/*- * Copyright (c) 2014 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Matt Thomas of 3am Software Foundry. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #define __INTR_PRIVATE #include __KERNEL_RCSID(0, "$NetBSD"); #include "locators.h" #include "cpunode.h" #include "opt_multiprocessor.h" #include "opt_ddb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct cpunode_attach_args { const char *cnaa_name; int cnaa_cpunum; }; struct cpunode_softc { device_t sc_dev; device_t sc_wdog_dev; uint64_t sc_fuse; }; static int cpunode_mainbus_match(device_t, cfdata_t, void *); static void cpunode_mainbus_attach(device_t, device_t, void *); static int cpu_cpunode_match(device_t, cfdata_t, void *); static void cpu_cpunode_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(cpunode, sizeof(struct cpunode_softc), cpunode_mainbus_match, cpunode_mainbus_attach, NULL, NULL); CFATTACH_DECL_NEW(cpu_cpunode, 0, cpu_cpunode_match, cpu_cpunode_attach, NULL, NULL); kcpuset_t *cpus_booted; void octeon_reset_vector(void); static void wdog_cpunode_poke(void *arg); static int cpunode_mainbus_print(void *aux, const char *pnp) { struct cpunode_attach_args * const cnaa = aux; if (pnp) aprint_normal("%s", pnp); if (cnaa->cnaa_cpunum != CPUNODECF_CORE_DEFAULT) aprint_normal(" core %d", cnaa->cnaa_cpunum); return UNCONF; } int cpunode_mainbus_match(device_t parent, cfdata_t cf, void *aux) { return 1; } void cpunode_mainbus_attach(device_t parent, device_t self, void *aux) { struct cpunode_softc * const sc = device_private(self); int cpunum = 0; sc->sc_dev = self; sc->sc_fuse = octeon_xkphys_read_8(CIU_FUSE); aprint_naive(": %u core%s\n", popcount32((uint32_t)sc->sc_fuse), sc->sc_fuse == 1 ? "" : "s"); aprint_normal(": %u core%s", popcount32((uint32_t)sc->sc_fuse), sc->sc_fuse == 1 ? "" : "s"); const uint64_t cvmctl = mips_cp0_cvmctl_read(); aprint_normal(", %scrypto", (cvmctl & CP0_CVMCTL_NOCRYPTO) ? "no " : ""); aprint_normal((cvmctl & CP0_CVMCTL_KASUMI) ? "+kasumi" : ""); aprint_normal(", %s64bit-mul", (cvmctl & CP0_CVMCTL_NOMUL) ? "no " : ""); if (cvmctl & CP0_CVMCTL_REPUN) aprint_normal(", unaligned-access ok"); #ifdef MULTIPROCESSOR uint32_t booted[1]; kcpuset_export_u32(cpus_booted, booted, sizeof(booted)); aprint_normal(", booted %#" PRIx32, booted[0]); #endif aprint_normal("\n"); for (uint64_t fuse = sc->sc_fuse; fuse != 0; fuse >>= 1, cpunum++) { struct cpunode_attach_args cnaa = { .cnaa_name = "cpu", .cnaa_cpunum = cpunum, }; config_found(self, &cnaa, cpunode_mainbus_print); } #if NWDOG > 0 struct cpunode_attach_args cnaa = { .cnaa_name = "wdog", .cnaa_cpunum = CPUNODECF_CORE_DEFAULT, }; config_found(self, &cnaa, cpunode_mainbus_print); #endif } int cpu_cpunode_match(device_t parent, cfdata_t cf, void *aux) { struct cpunode_attach_args * const cnaa = aux; const int cpunum = cf->cf_loc[CPUNODECF_CORE]; return strcmp(cnaa->cnaa_name, cf->cf_name) == 0 && (cpunum == CPUNODECF_CORE_DEFAULT || cpunum == cnaa->cnaa_cpunum); } #if defined(MULTIPROCESSOR) static bool octeon_fixup_cpu_info_references(int32_t load_addr, uint32_t new_insns[2], void *arg) { struct cpu_info * const ci = arg; atomic_or_ulong(&curcpu()->ci_flags, CPUF_PRESENT); KASSERT(MIPS_KSEG0_P(load_addr)); #ifdef MULTIPROCESSOR KASSERT(!CPU_IS_PRIMARY(curcpu())); #endif load_addr += (intptr_t)ci - (intptr_t)&cpu_info_store; KASSERT((intptr_t)ci <= load_addr); KASSERT(load_addr < (intptr_t)(ci + 1)); KASSERT(INSN_LUI_P(new_insns[0])); KASSERT(INSN_LOAD_P(new_insns[1]) || INSN_STORE_P(new_insns[1])); /* * Use the lui and load/store instruction as a prototype and * make it refer to cpu1_info_store instead of cpu_info_store. */ new_insns[0] &= __BITS(31,16); new_insns[1] &= __BITS(31,16); new_insns[0] |= (uint16_t)((load_addr + 0x8000) >> 16); new_insns[1] |= (uint16_t)load_addr; #ifdef DEBUG_VERBOSE printf("%s: %08x: insn#1 %08x: lui r%u, %d\n", __func__, load_addr, new_insns[0], (new_insns[0] >> 16) & 31, (int16_t)new_insns[0]); printf("%s: %08x: insn#2 %08x: %c%c r%u, %d(r%u)\n", __func__, load_addr, new_insns[1], INSN_LOAD_P(new_insns[1]) ? 'l' : 's', INSN_LW_P(new_insns[1]) ? 'w' : 'd', (new_insns[1] >> 16) & 31, (int16_t)new_insns[1], (new_insns[1] >> 21) & 31); #endif return true; } static void octeon_cpu_init(struct cpu_info *ci) { bool ok __diagused; // First thing is setup the execption vectors for this cpu. mips64r2_vector_init(&mips_splsw); // Next rewrite those exceptions to use this cpu's cpu_info. ok = mips_fixup_exceptions(octeon_fixup_cpu_info_references, ci); KASSERT(ok); (void) splhigh(); // make sure interrupts are masked KASSERT((mipsNN_cp0_ebase_read() & MIPS_EBASE_CPUNUM) == ci->ci_cpuid); KASSERT(curcpu() == ci); KASSERT(ci->ci_cpl == IPL_HIGH); KASSERT((mips_cp0_status_read() & MIPS_INT_MASK) == 0); } static void octeon_cpu_run(struct cpu_info *ci) { octeon_intr_init(ci); mips3_initclocks(); KASSERTMSG(ci->ci_cpl == IPL_NONE, "cpl %d", ci->ci_cpl); KASSERT(mips_cp0_status_read() & MIPS_SR_INT_IE); aprint_normal("%s: ", device_xname(ci->ci_dev)); cpu_identify(ci->ci_dev); } #endif /* MULTIPROCESSOR */ static void cpu_cpunode_attach_common(device_t self, struct cpu_info *ci) { struct cpu_softc * const cpu __diagused = ci->ci_softc; ci->ci_dev = self; self->dv_private = ci; KASSERTMSG(cpu != NULL, "ci %p index %d", ci, cpu_index(ci)); #if NWDOG > 0 || defined(DDB) void **nmi_vector = (void *)MIPS_PHYS_TO_KSEG0(0x800 + 32*ci->ci_cpuid); *nmi_vector = octeon_reset_vector; struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_ZERO); KASSERT(pg != NULL); const vaddr_t kva = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg)); KASSERT(kva != 0); ci->ci_nmi_stack = (void *)(kva + PAGE_SIZE - sizeof(struct kernframe)); #endif #if NWDOG > 0 cpu->cpu_wdog_sih = softint_establish(SOFTINT_CLOCK|SOFTINT_MPSAFE, wdog_cpunode_poke, cpu); KASSERT(cpu->cpu_wdog_sih != NULL); #endif aprint_normal(": %lu.