/* $NetBSD: sun2.c,v 1.11 2009/12/11 18:42:05 tsutsui Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Gordon W. Ross and Matthew Fredette. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Standalone functions specific to the Sun2. */ /* Need to avoid conflicts on these: */ #define get_pte sun2_get_pte #define set_pte sun2_set_pte #define get_segmap sun2_get_segmap #define set_segmap sun2_set_segmap /* * We need to get the sun2 NBSG definition, even if we're * building this with a different sun68k target. */ #include #include #include #include #include #include #ifdef notyet #include #else #define VME16_BASE MBIO_BASE #define VME16_MASK MBIO_MASK #endif #include #include #include #include "libsa.h" #include "dvma.h" #include "saio.h" /* enum MAPTYPES */ #define OBIO_MASK 0xFFFFFF u_int get_pte(vaddr_t); void set_pte(vaddr_t, u_int); void dvma2_init(void); char * dvma2_alloc(int); void dvma2_free(char *, int); char * dvma2_mapin(char *, int); void dvma2_mapout(char *, int); char * dev2_mapin(int, u_long, int); struct mapinfo { int maptype; int pgtype; u_int base; u_int mask; }; #ifdef notyet struct mapinfo sun2_mapinfo[MAP__NTYPES] = { /* On-board memory, I/O */ { MAP_MAINMEM, PGT_OBMEM, 0, ~0 }, { MAP_OBIO, PGT_OBIO, 0, OBIO_MASK }, /* Multibus memory, I/O */ { MAP_MBMEM, PGT_MBMEM, MBMEM_BASE, MBMEM_MASK }, { MAP_MBIO, PGT_MBIO, MBIO_BASE, MBIO_MASK }, /* VME A16 */ { MAP_VME16A16D, PGT_VME_D16, VME16_BASE, VME16_MASK }, { MAP_VME16A32D, 0, 0, 0 }, /* VME A24 */ { MAP_VME24A16D, 0, 0, 0 }, { MAP_VME24A32D, 0, 0, 0 }, /* VME A32 */ { MAP_VME32A16D, 0, 0, 0 }, { MAP_VME32A32D, 0, 0, 0 }, }; #endif /* The virtual address we will use for PROM device mappings. */ int sun2_devmap = SUN3_MONSHORTSEG; char * dev2_mapin(int maptype, u_long physaddr, int length) { #ifdef notyet u_int i, pa, pte, pgva, va; if ((sun2_devmap + length) > SUN3_MONSHORTPAGE) panic("dev2_mapin: length=%d", length); for (i = 0; i < MAP__NTYPES; i++) if (sun2_mapinfo[i].maptype == maptype) goto found; panic("dev2_mapin: bad maptype"); found: if (physaddr & ~(sun2_mapinfo[i].mask)) panic("dev2_mapin: bad address"); pa = sun2_mapinfo[i].base += physaddr; pte = PA_PGNUM(pa) | PG_PERM | sun2_mapinfo[i].pgtype; va = pgva = sun2_devmap; do { set_pte(pgva, pte); pgva += NBPG; pte += 1; length -= NBPG; } while (length > 0); sun2_devmap = pgva; va += (physaddr & PGOFSET); #ifdef DEBUG_PROM if (debug) printf("dev2_mapin: va=0x%x pte=0x%x\n", va, get_pte(va)); #endif return ((char*)va); #else panic("dev2_mapin"); return(NULL); #endif } /***************************************************************** * DVMA support */ /* * The easiest way to deal with the need for DVMA mappings is to * create a DVMA alias mapping of the entire address range used by * the boot program. That way, dvma_mapin can just compute the * DVMA alias address, and dvma_mapout does nothing. * * Note that this assumes that standalone programs will do I/O * operations only within range (SA_MIN_VA .. SA_MAX_VA) checked. */ #define DVMA_BASE 0x00f00000 #define DVMA_MAPLEN 0x38000 /* 256K - 32K (save MONSHORTSEG) */ #define SA_MIN_VA 0x220000 #define SA_MAX_VA (SA_MIN_VA + DVMA_MAPLEN) /* This points to the end of the free DVMA space. */ u_int dvma2_end = DVMA_BASE + DVMA_MAPLEN; void dvma2_init(void) { int segva, dmava, sme; segva = SA_MIN_VA; dmava = DVMA_BASE; while (segva < SA_MAX_VA) { sme = get_segmap(segva); set_segmap(dmava, sme); segva += NBSG; dmava += NBSG; } } /* Convert