/* $NetBSD: snapper.c,v 1.41.6.1 2018/02/04 12:43:57 martin Exp $ */ /* Id: snapper.c,v 1.11 2002/10/31 17:42:13 tsubai Exp */ /* Id: i2s.c,v 1.12 2005/01/15 14:32:35 tsubai Exp */ /*- * Copyright (c) 2002, 2003 Tsubai Masanari. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Datasheet is available from * http://www.ti.com/sc/docs/products/analog/tas3004.html * http://www.ti.com/sc/docs/products/analog/tas3001.html */ #include __KERNEL_RCSID(0, "$NetBSD: snapper.c,v 1.41.6.1 2018/02/04 12:43:57 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef SNAPPER_DEBUG # define DPRINTF printf #else # define DPRINTF while (0) printf #endif #define SNAPPER_MAXPAGES 16 struct snapper_softc { device_t sc_dev; int sc_mode; // 0 for TAS3004 #define SNAPPER_IS_TAS3001 1 // codec is TAS3001 #define SNAPPER_SWVOL 2 // software codec int sc_node; struct audio_encoding_set *sc_encodings; void (*sc_ointr)(void *); /* dma completion intr handler */ void *sc_oarg; /* arg for sc_ointr() */ int sc_opages; /* # of output pages */ void (*sc_iintr)(void *); /* dma completion intr handler */ void *sc_iarg; /* arg for sc_iintr() */ int sc_ipages; /* # of input pages */ u_int sc_record_source; /* recording source mask */ u_int sc_output_mask; /* output source mask */ bus_space_tag_t sc_tag; bus_space_handle_t sc_bsh; i2c_addr_t sc_deqaddr; i2c_tag_t sc_i2c; uint32_t sc_baseaddr; int sc_rate; /* current sampling rate */ int sc_bitspersample; int sc_swvol; u_int sc_vol_l; u_int sc_vol_r; u_int sc_treble; u_int sc_bass; u_int mixer[6]; /* s1_l, s2_l, an_l, s1_r, s2_r, an_r */ bus_space_handle_t sc_odmah; bus_space_handle_t sc_idmah; dbdma_regmap_t *sc_odma; dbdma_regmap_t *sc_idma; unsigned char dbdma_cmdspace[sizeof(struct dbdma_command) * 40 + 15]; struct dbdma_command *sc_odmacmd; struct dbdma_command *sc_idmacmd; kmutex_t sc_lock; kmutex_t sc_intr_lock; }; static int snapper_match(device_t, struct cfdata *, void *); static void snapper_attach(device_t, device_t, void *); static void snapper_defer(device_t); static int snapper_intr(void *); static int snapper_query_encoding(void *, struct audio_encoding *); static int snapper_set_params(void *, int, int, audio_params_t *, audio_params_t *, stream_filter_list_t *, stream_filter_list_t *); static int snapper_round_blocksize(void *, int, int, const audio_params_t *); static int snapper_halt_output(void *); static int snapper_halt_input(void *); static int snapper_getdev(void *, struct audio_device *); static int snapper_set_port(void *, mixer_ctrl_t *); static int snapper_get_port(void *, mixer_ctrl_t *); static int snapper_query_devinfo(void *, mixer_devinfo_t *); static size_t snapper_round_buffersize(void *, int, size_t); static paddr_t snapper_mappage(void *, void *, off_t, int); static int snapper_get_props(void *); static int snapper_trigger_output(void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); static int snapper_trigger_input(void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); static void snapper_get_locks(void *, kmutex_t **, kmutex_t **); static void snapper_set_volume(struct snapper_softc *, u_int, u_int); static int snapper_set_rate(struct snapper_softc *); static void snapper_set_treble(struct snapper_softc *, u_int); static void snapper_set_bass(struct snapper_softc *, u_int); static void snapper_write_mixers(struct snapper_softc *); static int tas3004_write(struct snapper_softc *, u_int, const void *); static int gpio_read(char *); static void gpio_write(char *, int); static void snapper_mute_speaker(struct snapper_softc *, int); static void snapper_mute_headphone(struct snapper_softc *, int); static int snapper_cint(void *); static int tas3004_init(struct snapper_softc *); static void snapper_init(struct snapper_softc *, int); struct snapper_codecvar { stream_filter_t base; #ifdef DIAGNOSTIC # define SNAPPER_CODECVAR_MAGIC 0xC0DEC uint32_t magic; #endif // DIAGNOSTIC int16_t rval; // for snapper_fixphase }; static stream_filter_t *snapper_filter_factory (int (*)(struct audio_softc *sc, stream_fetcher_t *, audio_stream_t *, int)); static void snapper_filter_dtor(stream_filter_t *); /* XXX We can't access the hw device softc from our audio * filter -- lame... */ static u_int snapper_vol_l = 128, snapper_vol_r = 128; /* XXX why doesn't auconv define this? */ #define DEFINE_FILTER(name) \ static int \ name##_fetch_to(struct audio_softc *, stream_fetcher_t *, audio_stream_t *, int); \ stream_filter_t * name(struct audio_softc *, \ const audio_params_t *, const audio_params_t *); \ stream_filter_t * \ name(struct audio_softc *sc, const audio_params_t *from, \ const audio_params_t *to) \ { \ return snapper_filter_factory(name##_fetch_to); \ } \ static int \ name##_fetch_to(struct audio_softc *sc, stream_fetcher_t *self, audio_stream_t *dst, int max_used) DEFINE_FILTER(snapper_volume) { stream_filter_t *this; int16_t j; int16_t *wp; int m, err; this = (stream_filter_t *)self; max_used = (max_used + 1) & ~1; if ((err = this->prev->fetch_to(sc, this->prev, this->src, max_used))) return err; m = (dst->end - dst->start) & ~1; m = min(m, max_used); FILTER_LOOP_PROLOGUE(this->src, 2, dst, 2, m) { j = (s[0] << 8 | s[1]); wp = (int16_t *)d; *wp = ((j * snapper_vol_l) / 255); } FILTER_LOOP_EPILOGUE(this->src, dst); return 0; } /* * A hardware bug in the TAS3004 I2S transport * produces phase differences between channels * (left channel appears delayed by one sample). * Fix the phase difference by delaying the right channel * by one sample. */ DEFINE_FILTER(snapper_fixphase) { struct snapper_codecvar *cv = (struct snapper_codecvar *) self; stream_filter_t *this = &cv->base; int err, m; const int16_t *rp; int16_t *wp, rval = cv->rval; #ifdef DIAGNOSTIC if (cv->magic != SNAPPER_CODECVAR_MAGIC) panic("snapper_fixphase"); #endif max_used = (max_used + 3) & ~2; if ((err = this->prev->fetch_to(sc, this->prev, this->src, max_used))) return err; /* work in stereo frames (4 bytes) */ m = (dst->end - dst->start) & ~2; m = min(m, max_used); FILTER_LOOP_PROLOGUE(this->src, 4, dst, 4, m) { rp = (const int16_t *) s; wp = (int16_t *) d; wp[0] = rp[0]; wp[1] = rval; rval = rp[1]; } FILTER_LOOP_EPILOGUE(this->src, dst); cv->rval = rval; return 0; } static stream_filter_t * snapper_filter_factory(int (*fetch_to)(struct audio_softc *sc, stream_fetcher_t *, audio_stream_t *, int)) { struct snapper_codecvar *this; this = malloc(sizeof(*this), M_DEVBUF, M_WAITOK | M_ZERO); this->base.base.fetch_to = fetch_to; this->base.dtor = snapper_filter_dtor; this->base.set_fetcher = stream_filter_set_fetcher; this->base.set_inputbuffer = stream_filter_set_inputbuffer; #ifdef