/* $NetBSD: zs.c,v 1.75 2015/10/30 16:21:46 tsutsui Exp $ */ /*- * Copyright (c) 1996 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Zilog Z8530 Dual UART driver (machine-dependent part) * * Runs two serial lines per chip using slave drivers. * Plain tty/async lines use the zs_async slave. * Sun keyboard/mouse uses the zs_kbd/zs_ms slaves. */ #include __KERNEL_RCSID(0, "$NetBSD: zs.c,v 1.75 2015/10/30 16:21:46 tsutsui Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ioconf.h" #include "kbd.h" /* NKBD */ #include "ms.h" /* NMS */ #include "zs.h" /* NZS */ /* Make life easier for the initialized arrays here. */ #if NZS < 3 #undef NZS #define NZS 3 #endif /* * Some warts needed by z8530tty.c - * The default parity REALLY needs to be the same as the PROM uses, * or you can not see messages done with printf during boot-up... */ int zs_def_cflag = (CREAD | CS8 | HUPCL); /* * The Sun provides a 4.9152 MHz clock to the ZS chips. */ #define PCLK (9600 * 512) /* PCLK pin input clock rate */ #define ZS_DELAY() /* The layout of this is hardware-dependent (padding, order). */ struct zschan { volatile uint8_t zc_csr; /* ctrl,status, and indirect access */ uint8_t zc_xxx0; volatile uint8_t zc_data; /* data */ uint8_t zc_xxx1; }; struct zsdevice { /* Yes, they are backwards. */ struct zschan zs_chan_b; struct zschan zs_chan_a; }; /* ZS channel used as the console device (if any) */ void *zs_conschan_get, *zs_conschan_put; /* Saved PROM mappings */ static struct zsdevice *zsaddr[NZS]; static uint8_t zs_init_reg[16] = { 0, /* 0: CMD (reset, etc.) */ 0, /* 1: No interrupts yet. */ 0, /* 2: IVECT */ ZSWR3_RX_8 | ZSWR3_RX_ENABLE, ZSWR4_CLK_X16 | ZSWR4_ONESB | ZSWR4_EVENP, ZSWR5_TX_8 | ZSWR5_TX_ENABLE, 0, /* 6: TXSYNC/SYNCLO */ 0, /* 7: RXSYNC/SYNCHI */ 0, /* 8: alias for data port */ ZSWR9_MASTER_IE | ZSWR9_NO_VECTOR, 0, /*10: Misc. TX/RX control bits */ ZSWR11_TXCLK_BAUD | ZSWR11_RXCLK_BAUD, ((PCLK/32)/9600)-2, /*12: BAUDLO (default=9600) */ 0, /*13: BAUDHI (default=9600) */ ZSWR14_BAUD_ENA | ZSWR14_BAUD_FROM_PCLK, ZSWR15_BREAK_IE, }; /* Console ops */ static int zscngetc(dev_t); static void zscnputc(dev_t, int); static void zscnpollc(dev_t, int); struct consdev zs_consdev = { .cn_getc = zscngetc, .cn_putc = zscnputc, .cn_pollc = zscnpollc, }; /**************************************************************** * Autoconfig ****************************************************************/ /* Definition of the driver for autoconfig. */ static int zs_match_sbus(device_t, cfdata_t, void *); static void zs_attach_sbus(device_t, device_t, void *); static int zs_match_fhc(device_t, cfdata_t, void *); static void zs_attach_fhc(device_t, device_t, void *); static void zs_attach(struct zsc_softc *, struct zsdevice *, int); static int zs_print(void *, const char *); CFATTACH_DECL_NEW(zs, sizeof(struct zsc_softc), zs_match_sbus, zs_attach_sbus, NULL, NULL); CFATTACH_DECL_NEW(zs_fhc, sizeof(struct zsc_softc), zs_match_fhc, zs_attach_fhc, NULL, NULL); /* Interrupt handlers. */ int zscheckintr(void *); static int zshard(void *); static void zssoft(void *); static int zs_get_speed(struct zs_chanstate *); /* Console device support */ static int zs_console_flags(int, int, int); /* Power management hooks */ int zs_enable(struct zs_chanstate *); void zs_disable(struct zs_chanstate *); /* from dev/ic/z8530tty.c */ struct tty *zstty_get_tty_from_dev(device_t); /* * Is the zs chip present? */ static int zs_match_sbus(device_t parent, cfdata_t cf, void *aux) { struct