/* $NetBSD: ipmi.c,v 1.64.10.1 2020/08/18 09:41:10 martin Exp $ */ /* * Copyright (c) 2006 Manuel Bouyer. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /* * Copyright (c) 2005 Jordan Hargrave * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.64.10.1 2020/08/18 09:41:10 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct ipmi_sensor { uint8_t *i_sdr; int i_num; int i_stype; int i_etype; char i_envdesc[64]; int i_envtype; /* envsys compatible type */ int i_envnum; /* envsys index */ sysmon_envsys_lim_t i_limits, i_deflims; uint32_t i_props, i_defprops; SLIST_ENTRY(ipmi_sensor) i_list; int32_t i_prevval; /* feed rnd source on change */ }; int ipmi_nintr; int ipmi_dbg = 0; int ipmi_enabled = 0; #define SENSOR_REFRESH_RATE (hz / 2) #define SMBIOS_TYPE_IPMI 0x26 /* * Format of SMBIOS IPMI Flags * * bit0: interrupt trigger mode (1=level, 0=edge) * bit1: interrupt polarity (1=active high, 0=active low) * bit2: reserved * bit3: address LSB (1=odd,0=even) * bit4: interrupt (1=specified, 0=not specified) * bit5: reserved * bit6/7: register spacing (1,4,2,err) */ #define SMIPMI_FLAG_IRQLVL (1L << 0) #define SMIPMI_FLAG_IRQEN (1L << 3) #define SMIPMI_FLAG_ODDOFFSET (1L << 4) #define SMIPMI_FLAG_IFSPACING(x) (((x)>>6)&0x3) #define IPMI_IOSPACING_BYTE 0 #define IPMI_IOSPACING_WORD 2 #define IPMI_IOSPACING_DWORD 1 #define IPMI_BTMSG_LEN 0 #define IPMI_BTMSG_NFLN 1 #define IPMI_BTMSG_SEQ 2 #define IPMI_BTMSG_CMD 3 #define IPMI_BTMSG_CCODE 4 #define IPMI_BTMSG_DATASND 4 #define IPMI_BTMSG_DATARCV 5 #define IPMI_MSG_NFLN 0 #define IPMI_MSG_CMD 1 #define IPMI_MSG_CCODE 2 #define IPMI_MSG_DATASND 2 #define IPMI_MSG_DATARCV 3 #define IPMI_SENSOR_TYPE_TEMP 0x0101 #define IPMI_SENSOR_TYPE_VOLT 0x0102 #define IPMI_SENSOR_TYPE_FAN 0x0104 #define IPMI_SENSOR_TYPE_INTRUSION 0x6F05 #define IPMI_SENSOR_TYPE_PWRSUPPLY 0x6F08 #define IPMI_NAME_UNICODE 0x00 #define IPMI_NAME_BCDPLUS 0x01 #define IPMI_NAME_ASCII6BIT 0x02 #define IPMI_NAME_ASCII8BIT 0x03 #define IPMI_ENTITY_PWRSUPPLY 0x0A #define IPMI_SENSOR_SCANNING_ENABLED (1L << 6) #define IPMI_SENSOR_UNAVAILABLE (1L << 5) #define IPMI_INVALID_SENSOR_P(x) \ (((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \ != IPMI_SENSOR_SCANNING_ENABLED) #define IPMI_SDR_TYPEFULL 1 #define IPMI_SDR_TYPECOMPACT 2 #define byteof(x) ((x) >> 3) #define bitof(x) (1L << ((x) & 0x7)) #define TB(b,m) (data[2+byteof(b)] & bitof(b)) #define dbg_printf(lvl, fmt...) \ if (ipmi_dbg >= lvl) \ printf(fmt); #define dbg_dump(lvl, msg, len, buf) \ if (len && ipmi_dbg >= lvl) \ dumpb(msg, len, (const uint8_t *)(buf)); long signextend(unsigned long, int); SLIST_HEAD(ipmi_sensors_head, ipmi_sensor); struct ipmi_sensors_head ipmi_sensor_list = SLIST_HEAD_INITIALIZER(&ipmi_sensor_list); void dumpb(const char *, int, const uint8_t *); int read_sensor(struct ipmi_softc *, struct ipmi_sensor *); int add_sdr_sensor(struct ipmi_softc *, uint8_t *); int get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t, uint8_t, uint8_t, void *, uint16_t *); int get_sdr(struct ipmi_softc *, uint16_t, uint16_t *); char *ipmi_buf_acquire(struct ipmi_softc *, size_t); void ipmi_buf_release(struct ipmi_softc *, char *); int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*); int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *); void ipmi_delay(struct ipmi_softc *, int); int ipmi_watchdog_setmode(struct sysmon_wdog *); int ipmi_watchdog_tickle(struct sysmon_wdog *); void ipmi_dotickle(struct ipmi_softc *); int ipmi_intr(void *); int ipmi_match(device_t, cfdata_t, void *); void ipmi_attach(device_t, device_t, void *); static int ipmi_detach(device_t, int); long ipmi_convert(uint8_t, struct sdrtype1 *, long); void ipmi_sensor_name(char *, int, uint8_t, uint8_t *); /* BMC Helper Functions */ uint8_t bmc_read(struct ipmi_softc *, int); void bmc_write(struct ipmi_softc *, int, uint8_t); int bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *); int bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t); int bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t); void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *); void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *); int getbits(uint8_t *, int, int); int ipmi_sensor_type(int, int, int); void ipmi_smbios_probe(struct smbios_ipmi *, struct