/* $NetBSD: trap.c,v 1.26 2014/07/31 12:11:37 joerg Exp $ */ /*- * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Raytheon BBN Technologies Corp and Defense Advanced Research Projects * Agency and which was developed by Matt Thomas of 3am Software Foundry. * * This material is based upon work supported by the Defense Advanced Research * Projects Agency and Space and Naval Warfare Systems Center, Pacific, under * Contract No. N66001-09-C-2073. * Approved for Public Release, Distribution Unlimited * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "opt_ddb.h" #include __KERNEL_RCSID(1, "$NetBSD: trap.c,v 1.26 2014/07/31 12:11:37 joerg Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* use same interface for SPE */ #include #include #include #include #include #include #include #include #include void trap(enum ppc_booke_exceptions, struct trapframe *); static const char trap_names[][8] = { [T_CRITIAL_INPUT] = "CRIT", [T_EXTERNAL_INPUT] = "EXT", [T_DECREMENTER] = "DECR", [T_FIXED_INTERVAL] = "FIT", [T_WATCHDOG] = "WDOG", [T_SYSTEM_CALL] = "SC", [T_MACHINE_CHECK] = "MCHK", [T_DSI] = "DSI", [T_ISI] = "ISI", [T_ALIGNMENT] = "ALN", [T_PROGRAM] = "PGM", [T_FP_UNAVAILABLE] = "FP", [T_AP_UNAVAILABLE] = "AP", [T_DATA_TLB_ERROR] = "DTLB", [T_INSTRUCTION_TLB_ERROR] = "ITLB", [T_DEBUG] = "DEBUG", [T_SPE_UNAVAILABLE] = "SPE", [T_EMBEDDED_FP_DATA] = "FPDATA", [T_EMBEDDED_FP_ROUND] = "FPROUND", [T_EMBEDDED_PERF_MONITOR] = "PERFMON", [T_AST] = "AST", }; static inline bool usertrap_p(struct trapframe *tf) { return (tf->tf_srr1 & PSL_PR) != 0; } static int mchk_exception(struct trapframe *tf, ksiginfo_t *ksi) { const bool usertrap = usertrap_p(tf); const vaddr_t faultva = tf->tf_mcar; struct cpu_info * const ci = curcpu(); int rv = EFAULT; if (usertrap) ci->ci_ev_umchk.ev_count++; if (rv != 0 && usertrap) { KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGSEGV; ksi->ksi_trap = EXC_DSI; ksi->ksi_code = SEGV_ACCERR; ksi->ksi_addr = (void *)faultva; } return rv; } static inline vm_prot_t get_faulttype(const struct trapframe * const tf) { return VM_PROT_READ | (tf->tf_esr & ESR_ST ? VM_PROT_WRITE : 0); } static inline struct vm_map * get_faultmap(const struct trapframe * const tf, register_t psl_mask) { return (tf->tf_srr1 & psl_mask) ? &curlwp->l_proc->p_vmspace->vm_map : kernel_map; } /* * We could use pmap_pte_lookup but this slightly faster since we already * the segtab pointers in cpu_info. */ static inline pt_entry_t * trap_pte_lookup(struct trapframe *tf, vaddr_t va, register_t psl_mask) { pmap_segtab_t ** const stps = &curcpu()->ci_pmap_kern_segtab; pmap_segtab_t * const stp = stps[(tf->tf_srr1 / psl_mask) & 1]; if (__predict_false(stp == NULL)) return NULL; pt_entry_t * const ptep = stp->seg_tab[va >> SEGSHIFT]; if (__predict_false(ptep == NULL)) return NULL; return ptep + ((va & SEGOFSET) >> PAGE_SHIFT); } static int pagefault(struct vm_map *map, vaddr_t va, vm_prot_t