sbus_attach_args *sa = aux; if (strcmp(cf->cf_name, sa->sa_name) != 0) return (0); return (1); } static int zs_match_fhc(device_t parent, cfdata_t cf, void *aux) { struct fhc_attach_args *fa = aux; if (strcmp(cf->cf_name, fa->fa_name) != 0) return (0); return (1); } static void zs_attach_sbus(device_t parent, device_t self, void *aux) { struct zsc_softc *zsc = device_private(self); struct sbus_attach_args *sa = aux; bus_space_handle_t bh; int zs_unit; zsc->zsc_dev = self; zs_unit = device_unit(self); if (sa->sa_nintr == 0) { aprint_error(": no interrupt lines\n"); return; } /* Use the mapping setup by the Sun PROM if possible. */ if (zsaddr[zs_unit] == NULL) { /* Only map registers once. */ if (sa->sa_npromvaddrs) { /* * We're converting from a 32-bit pointer to a 64-bit * pointer. Since the 32-bit entity is negative, but * the kernel is still mapped into the lower 4GB * range, this needs to be zero-extended. * * XXXXX If we map the kernel and devices into the * high 4GB range, this needs to be changed to * sign-extend the address. */ sparc_promaddr_to_handle(sa->sa_bustag, sa->sa_promvaddrs[0], &bh); } else { if (sbus_bus_map(sa->sa_bustag, sa->sa_slot, sa->sa_offset, sa->sa_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) { aprint_error(": cannot map registers\n"); return; } } zsaddr[zs_unit] = bus_space_vaddr(sa->sa_bustag, bh); } zsc->zsc_bustag = sa->sa_bustag; zsc->zsc_dmatag = sa->sa_dmatag; zsc->zsc_promunit = prom_getpropint(sa->sa_node, "slave", -2); zsc->zsc_node = sa->sa_node; aprint_normal("\n"); zs_attach(zsc, zsaddr[zs_unit], sa->sa_pri); } static void zs_attach_fhc(device_t parent, device_t self, void *aux) { struct zsc_softc *zsc = device_private(self); struct fhc_attach_args *fa = aux; bus_space_handle_t bh; int zs_unit; zsc->zsc_dev = self; zs_unit = device_unit(self); if (fa->fa_nreg < 1 && fa->fa_npromvaddrs < 1) { printf(": no registers\n"); return; } if (fa->fa_nintr == 0) { aprint_error(": no interrupt lines\n"); return; } /* Use the mapping setup by the Sun PROM if possible. */ if (zsaddr[zs_unit] == NULL) { /* Only map registers once. */ if (fa->fa_npromvaddrs) { /* * We're converting from a 32-bit pointer to a 64-bit * pointer. Since the 32-bit entity is negative, but * the kernel is still mapped into the lower 4GB * range, this needs to be zero-extended. * * XXXXX If we map the kernel and devices into the * high 4GB range, this needs to be changed to * sign-extend the address. */ sparc_promaddr_to_handle(fa->fa_bustag, fa->fa_promvaddrs[0], &bh); } else { if (fhc_bus_map(fa->fa_bustag, fa->fa_reg[0].fbr_slot, fa->fa_reg[0].fbr_offset, fa->fa_reg[0].fbr_size, BUS_SPACE_MAP_LINEAR, &bh) != 0) { aprint_error(": cannot map registers\n"); return; } } zsaddr[zs_unit] = bus_space_vaddr(fa->fa_bustag, bh); } zsc->zsc_bustag = fa->fa_bustag; zsc->zsc_dmatag = NULL; zsc->zsc_promunit = prom_getpropint(fa->fa_node, "slave", -2); zsc->zsc_node = fa->fa_node; aprint_normal("\n"); zs_attach(zsc, zsaddr[zs_unit], fa->fa_intr[0]); } /* * Attach a found zs. * * USE ROM PROPERTIES port-a-ignore-cd AND port-b-ignore-cd FOR * SOFT CARRIER, AND keyboard PROPERTY FOR KEYBOARD/MOUSE? */ static void zs_attach(struct zsc_softc *zsc, struct zsdevice *zsd, int pri) { struct zsc_attach_args zsc_args; struct zs_chanstate *cs; int channel; if (zsd == NULL) { aprint_error(": configuration incomplete\n"); return; } /* * Initialize software state for each channel. */ for (channel = 0; channel < 2; channel++) { struct zschan *zc; device_t