DIAGNOSTIC this->magic = SNAPPER_CODECVAR_MAGIC; #endif return (stream_filter_t *) this; } static void snapper_filter_dtor(stream_filter_t *this) { if (this != NULL) free(this, M_DEVBUF); } CFATTACH_DECL_NEW(snapper, sizeof(struct snapper_softc), snapper_match, snapper_attach, NULL, NULL); const struct audio_hw_if snapper_hw_if = { NULL, NULL, NULL, snapper_query_encoding, snapper_set_params, snapper_round_blocksize, NULL, NULL, NULL, NULL, NULL, snapper_halt_output, snapper_halt_input, NULL, snapper_getdev, NULL, snapper_set_port, snapper_get_port, snapper_query_devinfo, NULL, NULL, snapper_round_buffersize, snapper_mappage, snapper_get_props, snapper_trigger_output, snapper_trigger_input, NULL, snapper_get_locks, }; struct audio_device snapper_device = { "SNAPPER", "", "snapper" }; #define SNAPPER_BASSTAB_0DB 18 const uint8_t snapper_basstab[] = { 0x96, /* -18dB */ 0x94, /* -17dB */ 0x92, /* -16dB */ 0x90, /* -15dB */ 0x8e, /* -14dB */ 0x8c, /* -13dB */ 0x8a, /* -12dB */ 0x88, /* -11dB */ 0x86, /* -10dB */ 0x84, /* -9dB */ 0x82, /* -8dB */ 0x80, /* -7dB */ 0x7e, /* -6dB */ 0x7c, /* -5dB */ 0x7a, /* -4dB */ 0x78, /* -3dB */ 0x76, /* -2dB */ 0x74, /* -1dB */ 0x72, /* 0dB */ 0x6f, /* 1dB */ 0x6d, /* 2dB */ 0x6a, /* 3dB */ 0x67, /* 4dB */ 0x65, /* 5dB */ 0x62, /* 6dB */ 0x5f, /* 7dB */ 0x5b, /* 8dB */ 0x55, /* 9dB */ 0x4f, /* 10dB */ 0x49, /* 11dB */ 0x43, /* 12dB */ 0x3b, /* 13dB */ 0x33, /* 14dB */ 0x29, /* 15dB */ 0x1e, /* 16dB */ 0x11, /* 17dB */ 0x01, /* 18dB */ }; #define SNAPPER_MIXER_GAIN_0DB 36 const uint8_t snapper_mixer_gain[178][3] = { { 0x7f, 0x17, 0xaf }, /* 18.0 dB */ { 0x77, 0xfb, 0xaa }, /* 17.5 dB */ { 0x71, 0x45, 0x75 }, /* 17.0 dB */ { 0x6a, 0xef, 0x5d }, /* 16.5 dB */ { 0x64, 0xf4, 0x03 }, /* 16.0 dB */ { 0x5f, 0x4e, 0x52 }, /* 15.5 dB */ { 0x59, 0xf9, 0x80 }, /* 15.0 dB */ { 0x54, 0xf1, 0x06 }, /* 14.5 dB */ { 0x50, 0x30, 0xa1 }, /* 14.0 dB */ { 0x4b, 0xb4, 0x46 }, /* 13.5 dB */ { 0x47, 0x78, 0x28 }, /* 13.0 dB */ { 0x43, 0x78, 0xb0 }, /* 12.5 dB */ { 0x3f, 0xb2, 0x78 }, /* 12.0 dB */ { 0x3c, 0x22, 0x4c }, /* 11.5 dB */ { 0x38, 0xc5, 0x28 }, /* 11.0 dB */ { 0x35, 0x98, 0x2f }, /* 10.5 dB */ { 0x32, 0x98, 0xb0 }, /* 10.0 dB */ { 0x2f, 0xc4, 0x20 }, /* 9.5 dB */ { 0x2d, 0x18, 0x18 }, /* 9.0 dB */ { 0x2a, 0x92, 0x54 }, /* 8.5 dB */ { 0x28, 0x30, 0xaf }, /* 8.0 dB */ { 0x25, 0xf1, 0x25 }, /* 7.5 dB */ { 0x23, 0xd1, 0xcd }, /* 7.0 dB */ { 0x21, 0xd0, 0xd9 }, /* 6.5 dB */ { 0x1f, 0xec, 0x98 }, /* 6.0 dB */ { 0x1e, 0x23, 0x6d }, /* 5.5 dB */ { 0x1c, 0x73, 0xd5 }, /* 5.0 dB */ { 0x1a, 0xdc, 0x61 }, /* 4.5 dB */ { 0x19, 0x5b, 0xb8 }, /* 4.0 dB */ { 0x17, 0xf0, 0x94 }, /* 3.5 dB */ { 0x16, 0x99, 0xc0 }, /* 3.0 dB */ { 0x15, 0x56, 0x1a }, /* 2.5 dB */ { 0x14, 0x24, 0x8e }, /* 2.0 dB */ { 0x13, 0x04, 0x1a }, /* 1.5 dB */ { 0x11, 0xf3, 0xc9 }, /* 1.0 dB */ { 0x10, 0xf2, 0xb4 }, /* 0.5 dB */ { 0x10, 0x00, 0x00 }, /* 0.0 dB */ { 0x0f, 0x1a, 0xdf }, /* -0.5 dB */ { 0x0e, 0x42, 0x90 }, /* -1.0 dB */ { 0x0d, 0x76, 0x5a }, /* -1.5 dB */ { 0x0c, 0xb5, 0x91 }, /* -2.0 dB */ { 0x0b, 0xff, 0x91 }, /* -2.5 dB */ { 0x0b, 0x53, 0xbe }, /* -3.0 dB */ { 0x0a, 0xb1, 0x89 }, /* -3.5 dB */ { 0x0a, 0x18, 0x66 }, /* -4.0 dB */ { 0x09, 0x87, 0xd5 }, /* -4.5 dB */ { 0x08, 0xff, 0x59 }, /* -5.0 dB */ { 0x08, 0x7e, 0x80 }, /* -5.5 dB */ { 0x08, 0x04, 0xdc }, /* -6.0 dB */ { 0x07, 0x92, 0x07 }, /* -6.5 dB */ { 0x07, 0x25, 0x9d }, /* -7.0 dB */ { 0x06, 0xbf, 0x44 }, /* -7.5 dB */ { 0x06, 0x5e, 0xa5 }, /* -8.0 dB */ { 0x06, 0x03, 0x6e }, /* -8.5 dB */ { 0x05, 0xad, 0x50 }, /* -9.0 dB */ { 0x05, 0x5c, 0x04 }, /* -9.5 dB */ { 0x05, 0x0f, 0x44 }, /* -10.0 dB */ { 0x04, 0xc6, 0xd0 }, /* -10.5 dB */ { 0x04, 0x82, 0x68 }, /* -11.0 dB */ { 0x04, 0x41, 0xd5 }, /* -11.5 dB */ { 0x04, 0x04, 0xde }, /* -12.0 dB */ { 0x03, 0xcb, 0x50 }, /* -12.5 dB */ { 0x03, 0x94, 0xfa }, /* -13.0 dB */ { 0x03, 0x61, 0xaf }, /* -13.5 dB */ { 0x03, 0x31, 0x42 }, /* -14.0 dB */ { 0x03, 0x03, 0x8a }, /* -14.5 dB */ { 0x02, 0xd8, 0x62 }, /* -15.0 dB */ { 0x02, 0xaf, 0xa3 }, /* -15.5 dB */ { 0x02, 0x89, 0x2c }, /* -16.0 dB */ { 0x02, 0x64, 0xdb }, /* -16.5 dB */ { 0x02, 0x42, 0x93 }, /* -17.0 dB */ { 0x02, 0x22, 0x35 }, /* -17.5 dB */ { 0x02, 0x03, 0xa7 }, /* -18.0 dB */ { 0x01, 0xe6, 0xcf }, /* -18.5 dB */ { 0x01, 0xcb, 0x94 }, /* -19.0 dB */ { 0x01, 0xb1, 0xde }, /* -19.5 dB */ { 0x01, 0x99, 0x99 }, /* -20.0 dB */ { 0x01, 0x82, 0xaf }, /* -20.5 dB */ { 0x01, 0x6d, 0x0e }, /* -21.0 dB */ { 0x01, 0x58, 0xa2 }, /* -21.5 dB */ { 0x01, 0x45, 0x5b }, /* -22.0 dB */ { 0x01, 0x33, 0x28 }, /* -22.5 dB */ { 0x01, 0x21, 0xf9 }, /* -23.0 dB */ { 0x01, 0x11, 0xc0 }, /* -23.5 dB */ { 0x01, 0x02, 0x70 }, /* -24.0 dB */ { 0x00, 0xf3, 0xfb }, /* -24.5 dB */ { 0x00, 0xe6, 0x55 }, /* -25.0 dB */ { 0x00, 0xd9, 0x73 }, /* -25.5 dB */ { 0x00, 0xcd, 0x49 }, /* -26.0 dB */ { 0x00, 0xc1, 0xcd }, /* -26.5 dB */ { 0x00, 0xb6, 0xf6 }, /* -27.0 dB */ { 0x00, 0xac, 0xba }, /* -27.5 dB */ { 0x00, 0xa3, 0x10 }, /* -28.0 dB */ { 0x00, 0x99, 0xf1 }, /* -28.5 dB */ { 0x00, 0x91, 0x54 }, /* -29.0 dB */ { 0x00, 0x89, 0x33 }, /* -29.5 dB */ { 0x00, 0x81, 0x86 }, /* -30.0 dB */ { 0x00, 0x7a, 0x48 }, /* -30.5 dB */ { 0x00, 0x73, 0x70 }, /* -31.0 dB */ { 0x00, 0x6c, 0xfb }, /* -31.5 dB */ { 0x00, 0x66, 0xe3 }, /* -32.0 dB */ { 0x00, 0x61, 0x21 }, /* -32.5 dB */ { 0x00, 0x5b, 0xb2 }, /* -33.0 dB */ { 0x00, 0x56, 0x91 }, /* -33.5 dB */ { 0x00, 0x51, 0xb9 }, /* -34.0 dB */ { 0x00, 0x4d, 0x27 }, /* -34.5 dB */ { 0x00, 0x48, 0xd6 }, /* -35.0 dB */ { 0x00, 0x44, 0xc3 }, /* -35.5 dB */ { 0x00, 0x40, 0xea }, /* -36.0 dB */ { 0x00, 0x3d, 0x49 }, /* -36.5 dB */ { 0x00, 0x39, 0xdb }, /* -37.0 dB */ { 0x00, 0x36, 0x9e }, /* -37.5 dB */ { 0x00, 0x33, 0x90 }, /* -38.0 dB */ { 0x00, 0x30, 0xae }, /* -38.5 dB */ { 0x00, 0x2d, 0xf5 }, /* -39.0 dB */ { 0x00, 0x2b, 0x63 }, /* -39.5 dB */ { 0x00, 0x28, 0xf5 }, /* -40.0 dB */ { 0x00, 0x26, 0xab }, /* -40.5 dB */ { 0x00, 0x24, 0x81 }, /* -41.0 dB */ { 0x00, 0x22, 0x76 }, /* -41.5 dB */ { 0x00, 0x20, 0x89 }, /* -42.0 dB */ { 0x00, 0x1e, 0xb7 }, /* -42.5 dB */ { 0x00, 0x1c, 0xff }, /* -43.0 dB */ { 0x00, 0x1b, 0x60 }, /* -43.5 dB */ { 0x00, 0x19, 0xd8 }, /* -44.0 dB */ { 0x00, 0x18, 0x65 }, /* -44.5 dB */ { 0x00, 0x17, 0x08 }, /* -45.0 dB */ { 0x00, 0x15, 0xbe }, /* -45.5 dB */ { 0x00, 0x14, 0x87 }, /* -46.0 dB */ { 0x00, 0x13, 0x61 }, /* -46.5 dB */ { 0x00, 0x12, 0x4b }, /* -47.0 dB */ { 0x00, 0x11, 0x45 }, /* -47.5 dB */ { 0x00, 0x10, 0x4e }, /* -48.0 dB */ { 0x00, 0x0f, 0x64 }, /* -48.5 dB */ { 0x00, 0x0e, 0x88 }, /* -49.0 dB */ { 0x00, 0x0d, 0xb8 }, /* -49.5 dB */ { 0x00, 0x0c, 0xf3 }, /* -50.0 dB */ { 0x00, 0x0c, 0x3a }, /* -50.5 dB */ { 0x00, 0x0b, 0x8b }, /* -51.0 dB */ { 0x00, 0x0a, 0xe5 }, /* -51.5 dB */ { 0x00, 0x0a, 0x49 }, /* -52.0 dB */ { 0x00, 0x09, 0xb6 }, /* -52.5 dB */ { 0x00, 0x09, 0x2b }, /* -53.0 dB */ { 0x00, 0x08, 0xa8 }, /* -53.5 dB */ { 0x00, 0x08, 0x2c }, /* -54.0 dB */ { 0x00, 0x07, 0xb7 }, /* -54.5 dB */ { 0x00, 0x07, 0x48 }, /* -55.0 dB */ { 0x00, 0x06, 0xe0 }, /* -55.5 dB */ { 0x00, 0x06, 0x7d }, /* -56.0 dB */ { 0x00, 0x06, 0x20 }, /* -56.5 dB */ { 0x00, 0x05, 0xc9 }, /* -57.0 dB */ { 0x00, 0x05, 0x76 }, /* -57.5 dB */ { 0x00, 0x05, 0x28 }, /* -58.0 dB */ { 0x00, 0x04, 0xde }, /* -58.5 dB */ { 0x00, 0x04, 0x98 }, /* -59.0 dB */ { 0x00, 0x04, 0x56 }, /* -59.5 dB */ { 0x00, 0x04, 0x18 }, /* -60.0 dB */ { 0x00, 0x03, 0xdd }, /* -60.5 dB */ { 0x00, 0x03, 0xa6 }, /* -61.0 dB */ { 0x00, 0x03, 0x72 }, /* -61.5 dB */ { 0x00, 0x03, 0x40 }, /* -62.0 dB */ { 0x00, 0x03, 0x12 }, /* -62.5 dB */ { 0x00, 0x02, 0xe6 }, /* -63.0 dB */ { 0x00, 0x02, 0xbc }, /* -63.5 dB */ { 0x00, 0x02, 0x95 }, /* -64.0 dB */ { 0x00, 0x02, 0x70 }, /* -64.5 dB */ { 0x00, 0x02, 0x4d }, /* -65.0 dB */ { 0x00, 0x02, 0x2c }, /* -65.5 dB */ { 0x00, 0x02, 0x0d }, /* -66.0 dB */ { 0x00, 0x01, 0xf0 }, /* -66.5 dB */ { 0x00, 0x01, 0xd4 }, /* -67.0 dB */ { 0x00, 0x01, 0xba }, /* -67.5 dB */ { 0x00, 0x01, 0xa1 }, /* -68.0 dB */ { 0x00, 0x01, 0x8a }, /* -68.5 dB */ { 0x00, 0x01, 0x74 }, /* -69.0 dB */ { 0x00, 0x01, 0x5f }, /* -69.5 dB */ { 0x00, 0x01, 0x4b }, /* -70.0 dB */ { 0x00, 0x00, 0x00 } /* Mute */ }; #define SNAPPER_NFORMATS 2 static const struct audio_format snapper_formats[SNAPPER_NFORMATS] = { {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16, 2, AUFMT_STEREO, 3, {32000, 44100, 48000}}, {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 24, 24, 2, AUFMT_STEREO, 3, {32000, 44100, 48000}}, }; #define TUMBLER_NFORMATS 1 static const struct audio_format tumbler_formats[TUMBLER_NFORMATS] = { {NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_BE, 16, 16, 2, AUFMT_STEREO, 4, {32000, 44100, 48000, 96000}}, }; static u_char *amp_mute; static u_char *headphone_mute; static u_char *audio_hw_reset; static u_char *headphone_detect; static int headphone_detect_active; /* I2S registers */ #define I2S_INT 0x00 #define I2S_FORMAT 0x10 #define I2S_FRAMECOUNT 0x40 #define I2S_FRAMEMATCH 0x50 #define I2S_WORDSIZE 0x60 /* I2S_INT register definitions */ #define I2S_INT_CLKSTOPPEND 0x01000000 /* clock-stop interrupt pending */ /* FCR(0x3c) bits */ #define KEYLARGO_FCR1 0x3c #define I2S0CLKEN 0x1000 #define I2S0EN 0x2000 #define I2S1CLKEN 0x080000 #define I2S1EN 0x100000 #define FCR3C_BITMASK "\020\25I2S1EN\24I2S1CLKEN\16I2S0EN\15I2S0CLKEN" /* TAS3004/TAS3001 registers */ #define DEQ_MCR1 0x01 /* Main control register 1 (1byte) */ #define DEQ_DRC 0x02 /* Dynamic range compression (6bytes?) 2 bytes (reserved) on the TAS 3001 */ #define DEQ_VOLUME 0x04 /* Volume (6bytes) */ #define DEQ_TREBLE 0x05 /* Treble control (1byte) */ #define DEQ_BASS 0x06 /* Bass control (1byte) */ #define DEQ_MIXER_L 0x07 /* Mixer left gain (9bytes; 3 on TAS3001) */ #define DEQ_MIXER_R 0x08 /* Mixer right gain (9bytes; 3 on TAS3001) */ #define DEQ_LB0 0x0a /* Left biquad 0 (15bytes) */ #define DEQ_LB1 0x0b /* Left biquad 1 (15bytes) */ #define DEQ_LB2 0x0c /* Left biquad 2 (15bytes) */ #define DEQ_LB3 0x0d /* Left biquad 3 (15bytes) */ #define DEQ_LB4 0x0e /* Left biquad 4 (15bytes) */ #define DEQ_LB5 0x0f /* Left biquad 5 (15bytes) */ #define DEQ_LB6 0x10 /* Left biquad 6 (15bytes) */ #define DEQ_RB0 0x13 /* Right biquad 0 (15bytes) */ #define DEQ_RB1 0x14 /* Right biquad 1 (15bytes) */ #define DEQ_RB2 0x15 /* Right biquad 2 (15bytes) */ #define DEQ_RB3 0x16 /* Right biquad 3 (15bytes) */ #define DEQ_RB4 0x17 /* Right biquad 4 (15bytes) */ #define DEQ_RB5 0x18 /* Right biquad 5 (15bytes) */ #define DEQ_RB6 0x19 /* Right biquad 6 (15bytes) */ #define DEQ_LLB 0x21 /* Left loudness biquad (15bytes) */ #define DEQ_RLB 0x22 /* Right loudness biquad (15bytes) */ #define DEQ_LLB_GAIN 0x23 /* Left loudness biquad gain (3bytes) */ #define DEQ_RLB_GAIN 0x24 /* Right loudness biquad gain (3bytes) */ #define DEQ_ACR 0x40 /* [TAS3004] Analog control register (1byte) */ #define DEQ_MCR2 0x43 /* [TAS3004] Main control register 2 (1byte) */ #define DEQ_MCR1_FL 0x80 /* Fast load */ #define DEQ_MCR1_SC 0x40 /* SCLK frequency */ #define DEQ_MCR1_SC_32 0x00 /* 32fs */ #define DEQ_MCR1_SC_64 0x40 /* 64fs */ #define DEQ_MCR1_SM 0x30 /* Output serial port mode */ #define DEQ_MCR1_SM_L 0x00 /* Left justified */ #define DEQ_MCR1_SM_R 0x10 /* Right justified */ #define DEQ_MCR1_SM_I2S 0x20 /* I2S */ #define DEQ_MCR1_ISM 0x0c /* [TAS3001] Input serial port mode */ #define DEQ_MCR1_ISM_L 0x00 /* Left justified */ #define DEQ_MCR1_ISM_R 0x04 /* Right justified */ #define DEQ_MCR1_ISM_I2S 0x08 /* I2S */ #define DEQ_MCR1_W 0x03 /* Serial port word length */ #define DEQ_MCR1_W_16 0x00 /* 16 bit */ #define DEQ_MCR1_W_18 0x01 /* 18 bit */ #define DEQ_MCR1_W_20 0x02 /* 20 bit */ #define DEQ_MCR1_W_24 0x03 /* 24 bit */ #define DEQ_MCR2_DL 0x80 /* Download */ #define DEQ_MCR2_AP 0x02 /* All pass mode */ #define DEQ_ACR_ADM 0x80 /* ADC output mode */ #define DEQ_ACR_LRB 0x40 /* Select B input */ #define DEQ_ACR_DM 0x0c /* De-emphasis control */ #define DEQ_ACR_DM_OFF 0x00 /* off */ #define DEQ_ACR_DM_48 0x04 /* fs = 48kHz */ #define DEQ_ACR_DM_44 0x08 /* fs = 44.1kHz */ #define DEQ_ACR_INP 0x02 /* Analog input select */ #define DEQ_ACR_INP_A 0x00 /* A */ #define DEQ_ACR_INP_B 0x02 /* B */ #define DEQ_ACR_APD 0x01 /* Analog power down */ struct tas3004_reg { u_char MCR1[1]; u_char DRC[6]; u_char VOLUME[6]; u_char TREBLE[1]; u_char BASS[1]; u_char MIXER_L[9]; u_char MIXER_R[9]; u_char LB0[15]; u_char LB1[15]; u_char LB2[15]; u_char LB3[15]; u_char LB4[15]; u_char LB5[15]; u_char LB6[15]; u_char RB0[15]; u_char RB1[15]; u_char RB2[15]; u_char RB3[15]; u_char RB4[15]; u_char RB5[15]; u_char RB6[15]; u_char LLB[15]; u_char RLB[15]; u_char LLB_GAIN[3]; u_char RLB_GAIN[3]; u_char ACR[1]; u_char MCR2[1]; }; #define GPIO_OUTSEL 0xf0 /* Output select */ /* 0x00 GPIO bit0 is output 0x10 media-bay power 0x20 reserved 0x30 MPIC */ #define GPIO_ALTOE 0x08 /* Alternate output enable */ /* 0x00 Use DDR 0x08 Use output select */ #define GPIO_DDR 0x04 /* Data direction */ #define GPIO_DDR_OUTPUT 0x04 /* Output */ #define GPIO_DDR_INPUT 0x00 /* Input */ #define GPIO_LEVEL 0x02 /* Pin level (RO) */ #define GPIO_DATA 0x01 /* Data */ static int snapper_match(device_t parent, struct cfdata *match, void *aux) { struct confargs *ca; int soundbus, soundchip, soundcodec; char compat[32]; ca = aux; if (strcmp(ca->ca_name, "i2s") != 0) return 0; if ((soundbus = OF_child(ca->ca_node)) == 0 || (soundchip = OF_child(soundbus)) == 0) return 0; memset(compat, 0, sizeof compat); OF_getprop(soundchip, "compatible", compat, sizeof compat); if (strcmp(compat, "snapper") == 0) return 1; if (strcmp(compat, "tumbler") == 0) return 1; if (strcmp(compat, "AOAKeylargo") == 0) return 1; if (strcmp(compat, "AOAK2") == 0) return 1; if (OF_getprop(soundchip, "platform-tas-codec-ref", &soundcodec, sizeof soundcodec) == sizeof soundcodec) return 1; return 0; } static void snapper_attach(device_t parent, device_t self, void *aux) { struct snapper_softc *sc; struct confargs *ca; int cirq, oirq, iirq, /*cirq_type,*/ oirq_type, iirq_type, soundbus; uint32_t intr[6], reg[6]; char compat[32]; sc = device_private(self); sc->sc_dev = self; ca = aux; soundbus = OF_child(ca->ca_node); memset(compat, 0, sizeof compat); OF_getprop(OF_child(soundbus), "compatible", compat, sizeof compat); if (strcmp(compat, "tumbler") == 0) sc->sc_mode = SNAPPER_IS_TAS3001; if (sc->sc_mode == SNAPPER_IS_TAS3001) { if (auconv_create_encodings(tumbler_formats, TUMBLER_NFORMATS, &sc->sc_encodings) != 0) { aprint_normal("can't create encodings\n"); return; } } else { if (auconv_create_encodings(snapper_formats, SNAPPER_NFORMATS, &sc->sc_encodings) != 0) { aprint_normal("can't create encodings\n"); return; } } sc->sc_odmacmd = dbdma_alloc((SNAPPER_MAXPAGES + 4) * sizeof(struct dbdma_command), NULL); sc->sc_idmacmd = dbdma_alloc((SNAPPER_MAXPAGES + 4) * sizeof(struct dbdma_command), NULL); sc->sc_baseaddr = ca->ca_baseaddr; OF_getprop(soundbus, "reg", reg, sizeof reg); reg[0] += ca->ca_baseaddr; reg[2] += ca->ca_baseaddr; reg[4] += ca->ca_baseaddr; sc->sc_node = ca->ca_node; sc->sc_tag = ca->ca_tag; bus_space_map(sc->sc_tag, reg[0], reg[1], 0, &sc->sc_bsh); bus_space_map(sc->sc_tag, reg[2], reg[3], BUS_SPACE_MAP_LINEAR, &sc->sc_odmah); bus_space_map(sc->sc_tag, reg[4], reg[5], BUS_SPACE_MAP_LINEAR, &sc->sc_idmah); sc->sc_odma = bus_space_vaddr(sc->sc_tag, sc->sc_odmah); sc->sc_idma = bus_space_vaddr(sc->sc_tag, sc->sc_idmah); OF_getprop(soundbus, "interrupts", intr, sizeof intr); cirq = intr[0]; oirq = intr[2]; iirq = intr[4]; /* cirq_type = intr[1] ? IST_LEVEL : IST_EDGE; */ oirq_type = intr[3] ? IST_LEVEL : IST_EDGE; iirq_type = intr[5] ? IST_LEVEL : IST_EDGE; /* intr_establish(cirq, cirq_type, IPL_AUDIO, snapper_intr, sc); */ intr_establish(oirq, oirq_type, IPL_AUDIO, snapper_intr, sc); intr_establish(iirq, iirq_type, IPL_AUDIO, snapper_intr, sc); aprint_normal(": irq %d,%d,%d\n", cirq, oirq, iirq); mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); /* PMF event handler */ pmf_device_register(sc->sc_dev, NULL, NULL); config_defer(self, snapper_defer); } static void snapper_defer(device_t dev) { struct snapper_softc *sc; device_t dv; deviter_t di; struct deq_softc *deq; sc = device_private(dev); for (dv = deviter_first(&di, DEVITER_F_ROOT_FIRST); dv != NULL; dv = deviter_next(&di)) { if (device_is_a(dv, "deq")) { deq = device_private(dv); sc->sc_i2c = deq->sc_i2c; sc->sc_deqaddr = deq->sc_address; } } deviter_release(&di); /* If we don't find a codec, it's not the end of the world; * we can control the volume in software in this case. */ if (sc->sc_i2c == NULL) sc->sc_mode = SNAPPER_SWVOL; switch (sc->sc_mode) { case SNAPPER_SWVOL: aprint_verbose("%s: software codec\n", device_xname(dev)); break; case SNAPPER_IS_TAS3001: aprint_verbose("%s: codec: TAS3001\n", device_xname(dev)); break; case 0: aprint_verbose("%s: codec: TAS3004\n", device_xname(dev)); break; } /* ki2c_setmode(sc->sc_i2c, I2C_STDSUBMODE); */ snapper_init(sc, sc->sc_node); audio_attach_mi(&snapper_hw_if, sc, sc->sc_dev); } static int snapper_intr(void *v) { struct snapper_softc *sc; struct dbdma_command *cmd; int count; int status; sc = v; mutex_spin_enter(&sc->sc_intr_lock); cmd = sc->sc_odmacmd; count = sc->sc_opages; /* Fill used buffer(s). */ while (count-- > 0) { if ((in16rb(&cmd->d_command) & 0x30) == 0x30) { status = in16rb(&cmd->d_status); cmd->d_status = 0; if (status) /* status == 0x8400 */ if (sc->sc_ointr) (*sc->sc_ointr)(sc->sc_oarg); } cmd++; } cmd = sc->sc_idmacmd; count = sc->sc_ipages; while (count-- > 0) { if ((in16rb(&cmd->d_command) & 0x30) == 0x30) { status = in16rb(&cmd->d_status); cmd->d_status = 0; if (status) /* status == 0x8400 */ if (sc->sc_iintr) (*sc->sc_iintr)(sc->sc_iarg); } cmd++; } mutex_spin_exit(&sc->sc_intr_lock); return 1; } static int snapper_query_encoding(void *h, struct audio_encoding *ae) { struct snapper_softc *sc = h; return auconv_query_encoding(sc->sc_encodings, ae); } static int snapper_set_params(void *h, int setmode, int usemode, audio_params_t *play, audio_params_t *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) { struct snapper_softc *sc; audio_params_t *p; stream_filter_list_t *fil = NULL; /* XXX gcc */ int mode; sc = h; p = NULL; /* * This device only has one clock, so make the sample rates match. */ if (play->sample_rate != rec->sample_rate && usemode == (AUMODE_PLAY | AUMODE_RECORD)) { if (setmode == AUMODE_PLAY) { rec->sample_rate = play->sample_rate; setmode |= AUMODE_RECORD; } else if (setmode == AUMODE_RECORD) { play->sample_rate = rec->sample_rate; setmode |= AUMODE_PLAY; } else return EINVAL; } for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; p = mode == AUMODE_PLAY ? play : rec; fil = mode == AUMODE_PLAY ? pfil : rfil; if (sc->sc_mode == SNAPPER_IS_TAS3001) { if (auconv_set_converter(tumbler_formats, TUMBLER_NFORMATS, mode, p, true, fil) < 0) { DPRINTF("snapper_set_params: " "auconv_set_converter failed\n"); return EINVAL; } } else { /* TAS 3004 */ if (auconv_set_converter(snapper_formats, SNAPPER_NFORMATS, mode, p, true, fil) < 0) { DPRINTF("snapper_set_params: " "auconv_set_converter failed\n"); return EINVAL; } } if (fil->req_size > 0) p = &fil->filters[0].param; if (p->precision == 16) { if (sc->sc_mode == SNAPPER_SWVOL) fil->prepend(fil, snapper_volume, p); else if (sc->sc_mode == 0 && p->channels == 2) { /* * Fix phase problems on TAS3004. * This filter must go last on the chain, * so prepend it, not append it. */ fil->prepend(fil, snapper_fixphase, p); } } } /* Set the speed. p points HW encoding. */ if (p) { sc->sc_rate = p->sample_rate; sc->sc_bitspersample = p->precision; } return 0; } static int snapper_round_blocksize(void *h, int size, int mode, const audio_params_t *param) { if (size < NBPG) size = NBPG; return size & ~PGOFSET; } static int snapper_halt_output(void *h) { struct snapper_softc *sc; sc = h; dbdma_stop(sc->sc_odma); dbdma_reset(sc->sc_odma); sc->sc_ointr = NULL; return 0; } static int snapper_halt_input(void *h) { struct snapper_softc *sc; sc = h; dbdma_stop(sc->sc_idma); dbdma_reset(sc->sc_idma); sc->sc_iintr = NULL; return 0; } static int snapper_getdev(void *h, struct audio_device *retp) { *retp = snapper_device; return 0; } enum { SNAPPER_MONITOR_CLASS, SNAPPER_OUTPUT_CLASS, SNAPPER_RECORD_CLASS, SNAPPER_OUTPUT_SELECT, SNAPPER_VOL_OUTPUT, SNAPPER_DIGI1, SNAPPER_DIGI2, SNAPPER_VOL_INPUT, SNAPPER_TREBLE, SNAPPER_BASS, /* From this point, unsupported by the TAS 3001 */ SNAPPER_ANALOG, SNAPPER_INPUT_SELECT, SNAPPER_ENUM_LAST }; static int snapper_set_port(void *h, mixer_ctrl_t *mc) { struct snapper_softc *sc; int l, r; u_char data; DPRINTF("snapper_set_port dev = %d, type = %d\n", mc->dev, mc->type); sc = h; l = mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; r = mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; switch (mc->dev) { case SNAPPER_OUTPUT_SELECT: /* No change necessary? */ if (mc->un.mask == sc->sc_output_mask) return 0; snapper_mute_speaker(sc, 1); snapper_mute_headphone(sc, 1); if (mc->un.mask & 1 << 0) snapper_mute_speaker(sc, 0); if (mc->un.mask & 1 << 1) snapper_mute_headphone(sc, 0); sc->sc_output_mask = mc->un.mask; return 0; case SNAPPER_VOL_OUTPUT: snapper_set_volume(sc, l, r); return 0; case SNAPPER_INPUT_SELECT: if (sc->sc_mode != 0) return ENXIO; /* no change necessary? */ if (mc->un.mask == sc->sc_record_source) return 0; switch (mc->un.mask) { case 1 << 0: /* microphone */ /* Select right channel of B input */ data = DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B; tas3004_write(sc, DEQ_ACR, &data); break; case 1 << 1: /* line in */ /* Select both channels of A input */ data = 0; tas3004_write(sc, DEQ_ACR, &data); break; default: /* invalid argument */ return EINVAL; } sc->sc_record_source = mc->un.mask; return 0; case SNAPPER_VOL_INPUT: /* XXX TO BE DONE */ return 0; case SNAPPER_BASS: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; snapper_set_bass(sc, l); return 0; case SNAPPER_TREBLE: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; snapper_set_treble(sc, l); return 0; case SNAPPER_DIGI1: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; sc->mixer[0] = l; sc->mixer[3] = r; snapper_write_mixers(sc); return 0; case SNAPPER_DIGI2: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; if (sc->sc_mode == SNAPPER_IS_TAS3001) sc->mixer[3] = l; else { sc->mixer[1] = l; sc->mixer[4] = r; } snapper_write_mixers(sc); return 0; case SNAPPER_ANALOG: if (sc->sc_mode != 0) return ENXIO; sc->mixer[2] = l; sc->mixer[5] = r; snapper_write_mixers(sc); return 0; } return ENXIO; } static int snapper_get_port(void *h, mixer_ctrl_t *mc) { struct snapper_softc *sc; DPRINTF("snapper_get_port dev = %d, type = %d\n", mc->dev, mc->type); sc = h; switch (mc->dev) { case SNAPPER_OUTPUT_SELECT: mc->un.mask = sc->sc_output_mask; return 0; case SNAPPER_VOL_OUTPUT: mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_vol_l; mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_vol_r; return 0; case SNAPPER_INPUT_SELECT: if (sc->sc_mode != 0) return ENXIO; mc->un.mask = sc->sc_record_source; return 0; case SNAPPER_VOL_INPUT: /* XXX TO BE DONE */ mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 0; mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 0; return 0; case SNAPPER_TREBLE: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_treble; return 0; case SNAPPER_BASS: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; mc->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_bass; return 0; case SNAPPER_DIGI1: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[0]; mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[3]; return 0; case SNAPPER_DIGI2: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[1]; mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[4]; return 0; case SNAPPER_ANALOG: if (sc->sc_mode != 0) return ENXIO; mc->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->mixer[2]; mc->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->mixer[5]; return 0; default: return ENXIO; } return 0; } static int snapper_query_devinfo(void *h, mixer_devinfo_t *dip) { struct snapper_softc *sc = h; switch (dip->index) { case SNAPPER_OUTPUT_SELECT: dip->mixer_class = SNAPPER_OUTPUT_CLASS; strcpy(dip->label.name, AudioNoutput); dip->type = AUDIO_MIXER_SET; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.s.num_mem = 2; strcpy(dip->un.s.member[0].label.name, AudioNspeaker); dip->un.s.member[0].mask = 1 << 0; strcpy(dip->un.s.member[1].label.name, AudioNheadphone); dip->un.s.member[1].mask = 1 << 1; return 0; case SNAPPER_VOL_OUTPUT: dip->mixer_class = SNAPPER_OUTPUT_CLASS; strcpy(dip->label.name, AudioNmaster); dip->type = AUDIO_MIXER_VALUE; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.v.num_channels = 2; dip->un.v.delta = 16; strcpy(dip->un.v.units.name, AudioNvolume); return 0; case SNAPPER_INPUT_SELECT: if (sc->sc_mode != 0) return ENXIO; dip->mixer_class = SNAPPER_RECORD_CLASS; strcpy(dip->label.name, AudioNsource); dip->type = AUDIO_MIXER_SET; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.s.num_mem = 2; strcpy(dip->un.s.member[0].label.name, AudioNmicrophone); dip->un.s.member[0].mask = 1 << 0; strcpy(dip->un.s.member[1].label.name, AudioNline); dip->un.s.member[1].mask = 1 << 1; return 0; case SNAPPER_VOL_INPUT: dip->mixer_class = SNAPPER_RECORD_CLASS; strcpy(dip->label.name, AudioNrecord); dip->type = AUDIO_MIXER_VALUE; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); return 0; case SNAPPER_MONITOR_CLASS: dip->mixer_class = SNAPPER_MONITOR_CLASS; strcpy(dip->label.name, AudioCmonitor); dip->type = AUDIO_MIXER_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; return 0; case SNAPPER_OUTPUT_CLASS: dip->mixer_class = SNAPPER_OUTPUT_CLASS; strcpy(dip->label.name, AudioCoutputs); dip->type = AUDIO_MIXER_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; return 0; case SNAPPER_RECORD_CLASS: dip->mixer_class = SNAPPER_RECORD_CLASS; strcpy(dip->label.name, AudioCrecord); dip->type = AUDIO_MIXER_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; return 0; case SNAPPER_TREBLE: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; dip->mixer_class = SNAPPER_OUTPUT_CLASS; strcpy(dip->label.name, AudioNtreble); dip->type = AUDIO_MIXER_VALUE; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.v.num_channels = 1; return 0; case SNAPPER_BASS: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; dip->mixer_class = SNAPPER_OUTPUT_CLASS; strcpy(dip->label.name, AudioNbass); dip->type = AUDIO_MIXER_VALUE; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.v.num_channels = 1; return 0; case SNAPPER_DIGI1: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; dip->mixer_class = SNAPPER_OUTPUT_CLASS; strcpy(dip->label.name, AudioNdac); dip->type = AUDIO_MIXER_VALUE; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.v.num_channels = sc->sc_mode == SNAPPER_IS_TAS3001? 