ftype, bool usertrap) { struct lwp * const l = curlwp; int rv; // printf("%s(%p,%#lx,%u,%u)\n", __func__, map, va, ftype, usertrap); if (usertrap) { rv = uvm_fault(map, trunc_page(va), ftype); if (rv == 0) uvm_grow(l->l_proc, trunc_page(va)); if (rv == EACCES) rv = EFAULT; } else { if (cpu_intr_p()) return EFAULT; struct pcb * const pcb = lwp_getpcb(l); struct faultbuf * const fb = pcb->pcb_onfault; pcb->pcb_onfault = NULL; rv = uvm_fault(map, trunc_page(va), ftype); pcb->pcb_onfault = fb; if (map != kernel_map) { if (rv == 0) uvm_grow(l->l_proc, trunc_page(va)); } if (rv == EACCES) rv = EFAULT; } return rv; } static int dsi_exception(struct trapframe *tf, ksiginfo_t *ksi) { const vaddr_t faultva = tf->tf_dear; const vm_prot_t ftype = get_faulttype(tf); struct vm_map * const faultmap = get_faultmap(tf, PSL_DS); const bool usertrap = usertrap_p(tf); kpreempt_disable(); struct cpu_info * const ci = curcpu(); if (usertrap) ci->ci_ev_udsi.ev_count++; else ci->ci_ev_kdsi.ev_count++; /* * If we had a TLB entry (which we must have had to get this exception), * we certainly have a PTE. */ pt_entry_t * const ptep = trap_pte_lookup(tf, trunc_page(faultva), PSL_DS); KASSERT(ptep != NULL); pt_entry_t pte = *ptep; if ((ftype & VM_PROT_WRITE) && ((pte & (PTE_xW|PTE_UNMODIFIED)) == (PTE_xW|PTE_UNMODIFIED))) { const paddr_t pa = pte_to_paddr(pte); struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); KASSERT(pg); struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); if (!VM_PAGEMD_MODIFIED_P(mdpg)) { pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED); } pte &= ~PTE_UNMODIFIED; *ptep = pte; pmap_tlb_update_addr(faultmap->pmap, trunc_page(faultva), pte, 0); kpreempt_enable(); return 0; } kpreempt_enable(); int rv = pagefault(faultmap, faultva, ftype, usertrap); /* * We can't get a MAPERR here since that's a different exception. */ if (__predict_false(rv != 0 && usertrap)) { ci->ci_ev_udsi_fatal.ev_count++; KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGSEGV; ksi->ksi_trap = EXC_DSI; ksi->ksi_code = SEGV_ACCERR; ksi->ksi_addr = (void *)faultva; } return rv; } static int isi_exception(struct trapframe *tf, ksiginfo_t *ksi) { const vaddr_t faultva = trunc_page(tf->tf_srr0); struct vm_map * const faultmap = get_faultmap(tf, PSL_IS); const bool usertrap = usertrap_p(tf); kpreempt_disable(); struct cpu_info * const ci = curcpu(); if (usertrap) ci->ci_ev_isi.ev_count++; else ci->ci_ev_kisi.ev_count++; /* * If we had a TLB entry (which we must have had to get this exception), * we certainly have a PTE. */ pt_entry_t * const ptep = trap_pte_lookup(tf, trunc_page(faultva), PSL_IS); if (ptep == NULL) dump_trapframe(tf, NULL); KASSERT(ptep != NULL); pt_entry_t pte = *ptep; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmapexechist); if ((pte & PTE_UNSYNCED) == PTE_UNSYNCED) { const paddr_t pa = pte_to_paddr(pte); struct vm_page * const pg = PHYS_TO_VM_PAGE(pa); KASSERT(pg); struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg); UVMHIST_LOG(pmapexechist, "srr0=%#x pg=%p (pa %#"PRIxPADDR"): %s", tf->tf_srr0, pg, pa, (VM_PAGEMD_EXECPAGE_P(mdpg) ? "no syncicache (already execpage)" : "performed syncicache (now execpage)")); if (!VM_PAGEMD_EXECPAGE_P(mdpg)) { ci->ci_softc->cpu_ev_exec_trap_sync.ev_count++; dcache_wb_page(pa); icache_inv_page(pa); pmap_page_set_attributes(mdpg, VM_PAGEMD_EXECPAGE); } pte &= ~PTE_UNSYNCED; pte |= PTE_xX; *ptep = pte; pmap_tlb_update_addr(faultmap->pmap, trunc_page(faultva), pte, 0); kpreempt_enable(); UVMHIST_LOG(pmapexechist, "<- 0", 0,0,0,0); return 0; } kpreempt_enable(); int rv = pagefault(faultmap, faultva, VM_PROT_READ|VM_PROT_EXECUTE, usertrap); if (__predict_false(rv != 0 && usertrap)) { /* * We can't get a MAPERR here since * that's a different exception. */ ci->ci_ev_isi_fatal.ev_count++; KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGSEGV; ksi->ksi_trap = EXC_ISI; ksi->ksi_code = SEGV_ACCERR; ksi->ksi_addr = (void *)tf->tf_srr0; /* not truncated */ } UVMHIST_LOG(pmapexechist, "<- %d", rv, 0,0,0); return rv; } static int dtlb_exception(struct trapframe *tf, ksiginfo_t *ksi) { const vaddr_t faultva = tf->tf_dear; const vm_prot_t ftype = get_faulttype(tf); struct vm_map * const faultmap = get_faultmap(tf, PSL_DS); struct cpu_info * const ci = curcpu(); const bool usertrap = usertrap_p(tf); #if 0 /* * This is what pte_load in trap_subr.S does for us. */ const pt_entry_t * const ptep = trap_pte_lookup(tf, trunc_page(faultva), PSL_DS); if (ptep != NULL && !usertrap && pte_valid_p(*ptep)) { tlb_update_addr(trunc_page(faultva), KERNEL_PID, *ptep, true); ci->ci_ev_tlbmiss_soft.ev_count++; return 0; } #endif ci->ci_ev_dtlbmiss_hard.ev_count++; // printf("pagefault(%p,%#lx,%u,%u)", faultmap, faultva, ftype, usertrap); int rv = pagefault(faultmap, faultva, ftype, usertrap); // printf(": %d\n", rv); if (__predict_false(rv != 0 && usertrap)) { ci->ci_ev_udsi_fatal.ev_count++; KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGSEGV; ksi->ksi_trap = EXC_DSI; ksi->ksi_code = (rv == EACCES ? SEGV_ACCERR : SEGV_MAPERR); ksi->ksi_addr = (void *)faultva; } return rv; } static int itlb_exception(struct trapframe *tf, ksiginfo_t *ksi) { struct vm_map * const faultmap = get_faultmap(tf, PSL_IS); const vaddr_t faultva = tf->tf_srr0; struct cpu_info * const ci = curcpu(); const bool usertrap = usertrap_p(tf); ci->ci_ev_itlbmiss_hard.ev_count++; int rv = pagefault(faultmap, faultva, VM_PROT_READ|VM_PROT_EXECUTE, usertrap); if (__predict_false(rv != 0 && usertrap)) { ci->ci_ev_isi_fatal.ev_count++; KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGSEGV; ksi->ksi_trap = EXC_ISI; ksi->ksi_code = (rv == EACCES ? SEGV_ACCERR : SEGV_MAPERR); ksi->ksi_addr = (void *)tf->tf_srr0; } return rv; } static int spe_exception(struct trapframe *tf, ksiginfo_t *ksi) { struct cpu_info * const ci = curcpu(); if (!usertrap_p(tf)) return