child; zsc_args.channel = channel; cs = &zsc->zsc_cs_store[channel]; zsc->zsc_cs[channel] = cs; zs_lock_init(cs); cs->cs_channel = channel; cs->cs_private = NULL; cs->cs_ops = &zsops_null; cs->cs_brg_clk = PCLK / 16; zc = (channel == 0) ? &zsd->zs_chan_a : &zsd->zs_chan_b; zsc_args.consdev = NULL; zsc_args.hwflags = zs_console_flags(zsc->zsc_promunit, zsc->zsc_node, channel); if (zsc_args.hwflags & ZS_HWFLAG_CONSOLE) { zsc_args.hwflags |= ZS_HWFLAG_USE_CONSDEV; zsc_args.consdev = &zs_consdev; } if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) { zs_conschan_get = zc; } if ((zsc_args.hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) { zs_conschan_put = zc; } /* Children need to set cn_dev, etc */ cs->cs_reg_csr = &zc->zc_csr; cs->cs_reg_data = &zc->zc_data; memcpy(cs->cs_creg, zs_init_reg, 16); memcpy(cs->cs_preg, zs_init_reg, 16); /* XXX: Consult PROM properties for this?! */ cs->cs_defspeed = zs_get_speed(cs); cs->cs_defcflag = zs_def_cflag; /* Make these correspond to cs_defcflag (-crtscts) */ cs->cs_rr0_dcd = ZSRR0_DCD; cs->cs_rr0_cts = 0; cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; /* * Clear the master interrupt enable. * The INTENA is common to both channels, * so just do it on the A channel. */ if (channel == 0) { zs_write_reg(cs, 9, 0); } /* * Look for a child driver for this channel. * The child attach will setup the hardware. */ child = config_found(zsc->zsc_dev, (void *)&zsc_args, zs_print); if (child == NULL) { /* No sub-driver. Just reset it. */ uint8_t reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; zs_lock_chan(cs); zs_write_reg(cs, 9, reset); zs_unlock_chan(cs); } #if (NKBD > 0) || (NMS > 0) /* * If this was a zstty it has a keyboard * property on it we need to attach the * sunkbd and sunms line disciplines. */ if (child && (device_is_a(child, "zstty")) && (prom_getproplen(zsc->zsc_node, "keyboard") == 0)) { struct kbd_ms_tty_attach_args kma; struct tty *tp; kma.kmta_tp = tp = zstty_get_tty_from_dev(child); kma.kmta_dev = tp->t_dev; kma.kmta_consdev = zsc_args.consdev; /* Attach 'em if we got 'em. */ #if (NKBD > 0) if (channel == 0) { kma.kmta_name = "keyboard"; config_found(child, (void *)&kma, NULL); } #endif #if (NMS > 0) if (channel == 1) { kma.kmta_name = "mouse"; config_found(child, (void *)&kma, NULL); } #endif } #endif } /* * Now safe to install interrupt handlers. Note the arguments * to the interrupt handlers aren't used. Note, we only do this * once since both SCCs interrupt at the same level and vector. */ bus_intr_establish(zsc->zsc_bustag, pri, IPL_SERIAL, zshard, zsc); if (!(zsc->zsc_softintr = softint_establish(SOFTINT_SERIAL, zssoft, zsc))) panic("zsattach: could not establish soft interrupt"); evcnt_attach_dynamic(&zsc->zsc_intrcnt, EVCNT_TYPE_INTR, NULL, device_xname(zsc->zsc_dev), "intr"); /* * Set the master interrupt enable and interrupt vector. * (common to both channels, do it on A) */ cs = zsc->zsc_cs[0]; zs_lock_chan(cs); /* interrupt vector */ zs_write_reg(cs, 2, zs_init_reg[2]); /* master interrupt control (enable) */ zs_write_reg(cs, 9, zs_init_reg[9]); zs_unlock_chan(cs); } static int zs_print(void *aux, const char *name) { struct zsc_attach_args *args = aux; if (name != NULL) aprint_normal("%s: ", name); if (args->channel != -1) aprint_normal(" channel %d", args->channel); return (UNCONF); } static int zshard(void *arg) { struct zsc_softc *zsc = arg; int rr3, rval; rval = 0; while ((rr3 = zsc_intr_hard(zsc))) { /* Count up the interrupts. */ rval |= rr3; zsc->zsc_intrcnt.ev_count++; } if (((zsc->zsc_cs[0] && zsc->zsc_cs[0]->cs_softreq) || (zsc->zsc_cs[1] && zsc->zsc_cs[1]->cs_softreq)) && zsc->zsc_softintr) { softint_schedule(zsc->zsc_softintr); } return (rval); } int zscheckintr(void *arg) { struct zsc_softc *zsc; int unit, rval; rval = 0; for (unit = 0; unit < zs_cd.cd_ndevs; unit++) { zsc = device_lookup_private(&zs_cd, unit); if (zsc == NULL) continue; rval = (zshard((void *)zsc) || rval); } return (rval); } /* * We need this only for TTY_DEBUG purposes. */ static void zssoft(void *arg) { struct zsc_softc *zsc = arg; #if 0 /* not yet */ /* Make sure we call the tty layer with tty_lock held. */ mutex_spin_enter(&tty_lock); #endif (void)zsc_intr_soft(zsc); #ifdef TTY_DEBUG { struct zstty_softc *zst0 = zsc->zsc_cs[0]->cs_private; struct zstty_softc *zst1 = zsc->zsc_cs[1]->cs_private; if (zst0->zst_overflows || zst1->zst_overflows ) { struct trapframe *frame = (struct trapframe *)arg; printf("zs silo overflow from %p\n", (long)frame->tf_pc); } } #endif #if 0 /* not yet */ mutex_spin_exit(&tty_lock); #endif } /* * Compute the current baud rate given a ZS channel. */ static int zs_get_speed(struct zs_chanstate *cs) { int tconst; tconst = zs_read_reg(cs, 12); tconst |= zs_read_reg(cs, 13) << 8; return (TCONST_TO_BPS(cs->cs_brg_clk, tconst)); } /* * MD functions for setting the baud rate and control modes. */ int zs_set_speed(struct zs_chanstate *cs, int bps /* bits per second */) { int tconst, real_bps; if (bps == 0) return (0); #ifdef DIAGNOSTIC if (cs->cs_brg_clk == 0) panic("zs_set_speed"); #endif tconst = BPS_TO_TCONST(cs->cs_brg_clk, bps); if (tconst < 0) return (EINVAL); /* Convert back to make sure we can do it. */ real_bps = TCONST_TO_BPS(cs->cs_brg_clk, tconst); /* XXX - Allow some tolerance here? */ if (real_bps != bps) return (EINVAL); cs->cs_preg[12] = tconst; cs->cs_preg[13] = tconst >> 8; /* Caller will stuff the pending registers. */ return (0); } int zs_set_modes(struct zs_chanstate *cs, int cflag) { /* * Output hardware flow control on the chip is horrendous: * if carrier detect drops, the receiver is disabled, and if * CTS drops, the transmitter is stoped IN MID CHARACTER! * Therefore, NEVER set the HFC bit, and instead use the * status interrupt to detect CTS changes. */ zs_lock_chan(cs); cs->cs_rr0_pps = 0; if ((cflag & (CLOCAL | MDMBUF)) != 0) { cs->cs_rr0_dcd = 0; if ((cflag & MDMBUF) == 0) cs->cs_rr0_pps = ZSRR0_DCD; } else cs->cs_rr0_dcd = ZSRR0_DCD; if ((cflag & CRTSCTS) != 0) { cs->cs_wr5_dtr = ZSWR5_DTR; cs->cs_wr5_rts = ZSWR5_RTS; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & CDTRCTS) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_CTS; } else if ((cflag & MDMBUF) != 0) { cs->cs_wr5_dtr = 0; cs->cs_wr5_rts = ZSWR5_DTR; cs->cs_rr0_cts = ZSRR0_DCD; } else { cs->cs_wr5_dtr = ZSWR5_DTR | ZSWR5_RTS; cs->cs_wr5_rts = 0; cs->cs_rr0_cts = 0; } zs_unlock_chan(cs); /* Caller will stuff the pending registers. */ return (0); } /* * Read or write the chip with suitable delays. */ u_char zs_read_reg(struct zs_chanstate *cs, u_char reg) { u_char val; *cs->cs_reg_csr = reg; ZS_DELAY(); val = *cs->cs_reg_csr; ZS_DELAY(); return (val); } void zs_write_reg(struct zs_chanstate *cs, u_char reg, u_char val) { *cs->cs_reg_csr = reg; ZS_DELAY(); *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_csr(struct zs_chanstate *cs) { u_char val; val = *cs->cs_reg_csr; ZS_DELAY(); return (val); } void zs_write_csr(struct zs_chanstate *cs, u_char val) { *cs->cs_reg_csr = val; ZS_DELAY(); } u_char zs_read_data(struct zs_chanstate *cs) { u_char val; val = *cs->cs_reg_data; ZS_DELAY(); return (val); } void zs_write_data(struct zs_chanstate *cs, u_char val) { *cs->cs_reg_data = val; ZS_DELAY(); } /**************************************************************** * Console support functions (Sun specific!) * Note: this code is allowed to know about the layout of * the chip registers, and uses that to keep things simple. * XXX - I think I like the mvme167 code better. -gwr ****************************************************************/ extern void Debugger(void); /* * Handle user request to enter kernel debugger. */ void zs_abort(struct zs_chanstate *cs) { volatile struct zschan *zc = zs_conschan_get; int rr0; /* Wait for end of break to avoid PROM abort. */ /* XXX - Limit the wait? */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while (rr0 & ZSRR0_BREAK); #if defined(KGDB) zskgdb(cs); #elif defined(DDB) { extern int db_active; if (!db_active) Debugger(); else /* Debugger is probably hozed */ callrom(); } #else printf("stopping on keyboard abort\n"); callrom(); #endif } /* * Polled input char. */ int zs_getc(void *arg) { volatile struct zschan *zc = arg; int s, c, rr0; s = splhigh(); /* Wait for a character to arrive. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_RX_READY) == 0); c = zc->zc_data; ZS_DELAY(); splx(s); /* * This is used by the kd driver to read scan codes, * so don't translate '\r' ==> '\n' here... */ return (c); } /* * Polled output char. */ void zs_putc(void *arg, int c) { volatile struct zschan *zc = arg; int s, rr0; s = splhigh(); /* Wait for transmitter to become ready. */ do { rr0 = zc->zc_csr; ZS_DELAY(); } while ((rr0 & ZSRR0_TX_READY) == 0); /* * Send the next character. * Now you'd think that this could be followed by a ZS_DELAY() * just like all the other chip accesses, but it turns out that * the `transmit-ready' interrupt isn't de-asserted until * some period of time after the register write completes * (more than a couple instructions). So to avoid stray * interrupts we put in the 2us delay regardless of CPU model. */ zc->zc_data = c; delay(2); splx(s); } /*****************************************************************/ /* * Polled console input putchar. */ static int zscngetc(dev_t dev) { return (zs_getc(zs_conschan_get)); } /* * Polled console output putchar. */ static void zscnputc(dev_t dev, int c) { zs_putc(zs_conschan_put, c); } int swallow_zsintrs; static void zscnpollc(dev_t dev, int on) { /* * Need to tell zs driver to acknowledge all interrupts or we get * annoying spurious interrupt messages. This is because mucking * with spl() levels during polling does not prevent interrupts from * being generated. */ if (on) swallow_zsintrs++; else swallow_zsintrs--; } int zs_console_flags(int promunit, int node, int channel) { int cookie, flags = 0; char buf[255]; /* * We'll just do the OBP grovelling down here since that's * the only type of firmware we support. */ /* Default to channel 0 if there are no explicit prom args */ cookie = 0; if (node == prom_instance_to_package(prom_stdin())) { if (prom_getoption("input-device", buf, sizeof buf) == 0 && strcmp("ttyb", buf) == 0) cookie = 1; if (channel == cookie) flags |= ZS_HWFLAG_CONSOLE_INPUT; } if (node == prom_instance_to_package(prom_stdout())) { if (prom_getoption("output-device", buf, sizeof buf) == 0 && strcmp("ttyb", buf) == 0) cookie = 1; if (channel == cookie) flags |= ZS_HWFLAG_CONSOLE_OUTPUT; } return (flags); }