/* $NetBSD: netwinder_machdep.c,v 1.85 2016/12/22 16:05:15 cherry Exp $ */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependent functions for kernel setup for EBSA285 core architecture * using Netwinder firmware * * Created : 24/11/97 */ #include __KERNEL_RCSID(0, "$NetBSD: netwinder_machdep.c,v 1.85 2016/12/22 16:05:15 cherry Exp $"); #include "opt_ddb.h" #include "opt_pmap_debug.h" #define _ARM32_BUS_DMA_PRIVATE #include "isa.h" #include "isadma.h" #include "igsfb.h" #include "pckbc.h" #include "com.h" #include "ksyms.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NISA > 0 #include #include #endif #if NIGSFB > 0 #include #include #endif #if NPCKBC > 0 #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include static bus_space_handle_t isa_base = (bus_space_handle_t) DC21285_PCI_IO_VBASE; bs_protos(generic); #define ISA_GETBYTE(r) generic_bs_r_1(0, isa_base, (r)) #define ISA_PUTBYTE(r,v) generic_bs_w_1(0, isa_base, (r), (v)) static void netwinder_reset(void); u_int dc21285_fclk = 63750000; struct nwbootinfo nwbootinfo; BootConfig bootconfig; /* Boot config storage */ static char bootargs[MAX_BOOT_STRING + 1]; char *boot_args = NULL; char *boot_file = NULL; vaddr_t physical_start; vaddr_t physical_freestart; vaddr_t physical_freeend; vaddr_t physical_end; u_int free_pages; vaddr_t pagetables_start; /*int debug_flags;*/ #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ paddr_t msgbufphys; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_VMDATA 2 /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) /* * The range 0xf1000000 - 0xfcffffff is available for kernel VM space * Footbridge registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #if NIGSFB > 0 /* XXX: uwe: map 16 megs at 0xfc000000 for igsfb(4) */ #define KERNEL_VM_SIZE 0x0B000000 #else #define KERNEL_VM_SIZE 0x0C000000 #endif /* Prototypes */ void consinit(void); void process_kernel_args(char *); void data_abort_handler(trapframe_t *); void prefetch_abort_handler(trapframe_t *); void undefinedinstruction_bounce(trapframe_t *); /* A load of console goo. */ #ifndef CONSDEVNAME # if (NIGSFB > 0) && (NPCKBC > 0) # define CONSDEVNAME "igsfb" # elif NCOM > 0 # define CONSDEVNAME "com" # else # error CONSDEVNAME not defined and no known console device configured # endif #endif /* !CONSDEVNAME */ #ifndef CONCOMADDR #define CONCOMADDR 0x3f8 #endif #ifndef CONSPEED #define CONSPEED B115200 /* match NeTTrom */ #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; extern struct consdev kcomcons; static void kcomcnputc(dev_t, int); #if NIGSFB > 0 /* XXX: uwe */ #define IGS_PCI_MEM_VBASE 0xfc000000 #define IGS_PCI_MEM_VSIZE 0x01000000 #define IGS_PCI_MEM_BASE 0x08000000 extern struct arm32_pci_chipset footbridge_pci_chipset; extern struct bus_space footbridge_pci_io_bs_tag; extern struct bus_space footbridge_pci_mem_bs_tag; extern void footbridge_pci_bs_tag_init(void); /* standard methods */ extern bs_map_proto(footbridge_mem); extern bs_unmap_proto(footbridge_mem); /* our hooks */ static bs_map_proto(nw_footbridge_mem); static bs_unmap_proto(nw_footbridge_mem); #endif /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { #ifdef DIAGNOSTIC /* info */ printf("boot: howto=%08x curlwp=%p\n", howto, curlwp); #endif /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { doshutdownhooks(); pmf_system_shutdown(boothowto); printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* Disable console buffering */ /* cnpollc(1);*/ /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during * the unmount. It looks like syslogd is getting woken up * only to find that it cannot page part of the binary in as * the filesystem has been unmounted. */ if (!