EPERM; ci->ci_ev_vec.ev_count++; #ifdef PPC_HAVE_SPE vec_load(); return 0; #else KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGILL; ksi->ksi_trap = EXC_PGM; ksi->ksi_code = ILL_ILLOPC; ksi->ksi_addr = (void *)tf->tf_srr0; return EPERM; #endif } static bool emulate_opcode(struct trapframe *tf, ksiginfo_t *ksi) { uint32_t opcode; if (copyin((void *)tf->tf_srr0, &opcode, sizeof(opcode)) != 0) return false; if (opcode == OPC_LWSYNC) return true; if (OPC_MFSPR_P(opcode, SPR_PVR)) { __asm ("mfpvr %0" : "=r"(tf->tf_fixreg[OPC_MFSPR_REG(opcode)])); return true; } if (OPC_MFSPR_P(opcode, SPR_PIR)) { __asm ("mfspr %0, %1" : "=r"(tf->tf_fixreg[OPC_MFSPR_REG(opcode)]) : "n"(SPR_PIR)); return true; } if (OPC_MFSPR_P(opcode, SPR_SVR)) { __asm ("mfspr %0,%1" : "=r"(tf->tf_fixreg[OPC_MFSPR_REG(opcode)]) : "n"(SPR_SVR)); return true; } /* * If we bothered to emulate FP, we would try to do so here. */ return false; } static int pgm_exception(struct trapframe *tf, ksiginfo_t *ksi) { struct cpu_info * const ci = curcpu(); int rv = EPERM; if (!usertrap_p(tf)) return rv; UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmapexechist); UVMHIST_LOG(pmapexechist, " srr0/1=%#x/%#x esr=%#x pte=%#x", tf->tf_srr0, tf->tf_srr1, tf->tf_esr, *trap_pte_lookup(tf, trunc_page(tf->tf_srr0), PSL_IS)); ci->ci_ev_pgm.ev_count++; if (tf->tf_esr & ESR_PTR) { struct proc *p = curlwp->l_proc; if (p->p_raslist != NULL && ras_lookup(p, (void *)tf->tf_srr0) != (void *) -1) { tf->tf_srr0 += 4; return 0; } } if (tf->tf_esr & (ESR_PIL|ESR_PPR)) { if (emulate_opcode(tf, ksi)) { tf->tf_srr0 += 4; return 0; } } if (tf->tf_esr & ESR_PIL) { struct pcb * const pcb = lwp_getpcb(curlwp); if (__predict_false(!fpu_used_p(curlwp))) { memset(&pcb->pcb_fpu, 0, sizeof(pcb->pcb_fpu)); fpu_mark_used(curlwp); } if (fpu_emulate(tf, &pcb->pcb_fpu, ksi)) { if (ksi->ksi_signo == 0) { ci->ci_ev_fpu.ev_count++; return 0; } return EFAULT; } } KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGILL; ksi->ksi_trap = EXC_PGM; if (tf->tf_esr & ESR_PIL) { ksi->ksi_code = ILL_ILLOPC; } else if (tf->tf_esr & ESR_PPR) { ksi->ksi_code = ILL_PRVOPC; } else if (tf->tf_esr & ESR_PTR) { ksi->ksi_signo = SIGTRAP; ksi->ksi_code = TRAP_BRKPT; } else { ksi->ksi_code = 0; } ksi->ksi_addr = (void *)tf->tf_srr0; return rv; } static int debug_exception(struct trapframe *tf, ksiginfo_t *ksi) { struct cpu_info * const ci = curcpu(); int rv = EPERM; if (!usertrap_p(tf)) return rv; ci->ci_ev_debug.ev_count++; /* * Ack the interrupt. */ mtspr(SPR_DBSR, tf->tf_esr); KASSERT(tf->tf_esr & (DBSR_IAC1|DBSR_IAC2|DBSR_BRT)); KASSERT((tf->tf_srr1 & PSL_SE) == 0); /* * Disable debug events */ mtspr(SPR_DBCR1, 0); mtspr(SPR_DBCR0, 0); /* * Tell the debugger ... */ KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGTRAP; ksi->ksi_trap = EXC_TRC; ksi->ksi_addr = (void *)tf->tf_srr0; ksi->ksi_code = TRAP_TRACE; return rv; } static int ali_exception(struct trapframe *tf, ksiginfo_t *ksi) { struct cpu_info * const ci = curcpu(); int rv = EFAULT; ci->ci_ev_ali.ev_count++; if (rv != 0 && usertrap_p(tf)) { ci->ci_ev_ali_fatal.ev_count++; KSI_INIT_TRAP(ksi); ksi->ksi_signo = SIGILL; ksi->ksi_trap = EXC_PGM; if (tf->tf_esr & ESR_PIL) ksi->ksi_code = ILL_ILLOPC; else if (tf->tf_esr & ESR_PPR) ksi->ksi_code = ILL_PRVOPC; else if (tf->tf_esr & ESR_PTR) ksi->ksi_code = ILL_ILLTRP; else ksi->ksi_code = 0; ksi->ksi_addr = (void *)tf->tf_srr0; } return rv; } static int embedded_fp_data_exception(struct trapframe *tf, ksiginfo_t *ksi) { struct cpu_info * const ci = curcpu(); int rv = EFAULT; ci->ci_ev_fpu.ev_count++; if (rv != 0 && usertrap_p(tf)) { KSI_INIT_TRAP(ksi); #ifdef PPC_HAVE_SPE ksi->ksi_signo = SIGFPE; ksi->ksi_trap = tf->tf_exc; ksi->ksi_code = vec_siginfo_code(tf); #else ksi->ksi_signo = SIGILL; ksi->ksi_trap = EXC_PGM; ksi->ksi_code = ILL_ILLOPC; #endif ksi->ksi_addr = (void *)tf->tf_srr0; } return rv; } static int embedded_fp_round_exception(struct trapframe *tf, ksiginfo_t *ksi) { struct cpu_info * const ci = curcpu(); int rv = EDOM; ci->ci_ev_fpu.ev_count++; if (rv != 0 && usertrap_p(tf)) { KSI_INIT_TRAP(ksi); #ifdef PPC_HAVE_SPE ksi->ksi_signo = SIGFPE; ksi->ksi_trap = tf->tf_exc; ksi->ksi_code = vec_siginfo_code(tf); #else ksi->ksi_signo = SIGILL; ksi->ksi_trap = EXC_PGM; ksi->ksi_code = ILL_ILLOPC; #endif ksi->ksi_addr = (void *)tf->tf_srr0; } return rv; } void dump_trapframe(const struct trapframe *tf, void (*pr)(const char *, ...)) { if (pr == NULL) pr = printf; (*pr)("trapframe %p (exc=%x srr0/1=%#lx/%#lx esr/dear=%#x/%#lx)\n", tf, tf->tf_exc, tf->tf_srr0, tf->tf_srr1, tf->tf_esr, tf->tf_dear); (*pr)("lr =%08lx ctr=%08lx cr =%08x xer=%08x\n", tf->tf_lr, tf->tf_ctr, tf->tf_cr, tf->tf_xer); for (u_int r = 0; r < 32; r += 4) { (*pr)("r%02u=%08lx r%02u=%08lx r%02u=%08lx r%02u=%08lx\n", r+0, tf->tf_fixreg[r+0], r+1, tf->tf_fixreg[r+1], r+2, tf->tf_fixreg[r+2], r+3, tf->tf_fixreg[r+3]); } } static bool ddb_exception(struct trapframe *tf) { #if 0 const register_t ddb_trapfunc = (uintptr_t) cpu_Debugger; if ((tf->tf_esr & ESR_PTR) == 0) return false; if (ddb_trapfunc <= tf->tf_srr0 && tf->tf_srr0 <= ddb_trapfunc+16) { register_t srr0 = tf->tf_srr0; if (kdb_trap(tf->tf_exc, tf)) { if (srr0 == tf->tf_srr0) tf->tf_srr0 += 4; return true; } } return false; #else #if 0 struct cpu_info * const ci = curcpu(); struct cpu_softc * const cpu = ci->ci_softc; printf("CPL stack:"); if (ci->ci_idepth >= 0) { for (u_int i = 0; i <= ci->ci_idepth; i++) { printf(" [%u]=%u", i, cpu->cpu_pcpls[i]); } } printf(" %u\n", ci->ci_cpl); dump_trapframe(tf, NULL); #endif if (kdb_trap(tf->tf_exc, tf)) { tf->tf_srr0 += 4; return true; } return false; #endif } static bool onfaulted(struct trapframe *tf, register_t rv) { struct lwp * const l = curlwp; struct pcb * const pcb = lwp_getpcb(l); struct faultbuf * const fb = pcb->pcb_onfault; if (fb == NULL) return