/* $NetBSD: compat_16_machdep.c,v 1.4 2009/11/21 04:16:51 rmind Exp $ */ /*- * Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1992, 1993 * The Regents of the University of California. All rights reserved. * * This software was developed by the Computer Systems Engineering group * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and * contributed to Berkeley. * * All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Lawrence Berkeley Laboratory. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)machdep.c 8.6 (Berkeley) 1/14/94 */ #include __KERNEL_RCSID(0, "$NetBSD: compat_16_machdep.c,v 1.4 2009/11/21 04:16:51 rmind Exp $"); #include #include #include #include #include #include #include #ifdef COMPAT_13 #include #include #endif #include #ifdef COMPAT_13 #include #include #endif /* COMPAT_13 */ struct sigframe_sigcontext { int sf_signo; /* signal number */ int sf_code; /* code */ struct sigcontext *sf_scp; /* SunOS user addr of sigcontext */ int sf_addr; /* SunOS compat, always 0 for now */ struct sigcontext sf_sc; /* actual sigcontext */ }; #ifdef DEBUG extern int sigdebug; extern int sigpid; #define SDB_FOLLOW 0x01 #define SDB_KSTACK 0x02 #define SDB_FPSTATE 0x04 #endif void sendsig_sigcontext(const ksiginfo_t *ksi, const sigset_t *mask) { struct lwp *l = curlwp; struct proc *p = l->l_proc; struct sigacts *ps = p->p_sigacts; struct sigframe_sigcontext *fp; struct trapframe *tf; int addr, onstack, oldsp, newsp, error; struct sigframe_sigcontext sf; int sig = ksi->ksi_signo; u_long code = KSI_TRAPCODE(ksi); sig_t catcher = SIGACTION(p, sig).sa_handler; tf = l->l_md.md_tf; oldsp = tf->tf_out[6]; /* * Compute new user stack addresses, subtract off * one signal frame, and align. */ onstack = (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 && (SIGACTION(p, sig).sa_flags & SA_ONSTACK) != 0; if (onstack) fp = (struct sigframe_sigcontext *) ((char *)l->l_sigstk.ss_sp + l->l_sigstk.ss_size); else fp = (struct sigframe_sigcontext *)oldsp; fp = (struct sigframe_sigcontext *)((int)(fp - 1) & ~7); #ifdef DEBUG if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid) printf("sendsig_sigcontext: %s[%d] sig %d newusp %p scp %p\n", p->p_comm, p->p_pid, sig, fp, &fp->sf_sc); #endif /* * Now set up the signal frame. We build it in kernel space * and then copy it out. We probably ought to just build it * directly in user space.... */ sf.sf_signo = sig; sf.sf_code = code; sf.sf_scp = 0; sf.sf_addr = 0; /* XXX */ /* * Build the signal context to be used by sigreturn. */ sf.sf_sc.sc_onstack = l->l_sigstk.ss_flags & SS_ONSTACK; sf.sf_sc.sc_mask = *mask; #ifdef COMPAT_13 /* * XXX We always have to save an old style signal mask because * XXX we might be delivering a signal to a process which will * XXX escape from the signal in a non-standard way and invoke * XXX sigreturn() directly. */ native_sigset_to_sigset13(mask, &sf.sf_sc.