a local address to a DVMA address. */ char * dvma2_mapin(char *addr, int len) { int va = (int)addr; /* Make sure the address is in the DVMA map. */ if ((va < SA_MIN_VA) || (va >= SA_MAX_VA)) panic("dvma2_mapin: 0x%x outside 0x%x..0x%x", va, SA_MIN_VA, SA_MAX_VA); va -= SA_MIN_VA; va += DVMA_BASE; return ((char *) va); } /* Destroy a DVMA address alias. */ void dvma2_mapout(char *addr, int len) { int va = (int)addr; /* Make sure the address is in the DVMA map. */ if ((va < DVMA_BASE) || (va >= (DVMA_BASE + DVMA_MAPLEN))) panic("dvma2_mapout"); } char * dvma2_alloc(int len) { len = m68k_round_page(len); dvma2_end -= len; return((char*)dvma2_end); } void dvma2_free(char *dvma, int len) { /* not worth the trouble */ } /***************************************************************** * Control space stuff... */ u_int get_pte(vaddr_t va) { u_int pte; pte = get_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va)); if (pte & PG_VALID) { /* * This clears bit 30 (the kernel readable bit, which * should always be set), bit 28 (which should always * be set) and bit 26 (the user writable bit, which we * always have tracking the kernel writable bit). In * the protection, this leaves bit 29 (the kernel * writable bit) and bit 27 (the user readable bit). * See pte2.h for more about this hack. */ pte &= ~(0x54000000); /* * Flip bit 27 (the user readable bit) to become bit * 27 (the PG_SYSTEM bit). */ pte ^= (PG_SYSTEM); } return (pte); } void set_pte(vaddr_t va, u_int pte) { if (pte & PG_VALID) { /* Clear bit 26 (the user writable bit). */ pte &= (~0x04000000); /* * Flip bit 27 (the PG_SYSTEM bit) to become bit 27 * (the user readable bit). */ pte ^= (PG_SYSTEM); /* * Always set bits 30 (the kernel readable bit) and * bit 28, and set bit 26 (the user writable bit) iff * bit 29 (the kernel writable bit) is set *and* bit * 27 (the user readable bit) is set. This latter bit * of logic is expressed in the bizarre second term * below, chosen because it needs no branches. */ #if (PG_WRITE >> 2) != PG_SYSTEM #error "PG_WRITE and PG_SYSTEM definitions don't match!" #endif pte |= 0x50000000 | ((((pte & PG_WRITE) >> 2) & pte) >> 1); } set_control_word(CONTROL_ADDR_BUILD(PGMAP_BASE, va), pte); } int get_segmap(vaddr_t va) { va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va); return (get_control_byte(va)); } void set_segmap(vaddr_t va, int sme) { va = CONTROL_ADDR_BUILD(SEGMAP_BASE, va); set_control_byte(va, sme); } /* * Copy the IDPROM contents into the passed buffer. * The caller (idprom.c) will do the checksum. */ void sun2_getidprom(u_char *dst) { vaddr_t src; /* control space address */ int len, x; src = IDPROM_BASE; len = sizeof(struct idprom); do { x = get_control_byte(src); src += NBPG; *dst++ = x; } while (--len > 0); } /***************************************************************** * Init our function pointers, etc. */ /* * For booting, the PROM in fredette's Sun 2/120 doesn't map * much main memory, and what is mapped is mapped strangely. * Low virtual memory is mapped like: * * 0x000000 - 0x0bffff virtual -> 0x000000 - 0x0bffff physical * 0x0c0000 - 0x0fffff virtual -> invalid * 0x100000 - 0x13ffff virtual -> 0x0c0000 - 0x0fffff physical * 0x200800 - 0x3fffff virtual -> 0x200800 - 0x3fffff physical * * I think the SunOS authors wanted to load kernels starting at * physical zero, and assumed that kernels would be less * than 768K (0x0c0000) long. Also, the PROM maps physical * 0x0c0000 - 0x0fffff into DVMA