1 : 2; return 0; case SNAPPER_DIGI2: if (sc->sc_mode == SNAPPER_SWVOL) return ENXIO; dip->mixer_class = SNAPPER_OUTPUT_CLASS; strcpy(dip->label.name, AudioNline); dip->type = AUDIO_MIXER_VALUE; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.v.num_channels = sc->sc_mode == SNAPPER_IS_TAS3001? 1 : 2; return 0; case SNAPPER_ANALOG: if (sc->sc_mode != 0) return ENXIO; dip->mixer_class = SNAPPER_MONITOR_CLASS; strcpy(dip->label.name, AudioNmicrophone); dip->type = AUDIO_MIXER_VALUE; dip->prev = dip->next = AUDIO_MIXER_LAST; dip->un.v.num_channels = 2; return 0; } return ENXIO; } static size_t snapper_round_buffersize(void *h, int dir, size_t size) { if (size > 65536) size = 65536; return size; } static paddr_t snapper_mappage(void *h, void *mem, off_t off, int prot) { if (off < 0) return -1; return -1; /* XXX */ } static int snapper_get_props(void *h) { return AUDIO_PROP_FULLDUPLEX /* | AUDIO_PROP_MMAP */; } static int snapper_trigger_output(void *h, void *start, void *end, int bsize, void (*intr)(void *), void *arg, const audio_params_t *param) { struct snapper_softc *sc; struct dbdma_command *cmd; vaddr_t va; int i, len, intmode; int res; DPRINTF("trigger_output %p %p 0x%x\n", start, end, bsize); sc = h; if ((res = snapper_set_rate(sc)) != 0) return res; cmd = sc->sc_odmacmd; sc->sc_ointr = intr; sc->sc_oarg = arg; sc->sc_opages = ((char *)end - (char *)start) / NBPG; #ifdef DIAGNOSTIC if (sc->sc_opages > SNAPPER_MAXPAGES) panic("snapper_trigger_output"); #endif va = (vaddr_t)start; len = 0; for (i = sc->sc_opages; i > 0; i--) { len += NBPG; if (len < bsize) intmode = 0; else { len = 0; intmode = DBDMA_INT_ALWAYS; } DBDMA_BUILD(cmd, DBDMA_CMD_OUT_MORE, 0, NBPG, vtophys(va), intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); cmd++; va += NBPG; } DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0, 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER, DBDMA_BRANCH_ALWAYS); out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_odmacmd)); dbdma_start(sc->sc_odma, sc->sc_odmacmd); return 0; } static int snapper_trigger_input(void *h, void *start, void *end, int bsize, void (*intr)(void *), void *arg, const audio_params_t *param) { struct snapper_softc *sc; struct dbdma_command *cmd; vaddr_t va; int i, len, intmode; int res; DPRINTF("trigger_input %p %p 0x%x\n", start, end, bsize); sc = h; if ((res = snapper_set_rate(sc)) != 0) return res; cmd = sc->sc_idmacmd; sc->sc_iintr = intr; sc->sc_iarg = arg; sc->sc_ipages = ((char *)end - (char *)start) / NBPG; #ifdef DIAGNOSTIC if (sc->sc_ipages > SNAPPER_MAXPAGES) panic("snapper_trigger_input"); #endif va = (vaddr_t)start; len = 0; for (i = sc->sc_ipages; i > 0; i--) { len += NBPG; if (len < bsize) intmode = 0; else { len = 0; intmode = DBDMA_INT_ALWAYS; } DBDMA_BUILD(cmd, DBDMA_CMD_IN_MORE, 0, NBPG, vtophys(va), intmode, DBDMA_WAIT_NEVER, DBDMA_BRANCH_NEVER); cmd++; va += NBPG; } DBDMA_BUILD(cmd, DBDMA_CMD_NOP, 0, 0, 0/*vtophys((vaddr_t)sc->sc_odmacmd)*/, 0, DBDMA_WAIT_NEVER, DBDMA_BRANCH_ALWAYS); out32rb(&cmd->d_cmddep, vtophys((vaddr_t)sc->sc_idmacmd)); dbdma_start(sc->sc_idma, sc->sc_idmacmd); return 0; } static void snapper_get_locks(void *opaque, kmutex_t **intr, kmutex_t **thread) { struct snapper_softc *sc = opaque; *intr = &sc->sc_intr_lock; *thread = &sc->sc_lock; } static void snapper_set_volume(struct snapper_softc *sc, u_int left, u_int right) { u_char regs[6]; int l, r; left = min(255, left); right = min(255, right); if (sc->sc_mode == SNAPPER_SWVOL) { snapper_vol_l = left; snapper_vol_r = right; } else { /* * for some insane reason the gain table for master volume and the * mixer channels is almost identical - just shifted by 4 bits * so we use the mixer_gain table and bit-twiddle it... */ l = 177 - (left * 178 / 256); regs[0] = (snapper_mixer_gain[l][0] >> 4); regs[1] = ((snapper_mixer_gain[l][0] & 0x0f) << 4) | (snapper_mixer_gain[l][1] >> 4); regs[2] = ((snapper_mixer_gain[l][1] & 0x0f) << 4) | (snapper_mixer_gain[l][2] >> 4); r = 177 - (right * 178 / 256); regs[3] = (snapper_mixer_gain[r][0] >> 4); regs[4] = ((snapper_mixer_gain[r][0] & 0x0f) << 4) | (snapper_mixer_gain[r][1] >> 4); regs[5] = ((snapper_mixer_gain[r][1] & 0x0f) << 4) | (snapper_mixer_gain[r][2] >> 4); tas3004_write(sc, DEQ_VOLUME, regs); DPRINTF("%d %02x %02x %02x : %d %02x %02x %02x\n", l, regs[0], regs[1], regs[2], r, regs[3], regs[4], regs[5]); } sc->sc_vol_l = left; sc->sc_vol_r = right; } static void snapper_set_basstreble(struct snapper_softc *sc, u_int val, u_int mode) { int i = val & 0xFF; uint8_t reg; /* * Make 128 match the 0 dB point */ i = (i - (128 - (SNAPPER_BASSTAB_0DB << 2))) >> 2; if (i < 0) i = 0; else if (i >= sizeof(snapper_basstab)) i = sizeof(snapper_basstab) - 1; reg = snapper_basstab[i]; if (sc->sc_mode == SNAPPER_IS_TAS3001 && mode == DEQ_BASS) { /* * XXX -- The TAS3001 bass table is different * than the other tables. */ reg = (reg >> 1) + 5; // map 0x72 -> 0x3E (0 dB) } tas3004_write(sc, mode, ®); } static void snapper_set_treble(struct snapper_softc *sc, u_int val) { if (sc->sc_treble != (u_char)val) { sc->sc_treble = val; snapper_set_basstreble(sc, val, DEQ_TREBLE); } } static void snapper_set_bass(struct snapper_softc *sc, u_int val) { if (sc->sc_bass != (u_char)val) { sc->sc_bass = val; snapper_set_basstreble(sc, val, DEQ_BASS); } } /* * In the mixer gain setting, make 128 correspond to * the 0dB value from the table. * Note that the table values are complemented. */ #define SNAPPER_MIXER_GAIN_SIZE (sizeof(snapper_mixer_gain) / \ sizeof(snapper_mixer_gain[0])) #define NORMALIZE(i) ((~(i) & 0xff) - ((~128 & 0xff) - SNAPPER_MIXER_GAIN_0DB)) #define ADJUST(v, i) do { \ (v) = NORMALIZE(i);\ if ((v) < 0) \ (v) = 0; \ else if ((v) >= SNAPPER_MIXER_GAIN_SIZE) \ (v) = SNAPPER_MIXER_GAIN_SIZE - 1; \ \ } while (0) static void snapper_write_mixers(struct snapper_softc *sc) { uint8_t regs[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; int i; /* Left channel of SDIN1 */ ADJUST(i, sc->mixer[0]); regs[0] = snapper_mixer_gain[i][0]; regs[1] = snapper_mixer_gain[i][1]; regs[2] = snapper_mixer_gain[i][2]; /* Left channel of SDIN2 */ ADJUST(i, sc->mixer[1]); regs[3] = snapper_mixer_gain[i][0]; regs[4] = snapper_mixer_gain[i][1]; regs[5] = snapper_mixer_gain[i][2]; /* Left