__sc_mask13); #endif sf.sf_sc.sc_sp = oldsp; sf.sf_sc.sc_pc = tf->tf_pc; sf.sf_sc.sc_npc = tf->tf_npc; sf.sf_sc.sc_psr = tf->tf_psr; sf.sf_sc.sc_g1 = tf->tf_global[1]; sf.sf_sc.sc_o0 = tf->tf_out[0]; /* * Put the stack in a consistent state before we whack away * at it. Note that write_user_windows may just dump the * registers into the pcb; we need them in the process's memory. * We also need to make sure that when we start the signal handler, * its %i6 (%fp), which is loaded from the newly allocated stack area, * joins seamlessly with the frame it was in when the signal occurred, * so that the debugger and _longjmp code can back up through it. */ sendsig_reset(l, sig); mutex_exit(p->p_lock); newsp = (int)fp - sizeof(struct rwindow); write_user_windows(); error = (rwindow_save(l) || copyout((void *)&sf, (void *)fp, sizeof sf) || suword(&((struct rwindow *)newsp)->rw_in[6], oldsp)); mutex_enter(p->p_lock); if (error) { /* * Process has trashed its stack; give it an illegal * instruction to halt it in its tracks. */ #ifdef DEBUG if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid) printf("sendsig_sigcontext: window save or copyout error\n"); #endif sigexit(l, SIGILL); /* NOTREACHED */ } #ifdef DEBUG if (sigdebug & SDB_FOLLOW) printf("sendsig_siginfo: %s[%d] sig %d scp %p\n", p->p_comm, p->p_pid, sig, &fp->sf_sc); #endif /* * Arrange to continue execution at the code copied out in exec(). * It needs the function to call in %g1, and a new stack pointer. */ switch (ps->sa_sigdesc[sig].sd_vers) { case 0: /* legacy on-stack sigtramp */ addr = (int)p->p_sigctx.ps_sigcode; break; case 1: addr = (int)ps->sa_sigdesc[sig].sd_tramp; break; default: /* Don't know what trampoline version; kill it. */ addr = 0; sigexit(l, SIGILL); } tf->tf_global[1] = (int)catcher; tf->tf_pc = addr; tf->tf_npc = addr + 4; tf->tf_out[6] = newsp; /* Remember that we're now on the signal stack. */ if (onstack) l->l_sigstk.ss_flags |= SS_ONSTACK; #ifdef DEBUG if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid) printf("sendsig: about to return to catcher\n"); #endif } /* * System call to cleanup state after a signal * has been taken. Reset signal mask and * stack state from context left by sendsig (above), * and return to the given trap frame (if there is one). * Check carefully to make sure that the user has not * modified the state to gain improper privileges or to cause * a machine fault. */ /* ARGSUSED */ int compat_16_sys___sigreturn14(struct lwp *l, const struct compat_16_sys___sigreturn14_args *uap, register_t *retval) { /* { syscallarg(struct sigcontext *) sigcntxp; } */ struct sigcontext sc, *scp; struct trapframe *tf; struct proc *p; int error; p = l->l_proc; /* First ensure consistent stack state (see sendsig). */ write_user_windows(); if (rwindow_save(l)) { mutex_enter(p->p_lock); sigexit(l, SIGILL); } #ifdef DEBUG if (sigdebug & SDB_FOLLOW) printf("sigreturn: %s[%d], sigcntxp %p\n", p->p_comm, p->p_pid, SCARG(uap, sigcntxp)); #endif if ((error = copyin(SCARG(uap, sigcntxp), &sc, sizeof sc)) != 0) return (error); scp = ≻ tf = l->l_md.md_tf; /* * Only the icc bits in the psr are used, so it need not be * verified. pc and npc must be multiples of 4. This is all * that is required; if it holds, just do it. */ if (((scp->sc_pc | scp->sc_npc) & 3) != 0) return (EINVAL); /* take only psr ICC field */ tf->tf_psr = (tf->tf_psr & ~PSR_ICC) | (scp->sc_psr & PSR_ICC); tf->tf_pc = scp->sc_pc; tf->tf_npc = scp->sc_npc; tf->tf_global[1] = scp->sc_g1; tf->tf_out[0] = scp->sc_o0; tf->tf_out[6] = scp->sc_sp; mutex_enter(p->p_lock); if (scp->sc_onstack & SS_ONSTACK) l->l_sigstk.ss_flags |= SS_ONSTACK; else l->l_sigstk.ss_flags &= ~SS_ONSTACK; /* Restore signal mask */ (void) sigprocmask1(l, SIG_SETMASK, &scp->sc_mask, 0); mutex_exit(p->p_lock); return (EJUSTRETURN); }