWAP(x, y); \ } #define SWAP(x, y) { \ struct fpn *swap; \ swap = (x), (x) = (y), (y) = swap; \ } /* * Emulator state. */ struct fpemu { struct frame *fe_frame; /* integer regs, etc */ struct fpframe *fe_fpframe; /* FP registers, etc */ uint32_t fe_fpsr; /* fpsr copy (modified during op) */ uint32_t fe_fpcr; /* fpcr copy */ struct fpn fe_f1; /* operand 1 */ struct fpn fe_f2; /* operand 2, if required */ struct fpn fe_f3; /* available storage for result */ }; /***************************************************************************** * End of definitions derived from Sparc FPE *****************************************************************************/ /* * Internal info about a decoded effective address. */ struct insn_ea { int ea_regnum; int ea_ext[3]; /* extension words if any */ int ea_flags; /* flags == 0 means mode 2: An@ */ #define EA_DIRECT 0x001 /* mode [01]: Dn or An */ #define EA_PREDECR 0x002 /* mode 4: An@- */ #define EA_POSTINCR 0x004 /* mode 3: An@+ */ #define EA_OFFSET 0x008 /* mode 5 or (7,2): APC@(d16) */ #define EA_INDEXED 0x010 /* mode 6 or (7,3): APC@(Xn:*:*,d8) etc */ #define EA_ABS 0x020 /* mode (7,[01]): abs */ #define EA_PC_REL 0x040 /* mode (7,[23]): PC@(d16) etc */ #define EA_IMMED 0x080 /* mode (7,4): #immed */ #define EA_MEM_INDIR 0x100 /* mode 6 or (7,3): APC@(Xn:*:*,*)@(*) etc */ #define EA_BASE_SUPPRSS 0x200 /* mode 6 or (7,3): base register suppressed */ #define EA_FRAME_EA 0x400 /* MC68LC040 only: precalculated EA from format 4 stack frame */ int ea_moffs; /* offset used for fmoveMulti */ }; #define ea_offset ea_ext[0] /* mode 5: offset word */ #define ea_absaddr ea_ext[0] /* mode (7,[01]): absolute address */ #define ea_immed ea_ext /* mode (7,4): immediate value */ #define ea_basedisp ea_ext[0] /* mode 6: base displacement */ #define ea_outerdisp ea_ext[1] /* mode 6: outer displacement */ #define ea_idxreg ea_ext[2] /* mode 6: index register number */ #define ea_fea ea_ext[0] /* MC68LC040 only: frame EA */ struct instruction { uint32_t is_pc; /* insn's address */ uint32_t is_nextpc; /* next PC */ int is_advance; /* length of instruction */ int is_datasize; /* size of memory operand */ int is_opcode; /* opcode word */ int is_word1; /* second word */ struct insn_ea is_ea; /* decoded effective address mode */ }; /* * FP data types */ #define FTYPE_LNG 0 /* Long Word Integer */ #define FTYPE_SNG 1 /* Single Prec */ #define FTYPE_EXT 2 /* Extended Prec */ #define FTYPE_BCD 3 /* Packed BCD */ #define FTYPE_WRD 4 /* Word Integer */ #define FTYPE_DBL 5 /* Double Prec */ #define FTYPE_BYT 6 /* Byte Integer */ /* * Other functions. */ /* Build a new Quiet NaN (sign=0, frac=all 1's). */ struct fpn *fpu_newnan(struct fpemu *); /* * Shift a number right some number of bits, taking care of round/sticky. * Note that the result is probably not a well-formed number (it will lack * the normal 1-bit mant[0]&FP_1). */ int fpu_shr(struct fpn *, int); /* * Round a number according to the round mode in FPCR */ int fpu_round(struct fpemu *, struct fpn *); /* type conversion */ void fpu_explode(struct fpemu *, struct fpn *, int t, const uint32_t *); void fpu_implode(struct fpemu *, struct fpn *, int t, uint32_t *); /* * non-static emulation functions */ /* type 0 */ int fpu_emul_fmovecr(struct fpemu *, struct instruction *); int fpu_emul_fstore(struct fpemu *, struct instruction *); int fpu_emul_fscale(struct fpemu *, struct instruction *); /* * include function declarations of those which are called by fpu_emul_arith() */ #include "fpu_arith_proto.h" int fpu_emulate(struct frame *, struct fpframe *, ksiginfo_t *); struct fpn *fpu_cmp(struct fpemu *); /* fpu_cordic.c */ extern const struct fpn fpu_cordic_inv_gain1; void fpu_cordit1(struct fpemu *, struct fpn *, struct fpn *, struct fpn *, const struct fpn *); /* * "helper" functions */ /* return values from constant rom */ struct fpn *fpu_const(struct fpn *, uint32_t); #define FPU_CONST_PI (0x00) /* pi */ #define FPU_CONST_0 (0x0f) /* 0.0 */ #define FPU_CONST_LN_2 (0x30) /* ln(2) */ #define FPU_CONST_LN_10 (0x31) /* ln(10) */ #define FPU_CONST_1 (0x32) /* 1.0 */ /* update exceptions and FPSR */ int fpu_upd_excp(struct fpemu *); uint32_t fpu_upd_fpsr(struct fpemu *, struct fpn *); /* address mode decoder, and load/store */ int fpu_decode_ea(struct frame *, struct instruction *, struct insn_ea *, int); int fpu_load_ea(struct frame *, struct instruction *, struct insn_ea *, char *); int fpu_store_ea(struct frame *, struct instruction *, struct insn_ea *, char *); /* fpu_subr.c */ void fpu_norm(struct fpn *); #if !defined(FPE_DEBUG) # define FPE_DEBUG 0 #endif #endif /* _FPU_EMULATE_H_ */