space, so we can't take the * easy road and just add more mappings to use that physical * memory while loading (the PROM might do DMA there). * * What we do, then, is assume a 4MB machine (you'll really * need that to run NetBSD at all anyways), and we map two * chunks of physical and virtual space: * * 0x400000 - 0x4bffff virtual -> 0x000000 - 0x0bffff physical * 0x4c0000 - 0x600000 virtual -> 0x2c0000 - 0x3fffff physical * * And then we load starting at virtual 0x400000. We will do * all of this mapping just by copying PMEGs. * * After the load is done, but before we enter the kernel, we're * done with the PROM, so we copy the part of the kernel that * got loaded at physical 0x2c0000 down to physical 0x0c0000. * This can't just be a PMEG copy; we've actually got to move * bytes in physical memory. * * These two chunks of physical and virtual space are defined * in macros below. Some of the macros are only for completeness: */ #define MEM_CHUNK0_SIZE (0x0c0000) #define MEM_CHUNK0_LOAD_PHYS (0x000000) #define MEM_CHUNK0_LOAD_VIRT (0x400000) #define MEM_CHUNK0_LOAD_VIRT_PROM MEM_CHUNK0_LOAD_PHYS #define MEM_CHUNK0_COPY_PHYS MEM_CHUNK0_LOAD_PHYS #define MEM_CHUNK0_COPY_VIRT MEM_CHUNK0_COPY_PHYS #define MEM_CHUNK1_SIZE (0x140000) #define MEM_CHUNK1_LOAD_PHYS (0x2c0000) #define MEM_CHUNK1_LOAD_VIRT (MEM_CHUNK0_LOAD_VIRT + MEM_CHUNK0_SIZE) #define MEM_CHUNK1_LOAD_VIRT_PROM MEM_CHUNK1_LOAD_PHYS #define MEM_CHUNK1_COPY_PHYS (MEM_CHUNK0_LOAD_PHYS + MEM_CHUNK0_SIZE) #define MEM_CHUNK1_COPY_VIRT MEM_CHUNK1_COPY_PHYS /* Maps memory for loading. */ u_long sun2_map_mem_load(void) { vaddr_t off; /* Map chunk zero for loading. */ for(off = 0; off < MEM_CHUNK0_SIZE; off += NBSG) set_segmap(MEM_CHUNK0_LOAD_VIRT + off, get_segmap(MEM_CHUNK0_LOAD_VIRT_PROM + off)); /* Map chunk one for loading. */ for(off = 0; off < MEM_CHUNK1_SIZE; off += NBSG) set_segmap(MEM_CHUNK1_LOAD_VIRT + off, get_segmap(MEM_CHUNK1_LOAD_VIRT_PROM + off)); /* Tell our caller where in virtual space to load. */ return MEM_CHUNK0_LOAD_VIRT; } /* Remaps memory for running. */ void * sun2_map_mem_run(void *entry) { vaddr_t off, off_end; int sme; u_int pte; /* Chunk zero is already mapped and copied. */ /* Chunk one needs to be mapped and copied. */ pte = (get_pte(0) & ~PG_FRAME); for(off = 0; off < MEM_CHUNK1_SIZE; ) { /* * We use the PMEG immediately before the * segment we're copying in the PROM virtual * mapping of the chunk. If this is the first * segment, this is the PMEG the PROM used to * map 0x2b8000 virtual to 0x2b8000 physical, * which I'll assume is unused. For the second * and subsequent segments, this will be the * PMEG used to map the previous segment, which * is now (since we already copied it) unused. */ sme = get_segmap((MEM_CHUNK1_LOAD_VIRT_PROM + off) - NBSG); set_segmap(MEM_CHUNK1_COPY_VIRT + off, sme); /* Set the PTEs in this new PMEG. */ for(off_end = off + NBSG; off < off_end; off += NBPG) set_pte(MEM_CHUNK1_COPY_VIRT + off, pte | PA_PGNUM(MEM_CHUNK1_COPY_PHYS + off)); /* Copy this segment. */ memcpy((void *)(MEM_CHUNK1_COPY_VIRT + (off - NBSG)), (void *)(MEM_CHUNK1_LOAD_VIRT + (off - NBSG)), NBSG); } /* Tell our caller where in virtual space to enter. */ return ((char *)entry) - MEM_CHUNK0_LOAD_VIRT; } void sun2_init(void) { /* Set the function pointers. */ dev_mapin_p = dev2_mapin; dvma_alloc_p = dvma2_alloc; dvma_free_p = dvma2_free; dvma_mapin_p = dvma2_mapin; dvma_mapout_p = dvma2_mapout; /* Prepare DVMA segment. */ dvma2_init(); }