%02luMHz (hz cycles = %lu, delay divisor = %lu)\n", ci->ci_cpu_freq / 1000000, (ci->ci_cpu_freq % 1000000) / 10000, ci->ci_cycles_per_hz, ci->ci_divisor_delay); if (CPU_IS_PRIMARY(ci)) { aprint_normal("%s: ", device_xname(self)); cpu_identify(self); } cpu_attach_common(self, ci); #ifdef MULTIPROCESSOR KASSERT(cpuid_infos[ci->ci_cpuid] == ci); #endif } void cpu_cpunode_attach(device_t parent, device_t self, void *aux) { struct cpunode_attach_args * const cnaa = aux; const int cpunum = cnaa->cnaa_cpunum; if (cpunum == 0) { cpu_cpunode_attach_common(self, curcpu()); #ifdef MULTIPROCESSOR mips_locoresw.lsw_cpu_init = octeon_cpu_init; mips_locoresw.lsw_cpu_run = octeon_cpu_run; #endif return; } #ifdef MULTIPROCESSOR KASSERTMSG(cpunum == 1, "cpunum %d", cpunum); if (!kcpuset_isset(cpus_booted, cpunum)) { aprint_naive(" disabled\n"); aprint_normal(" disabled (unresponsive)\n"); return; } struct cpu_info * const ci = cpu_info_alloc(NULL, cpunum, 0, cpunum, 0); ci->ci_softc = &octeon_cpu1_softc; ci->ci_softc->cpu_ci = ci; cpu_cpunode_attach_common(self, ci); KASSERT(ci->ci_data.cpu_idlelwp != NULL); for (int i = 0; i < 100 && !kcpuset_isset(cpus_hatched, cpunum); i++) { delay(10000); } if (!kcpuset_isset(cpus_hatched, cpunum)) { #ifdef DDB aprint_verbose_dev(self, "hatch failed ci=%p flags=%#lx\n", ci, ci->ci_flags); cpu_Debugger(); #endif panic("%s failed to hatch: ci=%p flags=%#lx", cpu_name(ci), ci, ci->ci_flags); } #else aprint_naive(": disabled\n"); aprint_normal(": disabled (uniprocessor kernel)\n"); #endif } #if NWDOG > 0 struct wdog_softc { struct sysmon_wdog sc_smw; device_t sc_dev; u_int sc_wdog_period; bool sc_wdog_armed; }; #ifndef OCTEON_WDOG_PERIOD_DEFAULT #define OCTEON_WDOG_PERIOD_DEFAULT 4 #endif static int wdog_cpunode_match(device_t, cfdata_t, void *); static void wdog_cpunode_attach(device_t, device_t, void *); CFATTACH_DECL_NEW(wdog_cpunode, sizeof(struct wdog_softc), wdog_cpunode_match, wdog_cpunode_attach, NULL, NULL); static int wdog_cpunode_setmode(struct sysmon_wdog *smw) { struct wdog_softc * const sc = smw->smw_cookie; if ((smw->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED) { if (sc->sc_wdog_armed) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; for (CPU_INFO_FOREACH(cii, ci)) { struct cpu_softc * const cpu = ci->ci_softc; uint64_t wdog = mips3_ld(cpu->cpu_wdog); wdog &= ~CIU_WDOGX_MODE; mips3_sd(cpu->cpu_pp_poke, wdog); aprint_verbose_dev(sc->sc_dev, "%s: disable wdog=%#"PRIx64"\n", cpu_name(ci), wdog); mips3_sd(cpu->cpu_wdog, wdog); mips3_sd(cpu->cpu_pp_poke, wdog); } sc->sc_wdog_armed = false; } } else