false; tf->tf_srr0 = fb->fb_pc; tf->tf_srr1 = fb->fb_msr; tf->tf_cr = fb->fb_cr; tf->tf_fixreg[1] = fb->fb_sp; tf->tf_fixreg[2] = fb->fb_r2; tf->tf_fixreg[3] = rv; pcb->pcb_onfault = NULL; return true; } void trap(enum ppc_booke_exceptions trap_code, struct trapframe *tf) { const bool usertrap = usertrap_p(tf); struct cpu_info * const ci = curcpu(); struct lwp * const l = curlwp; struct proc * const p = l->l_proc; ksiginfo_t ksi; int rv = EACCES; ci->ci_ev_traps.ev_count++; ci->ci_data.cpu_ntrap++; KASSERTMSG(!usertrap || tf == trapframe(l), "trap: tf=%p is invalid: trapframe(%p)=%p", tf, l, trapframe(l)); #if 0 if (trap_code != T_PROGRAM || usertrap) printf("trap(enter): %s (tf=%p, esr/dear=%#x/%#lx, srr0/1=%#lx/%#lx, lr=%#lx)\n", trap_names[trap_code], tf, tf->tf_esr, tf->tf_dear, tf->tf_srr0, tf->tf_srr1, tf->tf_lr); #endif #if 0 if ((register_t)tf >= (register_t)l->l_addr + USPACE || (register_t)tf < (register_t)l->l_addr + PAGE_SIZE) { printf("%s(entry): pid %d.%d (%s): invalid tf addr %p\n", __func__, p->p_pid, l->l_lid, p->p_comm, tf); dump_trapframe(tf, NULL); Debugger(); } #endif #if 0 if ((mfmsr() & PSL_CE) == 0) { printf("%s(entry): pid %d.%d (%s): %s: PSL_CE (%#lx) not set\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], mfmsr()); dump_trapframe(tf, NULL); } #endif if ((VM_MAX_ADDRESS & 0x80000000) == 0 && usertrap && (tf->tf_fixreg[1] & 0x80000000)) { printf("%s(entry): pid %d.%d (%s): %s invalid sp %#lx (sprg1=%#lx)\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], tf->tf_fixreg[1], mfspr(SPR_SPRG1)); dump_trapframe(tf, NULL); Debugger(); } if (usertrap && (tf->tf_srr1 & (PSL_DS|PSL_IS)) != (PSL_DS|PSL_IS)) { printf("%s(entry): pid %d.%d (%s): %s invalid PSL %#lx\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], tf->tf_srr1); dump_trapframe(tf, NULL); Debugger(); } switch (trap_code) { case T_CRITIAL_INPUT: case T_EXTERNAL_INPUT: case T_DECREMENTER: case T_FIXED_INTERVAL: case T_WATCHDOG: case T_SYSTEM_CALL: default: panic("trap: unexcepted trap code %d! (tf=%p, srr0/1=%#lx/%#lx)", trap_code, tf, tf->tf_srr0, tf->tf_srr1); case T_MACHINE_CHECK: rv = mchk_exception(tf, &ksi); break; case T_DSI: rv = dsi_exception(tf, &ksi); break; case T_ISI: rv = isi_exception(tf, &ksi); break; case T_ALIGNMENT: rv = ali_exception(tf, &ksi); break; case T_SPE_UNAVAILABLE: rv = spe_exception(tf, &ksi); break; case T_PROGRAM: #ifdef DDB if (!usertrap && ddb_exception(tf)) return; #endif rv = pgm_exception(tf, &ksi); break; case T_FP_UNAVAILABLE: case T_AP_UNAVAILABLE: panic("trap: unexcepted trap code %d! (tf=%p, srr0/1=%#lx/%#lx)", trap_code, tf, tf->tf_srr0, tf->tf_srr1); case T_DATA_TLB_ERROR: rv = dtlb_exception(tf, &ksi); break; case T_INSTRUCTION_TLB_ERROR: rv = itlb_exception(tf, &ksi); break; case T_DEBUG: #ifdef DDB if (!usertrap && ddb_exception(tf)) return; #endif rv = debug_exception(tf, &ksi); break; case T_EMBEDDED_FP_DATA: rv = embedded_fp_data_exception(tf, &ksi); break; case T_EMBEDDED_FP_ROUND: rv = embedded_fp_round_exception(tf, &ksi); break; case T_EMBEDDED_PERF_MONITOR: //db_stack_trace_print(tf->tf_fixreg[1], true, 40, "", printf); dump_trapframe(tf, NULL); rv = EPERM; break; case T_AST: KASSERT(usertrap); cpu_ast(l, ci); if ((VM_MAX_ADDRESS & 0x80000000) == 0 && (tf->tf_fixreg[1] & 0x80000000)) { printf("%s(ast-exit): pid %d.