channel of analog input */ ADJUST(i, sc->mixer[2]); regs[6] = snapper_mixer_gain[i][0]; regs[7] = snapper_mixer_gain[i][1]; regs[8] = snapper_mixer_gain[i][2]; tas3004_write(sc, DEQ_MIXER_L, regs); /* Right channel of SDIN1 */ ADJUST(i, sc->mixer[3]); regs[0] = snapper_mixer_gain[i][0]; regs[1] = snapper_mixer_gain[i][1]; regs[2] = snapper_mixer_gain[i][2]; /* Right channel of SDIN2 */ ADJUST(i, sc->mixer[4]); regs[3] = snapper_mixer_gain[i][0]; regs[4] = snapper_mixer_gain[i][1]; regs[5] = snapper_mixer_gain[i][2]; /* Right channel of analog input */ ADJUST(i, sc->mixer[5]); regs[6] = snapper_mixer_gain[i][0]; regs[7] = snapper_mixer_gain[i][1]; regs[8] = snapper_mixer_gain[i][2]; tas3004_write(sc, DEQ_MIXER_R, regs); } #define CLKSRC_49MHz 0x80000000 /* Use 49152000Hz Osc. */ #define CLKSRC_45MHz 0x40000000 /* Use 45158400Hz Osc. */ #define CLKSRC_18MHz 0x00000000 /* Use 18432000Hz Osc. */ #define MCLK_DIV 0x1f000000 /* MCLK = SRC / DIV */ #define MCLK_DIV1 0x14000000 /* MCLK = SRC */ #define MCLK_DIV3 0x13000000 /* MCLK = SRC / 3 */ #define MCLK_DIV5 0x12000000 /* MCLK = SRC / 5 */ #define SCLK_DIV 0x00f00000 /* SCLK = MCLK / DIV */ #define SCLK_DIV1 0x00800000 #define SCLK_DIV3 0x00900000 #define SCLK_MASTER 0x00080000 /* Master mode */ #define SCLK_SLAVE 0x00000000 /* Slave mode */ #define SERIAL_FORMAT 0x00070000 #define SERIAL_SONY 0x00000000 #define SERIAL_64x 0x00010000 #define SERIAL_32x 0x00020000 #define SERIAL_DAV 0x00040000 #define SERIAL_SILICON 0x00050000 /* * rate = fs = LRCLK * SCLK = 64*LRCLK (I2S) * MCLK = 256fs (typ. -- changeable) * * MCLK = clksrc / mdiv * SCLK = MCLK / sdiv * rate = SCLK / 64 ( = LRCLK = fs) */ int snapper_set_rate(struct snapper_softc *sc) { u_int reg = 0, x; u_int rate = sc->sc_rate; uint32_t wordsize, ows; int MCLK; int clksrc, mdiv, sdiv; int mclk_fs; int timo; uint8_t mcr1; switch (rate) { case 44100: clksrc = 45158400; /* 45MHz */ reg = CLKSRC_45MHz; mclk_fs = 256; break; case 32000: case 48000: case 96000: clksrc = 49152000; /* 49MHz */ reg = CLKSRC_49MHz; mclk_fs = 256; break; default: DPRINTF("snapper_set_rate: invalid rate %u\n", rate); return EINVAL; } MCLK = rate * mclk_fs; mdiv = clksrc / MCLK; /* 4 */ sdiv = mclk_fs / 64; /* 4 */ switch (mdiv) { case 1: reg |= MCLK_DIV1; break; case 3: reg |= MCLK_DIV3; break; case 5: reg |= MCLK_DIV5; break; default: reg |= ((mdiv / 2 - 1) << 24) & 0x1f000000; break; } switch (sdiv) { case 1: reg |= SCLK_DIV1; break; case 3: reg |= SCLK_DIV3; break; default: reg |= ((sdiv / 2 - 1) << 20) & 0x00f00000; break; } reg |= SCLK_MASTER; /* XXX master mode */ reg |= SERIAL_64x; /* stereo input and output */ DPRINTF("precision: %d\n", sc->sc_bitspersample); switch(sc->sc_bitspersample) { case 16: wordsize = 0x02000200; mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16; break; case 24: wordsize = 0x03000300; mcr1 = DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_24; break; default: printf("%s: unsupported sample size %d\n", device_xname(sc->sc_dev), sc->sc_bitspersample); return EINVAL; } if (sc->sc_mode == SNAPPER_IS_TAS3001) mcr1 |= DEQ_MCR1_ISM_I2S; ows = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE); DPRINTF("I2SSetDataWordSizeReg 0x%08x -> 0x%08x\n", ows, wordsize); if (ows != wordsize) { bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_WORDSIZE, wordsize); if (sc->sc_mode != SNAPPER_SWVOL) tas3004_write(sc, DEQ_MCR1, &mcr1); } x = bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT); if (x == reg) return 0; /* No change; do nothing. */ DPRINTF("I2SSetSerialFormatReg 0x%x -> 0x%x\n", bus_space_read_4(sc->sc_tag, sc->sc_bsh, + I2S_FORMAT), reg); /* Clear CLKSTOPPEND. */ bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_INT, I2S_INT_CLKSTOPPEND); x = obio_read_4(KEYLARGO_FCR1); /* FCR */ x &= ~I2S0CLKEN; /* XXX I2S0 */ obio_write_4(KEYLARGO_FCR1, x); /* Wait until clock is stopped. */ for (timo = 1000; timo > 0; timo--) { if (bus_space_read_4(sc->sc_tag, sc->sc_bsh, I2S_INT) & I2S_INT_CLKSTOPPEND) goto done; delay(1); } DPRINTF("snapper_set_rate: timeout\n"); done: bus_space_write_4(sc->sc_tag, sc->sc_bsh, I2S_FORMAT, reg); x = obio_read_4(KEYLARGO_FCR1); x |= I2S0CLKEN; obio_write_4(KEYLARGO_FCR1, x); return 0; } const struct tas3004_reg tas3004_initdata = { { DEQ_MCR1_SC_64 | DEQ_MCR1_SM_I2S | DEQ_MCR1_W_16 }, /* MCR1 */ { 1, 0, 0, 0, 0, 0 }, /* DRC */ { 0, 0, 0, 0, 0, 0 }, /* VOLUME */ { 0x72 }, /* TREBLE */ { 0x72 }, /* BASS */ { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_L */ { 0x10, 0x00, 0x00, 0, 0, 0, 0, 0, 0 }, /* MIXER_R */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, /* BIQUAD */ { 0, 0, 0 }, /* LLB_GAIN */ { 0, 0, 0 }, /* RLB_GAIN */ { DEQ_ACR_ADM | DEQ_ACR_LRB | DEQ_ACR_INP_B }, /* ACR - right channel of input B is the microphone */ { 2 } /* MCR2 - AllPass mode since we don't use the equalizer anyway */ }; const char tas3004_regsize[] = { 0, /* 0x00 */ sizeof tas3004_initdata.MCR1, /* 0x01 */ sizeof tas3004_initdata.DRC, /* 0x02 */ 0, /* 0x03 */ sizeof tas3004_initdata.VOLUME, /* 0x04 */ sizeof tas3004_initdata.TREBLE, /* 0x05 */ sizeof tas3004_initdata.BASS, /* 0x06 */ sizeof tas3004_initdata.MIXER_L, /* 0x07 */ sizeof tas3004_initdata.MIXER_R, /* 0x08 */ 0, /* 0x09 */ sizeof tas3004_initdata.LB0, /* 0x0a */ sizeof tas3004_initdata.LB1, /* 0x0b */ sizeof tas3004_initdata.LB2, /* 0x0c */ sizeof tas3004_initdata.LB3, /* 0x0d */ sizeof tas3004_initdata.LB4, /* 0x0e */ sizeof tas3004_initdata.LB5, /* 0x0f */ sizeof tas3004_initdata.LB6, /* 0x10 */ 0, /* 0x11 */ 0, /* 0x12 */ sizeof tas3004_initdata.RB0, /* 0x13 */ sizeof tas3004_initdata.RB1, /* 0x14 */ sizeof tas3004_initdata.RB2, /* 0x15 */ sizeof tas3004_initdata.RB3, /* 0x16 */ sizeof tas3004_initdata.RB4, /* 0x17 */ sizeof tas3004_initdata.RB5, /* 0x18 */ sizeof tas3004_initdata.RB6, /* 0x19 */ 0,0,0,0, 0,0, 0, /* 0x20 */ sizeof tas3004_initdata.LLB, /* 0x21 */ sizeof tas3004_initdata.RLB, /* 0x22 */ sizeof tas3004_initdata.LLB_GAIN, /* 0x23 */ sizeof tas3004_initdata.RLB_GAIN, /* 0x24 */ 0,0,0,0, 0,0,0,0, 0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, sizeof tas3004_initdata.ACR, /* 0x40 */ 0, /* 0x41 */ 0, /* 0x42 */ sizeof tas3004_initdata.MCR2 /* 0x43 */ }; static int tas3004_write(struct snapper_softc *sc, u_int reg, const void *data) { int size; static char regblock[sizeof(struct tas3004_reg)+1]; if (sc->sc_i2c == NULL) return 0; KASSERT(reg < sizeof tas3004_regsize); size = tas3004_regsize[reg]; KASSERT(size > 0); DPRINTF("reg: %x, %d %d\n", reg, size, ((const char*)data)[0]); regblock[0] = reg; memcpy(®block[1], data, size); if (sc->sc_mode == SNAPPER_IS_TAS3001) { if (reg == DEQ_MIXER_L || reg == DEQ_MIXER_R) size = 3; else if (reg == DEQ_DRC || reg == DEQ_ACR || reg == DEQ_MCR2) { /* these registers are not available on TAS3001 */ return 0; } } iic_acquire_bus(sc->sc_i2c, 0); iic_exec(sc->sc_i2c, I2C_OP_WRITE, sc->sc_deqaddr, regblock, size + 1, NULL, 0, 0); iic_release_bus(sc->sc_i2c, 0); return 0; } static int gpio_read(char *addr) { if (*addr & GPIO_DATA) return 1; return 0; } static void gpio_write(char *addr, int val) { u_int data; data = GPIO_DDR_OUTPUT; if (val) data |= GPIO_DATA; *addr = data; __asm volatile ("eieio"); } #define headphone_active 0 /* XXX OF */ #define amp_active 0 /* XXX OF */ static void snapper_mute_speaker(struct snapper_softc *sc, int mute) { u_int x; if (amp_mute) { DPRINTF("ampmute %d --> ", gpio_read(amp_mute)); if (mute) x = amp_active; /* mute */ else x = !amp_active; /* unmute */ if (x != gpio_read(amp_mute)) gpio_write(amp_mute, x); DPRINTF("%d\n", gpio_read(amp_mute)); } } static void snapper_mute_headphone(struct snapper_softc *sc, int mute) { u_int x; if (headphone_mute != NULL) { DPRINTF("headphonemute %d --> ", gpio_read(headphone_mute)); if (mute) x = headphone_active; /* mute */ else x = !headphone_active; /* unmute */ if (x != gpio_read(headphone_mute)) gpio_write(headphone_mute, x); DPRINTF("%d\n", gpio_read(headphone_mute)); } } static int snapper_cint(void *v) { struct snapper_softc *sc; u_int sense; if (headphone_detect != NULL) { sc = v; sense = *headphone_detect; DPRINTF("headphone detect = 0x%x\n", sense); if (((sense & 0x02) >> 1) == headphone_detect_active) { DPRINTF("headphone is inserted\n"); snapper_mute_speaker(sc, 1); snapper_mute_headphone(sc, 0); sc->sc_output_mask = 1 << 1; } else { DPRINTF("headphone is NOT inserted\n"); snapper_mute_speaker(sc, 0); snapper_mute_headphone(sc, 1); sc->sc_output_mask = 1 << 0; } } return 1; } #define reset_active 0 /* XXX OF */ #define DEQ_WRITE(sc, reg, addr) \ if (tas3004_write(sc, reg, addr)) goto err static int tas3004_init(struct snapper_softc *sc) { /* No reset port. Nothing to do. */ if (audio_hw_reset == NULL) goto noreset; /* Reset TAS3004. */ gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */ delay(100000); /* XXX Really needed? */ gpio_write(audio_hw_reset, reset_active); /* Assert RESET */ delay(1); gpio_write(audio_hw_reset, !reset_active); /* Negate RESET */ delay(10000); noreset: DEQ_WRITE(sc, DEQ_LB0, tas3004_initdata.LB0); DEQ_WRITE(sc, DEQ_LB1, tas3004_initdata.LB1); DEQ_WRITE(sc, DEQ_LB2, tas3004_initdata.LB2); DEQ_WRITE(sc, DEQ_LB3, tas3004_initdata.LB3); DEQ_WRITE(sc, DEQ_LB4, tas3004_initdata.LB4); DEQ_WRITE(sc, DEQ_LB5, tas3004_initdata.LB5); DEQ_WRITE(sc, DEQ_LB6, tas3004_initdata.LB6); DEQ_WRITE(sc, DEQ_RB0, tas3004_initdata.RB0); DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1); DEQ_WRITE(sc, DEQ_RB1, tas3004_initdata.RB1); DEQ_WRITE(sc, DEQ_RB2, tas3004_initdata.RB2); DEQ_WRITE(sc, DEQ_RB3, tas3004_initdata.RB3); DEQ_WRITE(sc, DEQ_RB4, tas3004_initdata.RB4); DEQ_WRITE(sc, DEQ_RB5, tas3004_initdata.RB5); DEQ_WRITE(sc, DEQ_MCR1, tas3004_initdata.MCR1); DEQ_WRITE(sc, DEQ_MCR2, tas3004_initdata.MCR2); DEQ_WRITE(sc, DEQ_DRC, tas3004_initdata.DRC); DEQ_WRITE(sc, DEQ_VOLUME, tas3004_initdata.VOLUME); DEQ_WRITE(sc, DEQ_TREBLE, tas3004_initdata.TREBLE); DEQ_WRITE(sc, DEQ_BASS, tas3004_initdata.BASS); DEQ_WRITE(sc, DEQ_MIXER_L, tas3004_initdata.MIXER_L); DEQ_WRITE(sc, DEQ_MIXER_R, tas3004_initdata.MIXER_R); DEQ_WRITE(sc, DEQ_LLB, tas3004_initdata.LLB); DEQ_WRITE(sc, DEQ_RLB, tas3004_initdata.RLB); DEQ_WRITE(sc, DEQ_LLB_GAIN, tas3004_initdata.LLB_GAIN); DEQ_WRITE(sc, DEQ_RLB_GAIN, tas3004_initdata.RLB_GAIN); DEQ_WRITE(sc, DEQ_ACR, tas3004_initdata.ACR); return 0; err: printf("tas3004_init: error\n"); return -1; } static void snapper_init(struct snapper_softc *sc, int node) { int gpio; int headphone_detect_intr; uint32_t gpio_base, reg[1]; #ifdef SNAPPER_DEBUG char fcr[32]; snprintb(fcr, sizeof(fcr), FCR3C_BITMASK, obio_read_4(KEYLARGO_FCR1)); printf("FCR(0x3c) %s\n", fcr); #endif headphone_detect_intr = -1; gpio = of_getnode_byname(OF_parent(node), "gpio"); if (OF_getprop(gpio, "reg", reg, sizeof(reg)) == sizeof(reg)) gpio_base = reg[0]; else gpio_base = 0; DPRINTF(" /gpio 0x%x@0x%x\n", (unsigned)gpio, gpio_base); gpio = OF_child(gpio); while (gpio) { char name[64], audio_gpio[64]; int intr[2]; char *addr; memset(name, 0, sizeof name); memset(audio_gpio, 0, sizeof audio_gpio); addr = 0; OF_getprop(gpio, "name", name, sizeof name); OF_getprop(gpio, "audio-gpio", audio_gpio, sizeof audio_gpio); if (OF_getprop(gpio, "AAPL,address", &addr, sizeof addr) == -1) if (OF_getprop(gpio, "reg", reg, sizeof reg) == sizeof reg) addr = (char *)sc->sc_baseaddr + gpio_base + reg[0]; DPRINTF(" 0x%x %s %s\n", gpio, name, audio_gpio); /* gpio5 */ if (strcmp(audio_gpio, "headphone-mute") == 0 || strcmp(name, "headphone-mute") == 0) headphone_mute = addr; /* gpio6 */ if (strcmp(audio_gpio, "amp-mute") == 0 || strcmp(name, "amp-mute") == 0) amp_mute = addr; /* extint-gpio15 */ if (strcmp(audio_gpio, "headphone-detect") == 0 || strcmp(name, "headphone-detect") == 0) { headphone_detect = addr; OF_getprop(gpio, "audio-gpio-active-state", &headphone_detect_active, 4); if (OF_getprop(gpio, "interrupts", intr, 8) == 8) { headphone_detect_intr = intr[0]; } } /* gpio11 (keywest-11) */ if (strcmp(audio_gpio, "audio-hw-reset") == 0 || strcmp(name, "hw-reset") == 0) audio_hw_reset = addr; gpio = OF_peer(gpio); } DPRINTF(" headphone-mute %p\n", headphone_mute); DPRINTF(" amp-mute %p\n", amp_mute); DPRINTF(" headphone-detect %p\n", headphone_detect); DPRINTF(" headphone-detect active %x\n", headphone_detect_active); DPRINTF(" headphone-detect intr %x\n", headphone_detect_intr); DPRINTF(" audio-hw-reset %p\n", audio_hw_reset); if (headphone_detect_intr != -1) intr_establish(headphone_detect_intr, IST_EDGE, IPL_AUDIO, snapper_cint, sc); sc->sc_rate = 44100; /* default rate */ sc->sc_bitspersample = 16; /* Enable headphone interrupt? */ if (headphone_detect != NULL) { *headphone_detect |= 0x80; __asm volatile ("eieio"); } /* i2c_set_port(port); */ if (tas3004_init(sc)) return; /* Update headphone status. */ snapper_cint(sc); snapper_set_volume(sc, 128, 128); snapper_set_bass(sc, 128); snapper_set_treble(sc, 128); /* Record source defaults to microphone. This reflects the * default value for the ACR (see tas3004_initdata). */ sc->sc_record_source = 1 << 0; /* We mute the analog input for now */ sc->mixer[0] = 128; sc->mixer[1] = 128; sc->mixer[2] = 0; sc->mixer[3] = 128; sc->mixer[4] = 128; sc->mixer[5] = 0; snapper_write_mixers(sc); }