if (!sc->sc_wdog_armed) { kpreempt_disable(); struct cpu_info *ci = curcpu(); if (smw->smw_period == WDOG_PERIOD_DEFAULT) { smw->smw_period = OCTEON_WDOG_PERIOD_DEFAULT; } uint64_t wdog_len = smw->smw_period * ci->ci_cpu_freq; // // This wdog is a 24-bit counter that decrements every 256 // cycles. This is then a 32-bit counter so as long wdog_len // doesn't overflow a 32-bit value, we are fine. We write the // 16-bits of the 32-bit period. if ((wdog_len >> 32) != 0) { kpreempt_enable(); return EINVAL; } sc->sc_wdog_period = smw->smw_period; CPU_INFO_ITERATOR cii; for (CPU_INFO_FOREACH(cii, ci)) { struct cpu_softc * const cpu = ci->ci_softc; uint64_t wdog = mips3_ld(cpu->cpu_wdog); wdog &= ~(CIU_WDOGX_MODE|CIU_WDOGX_LEN); wdog |= __SHIFTIN(3, CIU_WDOGX_MODE); wdog |= __SHIFTIN(wdog_len >> 16, CIU_WDOGX_LEN); aprint_verbose_dev(sc->sc_dev, "%s: enable wdog=%#"PRIx64" (%#"PRIx64")\n", cpu_name(ci), wdog, wdog_len); mips3_sd(cpu->cpu_wdog, wdog); } sc->sc_wdog_armed = true; kpreempt_enable(); } return 0; } static void wdog_cpunode_poke(void *arg) { struct cpu_softc *cpu = arg; mips3_sd(cpu->cpu_pp_poke, 0); } static int wdog_cpunode_tickle(struct sysmon_wdog *smw) { wdog_cpunode_poke(curcpu()->ci_softc); #ifdef MULTIPROCESSOR // We need to send IPIs to the other CPUs to poke their wdog. cpu_send_ipi(NULL, IPI_WDOG); #endif return 0; } int wdog_cpunode_match(device_t parent, cfdata_t cf, void *aux) { struct cpunode_softc * const sc = device_private(parent); struct cpunode_attach_args * const cnaa = aux; const int cpunum = cf->cf_loc[CPUNODECF_CORE]; return sc->sc_wdog_dev == NULL && strcmp(cnaa->cnaa_name, cf->cf_name) == 0 && cpunum == CPUNODECF_CORE_DEFAULT; } void wdog_cpunode_attach(device_t parent, device_t self, void *aux) { struct cpunode_softc * const psc = device_private(parent); struct wdog_softc * const sc = device_private(self); cfdata_t const cf = device_cfdata(self); psc->sc_wdog_dev = self; sc->sc_dev = self; sc->sc_smw.smw_name = device_xname(self); sc->sc_smw.smw_cookie = sc; sc->sc_smw.smw_setmode = wdog_cpunode_setmode; sc->sc_smw.smw_tickle = wdog_cpunode_tickle; sc->sc_smw.smw_period = OCTEON_WDOG_PERIOD_DEFAULT; sc->sc_wdog_period = sc->sc_smw.smw_period; /* * We need one softint per cpu. It's to tickle the softints on * other CPUs. */ CPU_INFO_ITERATOR cii; struct cpu_info *ci; for (CPU_INFO_FOREACH(cii, ci)) { } aprint_normal(": default period is %u second%s\n", sc->sc_wdog_period, sc->sc_wdog_period == 1 ? "" : "s"); if (sysmon_wdog_register(&sc->sc_smw) != 0) { aprint_error_dev(self, "unable to register with sysmon\n"); return; } if (cf->cf_flags & 1) { int error = sysmon_wdog_setmode(&sc->sc_smw, WDOG_MODE_KTICKLE, sc->sc_wdog_period); if (error) aprint_error_dev(self, "failed to start kernel tickler: %d\n", error); } } #endif /* NWDOG > 0 */