%d (%s): invalid sp %#lx\n", __func__, p->p_pid, l->l_lid, p->p_comm, tf->tf_fixreg[1]); dump_trapframe(tf, NULL); Debugger(); } if ((tf->tf_srr1 & (PSL_DS|PSL_IS)) != (PSL_DS|PSL_IS)) { printf("%s(entry): pid %d.%d (%s): %s invalid PSL %#lx\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], tf->tf_srr1); dump_trapframe(tf, NULL); Debugger(); } #if 0 if ((mfmsr() & PSL_CE) == 0) { printf("%s(exit): pid %d.%d (%s): %s: PSL_CE (%#lx) not set\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], mfmsr()); dump_trapframe(tf, NULL); } #endif userret(l, tf); return; } if (!usertrap) { if (rv != 0) { if (!onfaulted(tf, rv)) { db_stack_trace_print(tf->tf_fixreg[1], true, 40, "", printf); dump_trapframe(tf, NULL); panic("%s: pid %d.%d (%s): %s exception in kernel mode" " (tf=%p, dear=%#lx, esr=%#x," " srr0/1=%#lx/%#lx)", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], tf, tf->tf_dear, tf->tf_esr, tf->tf_srr0, tf->tf_srr1); } } #if 0 if (tf->tf_fixreg[1] >= (register_t)l->l_addr + USPACE || tf->tf_fixreg[1] < (register_t)l->l_addr + PAGE_SIZE) { printf("%s(exit): pid %d.%d (%s): invalid kern sp %#lx\n", __func__, p->p_pid, l->l_lid, p->p_comm, tf->tf_fixreg[1]); dump_trapframe(tf, NULL); Debugger(); } #endif #if 0 if ((mfmsr() & PSL_CE) == 0) { printf("%s(exit): pid %d.%d (%s): %s: PSL_CE (%#lx) not set\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], mfmsr()); mtmsr(mfmsr()|PSL_CE); dump_trapframe(tf, NULL); } #endif } else { if (rv == ENOMEM) { printf("UVM: pid %d.%d (%s), uid %d killed: " "out of swap\n", p->p_pid, l->l_lid, p->p_comm, l->l_cred ? kauth_cred_geteuid(l->l_cred) : -1); ksi.ksi_signo = SIGKILL; } if (rv != 0) { /* * Only print a fatal trap if the signal will be * uncaught. */ if (cpu_printfataltraps && (p->p_slflag & PSL_TRACED) == 0 && !sigismember(&p->p_sigctx.ps_sigcatch, ksi.ksi_signo)) { printf("%s: pid %d.%d (%s):" " %s exception in user mode\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code]); if (cpu_printfataltraps > 1) dump_trapframe(tf, NULL); } (*p->p_emul->e_trapsignal)(l, &ksi); } #ifdef DEBUG if ((tf->tf_srr1 & (PSL_DS|PSL_IS)) != (PSL_DS|PSL_IS)) { printf("%s(exit): pid %d.%d (%s): %s invalid PSL %#lx\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], tf->tf_srr1); dump_trapframe(tf, NULL); Debugger(); } #endif #if 0 if ((mfmsr() & PSL_CE) == 0) { printf("%s(exit): pid %d.%d (%s): %s: PSL_CE (%#lx) not set\n", __func__, p->p_pid, l->l_lid, p->p_comm, trap_names[trap_code], mfmsr()); dump_trapframe(tf, NULL); } #endif userret(l, tf); } }