(howto & RB_NOSYNC)) bootsync(); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); /* Run any shutdown hooks */ doshutdownhooks(); pmf_system_shutdown(boothowto); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } printf("rebooting...\n"); cpu_reset(); /*NOTREACHED*/ } /* * NB: this function runs with MMU disabled! */ static void netwinder_reset(void) { register u_int base = DC21285_PCI_IO_BASE; #define PUTBYTE(reg, val) \ *((volatile u_int8_t *)(base + (reg))) = (val) PUTBYTE(0x338, 0x84); /* Red led(GP17), fan on(GP12) */ PUTBYTE(0x370, 0x87); /* Enter the extended function mode */ PUTBYTE(0x370, 0x87); /* (need to write the magic twice) */ PUTBYTE(0x370, 0x07); /* Select Logical Device Number reg */ PUTBYTE(0x371, 0x07); /* Select Logical Device 7 (GPIO) */ PUTBYTE(0x370, 0xe6); /* Select GP16 Control Reg */ PUTBYTE(0x371, 0x00); /* Make GP16 an output */ PUTBYTE(0x338, 0xc4); /* RESET(GP16), red led, fan on */ } /* * Mapping table for core kernel memory. This memory is mapped at init * time with section mappings. */ struct l1_sec_map { vaddr_t va; vaddr_t pa; vsize_t size; vm_prot_t prot; int cache; } l1_sec_table[] = { /* Map 1MB for CSR space */ { DC21285_ARMCSR_VBASE, DC21285_ARMCSR_BASE, DC21285_ARMCSR_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map 1MB for fast cache cleaning space */ { DC21285_CACHE_FLUSH_VBASE, DC21285_SA_CACHE_FLUSH_BASE, DC21285_CACHE_FLUSH_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE }, /* Map 1MB for PCI IO space */ { DC21285_PCI_IO_VBASE, DC21285_PCI_IO_BASE, DC21285_PCI_IO_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map 1MB for PCI IACK space */ { DC21285_PCI_IACK_VBASE, DC21285_PCI_IACK_SPECIAL, DC21285_PCI_IACK_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map 16MB of type 1 PCI config access */ { DC21285_PCI_TYPE_1_CONFIG_VBASE, DC21285_PCI_TYPE_1_CONFIG, DC21285_PCI_TYPE_1_CONFIG_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map 16MB of type 0 PCI config access */ { DC21285_PCI_TYPE_0_CONFIG_VBASE, DC21285_PCI_TYPE_0_CONFIG, DC21285_PCI_TYPE_0_CONFIG_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, /* Map 1MB of 32 bit PCI address space for ISA MEM accesses via PCI */ { DC21285_PCI_ISA_MEM_VBASE, DC21285_PCI_MEM_BASE, DC21285_PCI_ISA_MEM_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, #if NIGSFB > 0 /* XXX: uwe: Map 16MB of PCI address space for CyberPro as console */ { IGS_PCI_MEM_VBASE, DC21285_PCI_MEM_BASE + IGS_PCI_MEM_BASE, IGS_PCI_MEM_VSIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE }, #endif { 0, 0, 0, 0, 0 } }; /* * u_int initarm(...); * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { int loop; int loop1; u_int l1pagetable; extern char _end[]; /* * Turn the led off, then turn it yellow. * 0x80 - red; 0x04 - fan; 0x02 - green. */ ISA_PUTBYTE(0x338, 0x04); ISA_PUTBYTE(0x338, 0x86); /* * Set up a diagnostic console so we can see what's going * on. */ cn_tab = &kcomcons; /* Talk to the user */ printf("\nNetBSD/netwinder booting ...\n"); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("CPU not recognized!"); /* * We are currently running with the MMU enabled and the * entire address space mapped VA==PA, except for the * first 64MB of RAM is also double-mapped at 0xf0000000. * There is an L1 page table at 0x00008000. * * We also have the 21285's PCI I/O space mapped where * we expect it. */ printf("initarm: Configuring system ...\n"); /* * Copy out the boot info passed by the firmware. Note that * early versions of NeTTrom fill this in with bogus values, * so we need to sanity check it. */ memcpy(&nwbootinfo, (void *)(KERNEL_BASE + 0x100), sizeof(nwbootinfo)); #ifdef VERBOSE_INIT_ARM printf("NeTTrom boot info:\n"); printf("\tpage size = 0x%08lx\n", nwbootinfo.bi_pagesize); printf("\tnpages = %ld (0x%08lx)\n", nwbootinfo.bi_nrpages, nwbootinfo.bi_nrpages); printf("\trootdev = 0x%08lx\n", nwbootinfo.bi_rootdev); printf("\tcmdline = %s\n", nwbootinfo.bi_cmdline); #endif if (nwbootinfo.bi_nrpages != 0x02000 && nwbootinfo.bi_nrpages != 0x04000 && nwbootinfo.bi_nrpages != 0x08000 && nwbootinfo.bi_nrpages != 0x10000) { nwbootinfo.bi_pagesize = 0xdeadbeef; nwbootinfo.bi_nrpages = 0x01000; /* 16MB */ nwbootinfo.bi_rootdev = 0; } /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = 0; bootconfig.dram[0].pages = nwbootinfo.bi_nrpages; /* * Set up the variables that define the availablilty of * physical memory. * * Since the NetWinder NeTTrom doesn't load ELF symbols * for us, we can safely assume that everything after end[] * is free. We start there and allocate upwards. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = ((((vaddr_t) _end) + PGOFSET) & ~PGOFSET) - KERNEL_BASE; physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); #endif physmem = (physical_end - physical_start) / PAGE_SIZE; /* Tell the user about the memory */ printf("physmemory: %"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); /* * Okay, we need to allocate some fixed page tables to get the * kernel going. We allocate one page directory and a number * of page tables and store the physical addresses in the * kernel_pt_table array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K boundaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, * and the page tables on 4K boundaries otherwise. Since we * allocate at least 3 L2 page tables, we are guaranteed to * encounter at least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ (var) = physical_freestart; \ physical_freestart += ((np) * PAGE_SIZE);\ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); #endif alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start consturction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); pmap_link_l2pt(l1pagetable, KERNEL_BASE, &kernel_pt_table[KERNEL_PT_KERNEL]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data */ { /* * The kernel starts in the first 1MB of RAM, and we'd * like to use a section mapping for text, so we'll just * map from KERNEL_BASE to etext[] to _end[]. */ extern char etext[]; size_t textsize = (uintptr_t) etext - KERNEL_BASE; size_t totalsize = (uintptr_t) _end - KERNEL_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; textsize = textsize & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; logical = 0; /* offset into RAM */ logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } /* Map the vector page. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); /* * Map devices we can map w/ section mappings. */ loop = 0; while (l1_sec_table[loop].size) { vsize_t sz; #ifdef VERBOSE_INIT_ARM printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa, l1_sec_table[loop].pa + l1_sec_table[loop].size - 1, l1_sec_table[loop].va); #endif for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_S_SIZE) pmap_map_section(l1pagetable, l1_sec_table[loop].va + sz, l1_sec_table[loop].pa + sz, l1_sec_table[loop].prot, l1_sec_table[loop].cache); ++loop; } /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("done!\n"); #endif /* * XXX this should only be done in main() but it useful to * have output earlier ... */ consinit(); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ printf("init subsystems: stacks "); set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slightly better one. */ printf("vectors "); data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ printf("undefined "); undefined_init(); /* Load memory into UVM. */ printf("page "); uvm_md_init(); /* XXX Always one RAM block -- nuke the loop. */ for (loop = 0; loop < bootconfig.dramblocks; loop++) { paddr_t start = (paddr_t)bootconfig.dram[loop].address; paddr_t end = start + (bootconfig.dram[loop].pages * PAGE_SIZE); #if NISADMA > 0 paddr_t istart, isize; extern struct arm32_dma_range *footbridge_isa_dma_ranges; extern int footbridge_isa_dma_nranges; #endif if (start < physical_freestart) start = physical_freestart; if (end > physical_freeend) end = physical_freeend; #if 0 printf("%d: %lx -> %lx\n", loop, start, end - 1); #endif #if NISADMA > 0 if (arm32_dma_range_intersect(footbridge_isa_dma_ranges, footbridge_isa_dma_nranges, start, end - start, &istart, &isize)) { /* * Place the pages that intersect with the * ISA DMA range onto the ISA DMA free list. */ #if 0 printf(" ISADMA 0x%lx -> 0x%lx\n", istart, istart + isize - 1); #endif uvm_page_physload(atop(istart), atop(istart + isize), atop(istart), atop(istart + isize), VM_FREELIST_ISADMA); /* * Load the pieces that come before the * intersection onto the default free list. */ if (start < istart) { #if 0 printf(" BEFORE 0x%lx -> 0x%lx\n", start, istart - 1); #endif uvm_page_physload(atop(start), atop(istart), atop(start), atop(istart), VM_FREELIST_DEFAULT); } /* * Load the pieces that come after the * intersection onto the default free list. */ if ((istart + isize) < end) { #if 0 printf(" AFTER 0x%lx -> 0x%lx\n", (istart + isize), end - 1); #endif uvm_page_physload(atop(istart + isize), atop(end), atop(istart + isize), atop(end), VM_FREELIST_DEFAULT); } } else { uvm_page_physload(atop(start), atop(end), atop(start), atop(end), VM_FREELIST_DEFAULT); } #else /* NISADMA > 0 */ uvm_page_physload(atop(start), atop(end), atop(start), atop(end), VM_FREELIST_DEFAULT); #endif /* NISADMA > 0 */ } /* Boot strap pmap telling it where the kernel page table is */ printf("pmap "); pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); /* Now that pmap is inited, we can set cpu_reset_address */ cpu_reset_address_paddr = vtophys((vaddr_t)netwinder_reset); /* Setup the IRQ system */ printf("irq "); footbridge_intr_init(); printf("done.\n"); /* * Warn the user if the bootinfo was bogus. We already * faked up some safe values. */ if (nwbootinfo.bi_pagesize == 0xdeadbeef) printf("WARNING: NeTTrom boot info corrupt\n"); #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* Turn the led green */ ISA_PUTBYTE(0x338, 0x06); /* We return the new stack pointer address */ return(kernelstack.pv_va + USPACE_SVC_STACK_TOP); } void process_kernel_args(char *args) { boothowto = 0; /* Make a local copy of the bootargs */ strncpy(bootargs, args, MAX_BOOT_STRING); args = bootargs; boot_file = bootargs; /* Skip the kernel image filename */ while (*args != ' ' && *args != 0) ++args; if (*args != 0) *args++ = 0; while (*args == ' ') ++args; boot_args = args; printf("bootfile: %s\n", boot_file); printf("bootargs: %s\n", boot_args); parse_mi_bootargs(boot_args); } void consinit(void) { static int consinit_called = 0; const char *console = CONSDEVNAME; if (consinit_called != 0) return; consinit_called = 1; #ifdef DIAGNOSTIC printf("consinit(\"%s\")\n", console); #endif #if NISA > 0 /* Initialise the ISA subsystem early ... */ isa_footbridge_init(DC21285_PCI_IO_VBASE, DC21285_PCI_ISA_MEM_VBASE); #endif if (strncmp(console, "igsfb", 5) == 0) { #if NIGSFB > 0 int res; footbridge_pci_bs_tag_init(); /* * XXX: uwe: special case mapping for the igsfb memory space. * * The problem with this is that when footbridge is * attached during normal autoconfiguration the bus * space tags will be reinited and these hooks lost. * However, since igsfb(4) don't unmap memory during * normal operation, this is ok. But if the igsfb is * configured but is not a console, we waste 16M of * kernel VA space. */ footbridge_pci_mem_bs_tag.bs_map = nw_footbridge_mem_bs_map; footbridge_pci_mem_bs_tag.bs_unmap = nw_footbridge_mem_bs_unmap; igsfb_pci_cnattach(&footbridge_pci_io_bs_tag, &footbridge_pci_mem_bs_tag, &footbridge_pci_chipset, 0, 8, 0); #if NPCKBC > 0 res = pckbc_cnattach(&isa_io_bs_tag, IO_KBD, KBCMDP, PCKBC_KBD_SLOT, 0); if (res) printf("pckbc_cnattach: %d!\n", res); #endif #else panic("igsfb console not configured"); #endif /* NIGSFB */ } else { #ifdef DIAGNOSTIC if (strncmp(console, "com", 3) != 0) { printf("consinit: unknown CONSDEVNAME=\"%s\"," " falling back to \"com\"\n", console); } #endif #if NCOM > 0 if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed, COM_FREQ, COM_TYPE_NORMAL, comcnmode)) panic("can't init serial console @%x", CONCOMADDR); #else panic("serial console @%x not configured", CONCOMADDR); #endif } } #if NIGSFB > 0 static int nw_footbridge_mem_bs_map(void *t, bus_addr_t bpa, bus_size_t size, int cacheable, bus_space_handle_t *bshp) { bus_addr_t startpa, endpa; /* Round the allocation to page boundries */ startpa = trunc_page(bpa); endpa = round_page(bpa + size); /* * Check for mappings of the igsfb(4) memory space as we have * this space already mapped. */ if (startpa >= IGS_PCI_MEM_BASE && endpa < (IGS_PCI_MEM_BASE + IGS_PCI_MEM_VSIZE)) { /* Store the bus space handle */ *bshp = IGS_PCI_MEM_VBASE + (bpa - IGS_PCI_MEM_BASE); #ifdef DEBUG printf("nw/mem_bs_map: %08x+%08x: %08x..%08x -> %08x\n", (u_int32_t)bpa, (u_int32_t)size, (u_int32_t)startpa, (u_int32_t)endpa, (u_int32_t)*bshp); #endif return 0; } return (footbridge_mem_bs_map(t, bpa, size, cacheable, bshp)); } static void nw_footbridge_mem_bs_unmap(void *t, bus_space_handle_t bsh, bus_size_t size) { /* * Check for mappings of the igsfb(4) memory space as we have * this space already mapped. */ if (bsh >= IGS_PCI_MEM_VBASE && bsh < (IGS_PCI_MEM_VBASE + IGS_PCI_MEM_VSIZE)) { #ifdef DEBUG printf("nw/bs_unmap: 0x%08x\n", (u_int32_t)bsh); #endif return; } footbridge_mem_bs_unmap(t, bsh, size); } #endif /* NIGSFB */ static bus_space_handle_t kcom_base = (bus_space_handle_t) (DC21285_PCI_IO_VBASE + CONCOMADDR); #define KCOM_GETBYTE(r) generic_bs_r_1(0, kcom_base, (r)) #define KCOM_PUTBYTE(r,v) generic_bs_w_1(0, kcom_base, (r), (v)) static int kcomcngetc(dev_t dev) { int stat, c; /* block until a character becomes available */ while (!ISSET(stat = KCOM_GETBYTE(com_lsr), LSR_RXRDY)) ; c = KCOM_GETBYTE(com_data); stat = KCOM_GETBYTE(com_iir); return c; } /* * Console kernel output character routine. */ static void kcomcnputc(dev_t dev, int c) { int timo; /* wait for any pending transmission to finish */ timo = 150000; while (!ISSET(KCOM_GETBYTE(com_lsr), LSR_TXRDY) && --timo) continue; KCOM_PUTBYTE(com_data, c); /* wait for this transmission to complete */ timo = 1500000; while (!ISSET(KCOM_GETBYTE(com_lsr), LSR_TXRDY) && --timo) continue; } static void kcomcnpollc(dev_t dev, int on) { } struct consdev kcomcons = { NULL, NULL, kcomcngetc, kcomcnputc, kcomcnpollc, NULL, NULL, NULL, NODEV, CN_NORMAL };