ipmi_attach_args *); void ipmi_refresh_sensors(struct ipmi_softc *); int ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *); void ipmi_unmap_regs(struct ipmi_softc *); void *scan_sig(long, long, int, int, const void *); int32_t ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *); void ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *, sysmon_envsys_lim_t *, uint32_t *); void ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *, sysmon_envsys_lim_t *, uint32_t *); void ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *, sysmon_envsys_lim_t *, uint32_t *); int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *, envsys_data_t *, uint8_t *); int add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int, int, int, int, const char *); bool ipmi_suspend(device_t, const pmf_qual_t *); struct ipmi_if kcs_if = { "KCS", IPMI_IF_KCS_NREGS, cmn_buildmsg, kcs_sendmsg, kcs_recvmsg, kcs_reset, kcs_probe, }; struct ipmi_if smic_if = { "SMIC", IPMI_IF_SMIC_NREGS, cmn_buildmsg, smic_sendmsg, smic_recvmsg, smic_reset, smic_probe, }; struct ipmi_if bt_if = { "BT", IPMI_IF_BT_NREGS, bt_buildmsg, bt_sendmsg, bt_recvmsg, bt_reset, bt_probe, }; struct ipmi_if *ipmi_get_if(int); struct ipmi_if * ipmi_get_if(int iftype) { switch (iftype) { case IPMI_IF_KCS: return (&kcs_if); case IPMI_IF_SMIC: return (&smic_if); case IPMI_IF_BT: return (&bt_if); } return (NULL); } /* * BMC Helper Functions */ uint8_t bmc_read(struct ipmi_softc *sc, int offset) { return (bus_space_read_1(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing)); } void bmc_write(struct ipmi_softc *sc, int offset, uint8_t val) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, offset * sc->sc_if_iospacing, val); } int bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value) { int retries; uint8_t v; KASSERT(mutex_owned(&sc->sc_cmd_mtx)); for (retries = 0; retries < sc->sc_max_retries; retries++) { v = bmc_read(sc, offset); if ((v & mask) == value) return v; mutex_enter(&sc->sc_sleep_mtx); cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, 1); mutex_exit(&sc->sc_sleep_mtx); } return -1; } int bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value, const char *lbl) { int v; v = bmc_io_wait_spin(sc, offset, mask, value); if (cold || v != -1) return v; return bmc_io_wait_sleep(sc, offset, mask, value); } int bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value) { uint8_t v; int count = cold ? 15000 : 500; /* ~us */ while (count--) { v = bmc_read(sc, offset); if ((v & mask) == value) return v; delay(1); } return (-1); } #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3)) /* * BT interface */ #define _BT_CTRL_REG 0 #define BT_CLR_WR_PTR (1L << 0) #define BT_CLR_RD_PTR (1L << 1) #define BT_HOST2BMC_ATN (1L << 2) #define BT_BMC2HOST_ATN (1L << 3) #define BT_EVT_ATN (1L << 4) #define BT_HOST_BUSY (1L << 6) #define BT_BMC_BUSY (1L << 7) #define BT_READY (BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN) #define _BT_DATAIN_REG 1 #define _BT_DATAOUT_REG 1 #define _BT_INTMASK_REG 2 #define BT_IM_HIRQ_PEND (1L << 1) #define BT_IM_SCI_EN (1L << 2) #define BT_IM_SMI_EN (1L << 3) #define BT_IM_NMI2SMI (1L << 4) int bt_read(struct ipmi_softc *, int); int bt_write(struct ipmi_softc *, int, uint8_t); int bt_read(struct ipmi_softc *sc, int reg) { return bmc_read(sc, reg); } int bt_write(struct ipmi_softc *sc, int reg, uint8_t data) { if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, "bt_write") < 0) return (-1); bmc_write(sc, reg, data); return (0); } int bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data) { int i; bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR); for (i = 0; i < len; i++) bt_write(sc, _BT_DATAOUT_REG, data[i]); bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN); if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0, "bt_sendwait") < 0) return (-1); return (0); } int bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data) { uint8_t len, v, i; if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN, "bt_recvwait") < 0) return (-1); bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY); bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN); bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR); len = bt_read(sc, _BT_DATAIN_REG); for (i = IPMI_BTMSG_NFLN; i <= len; i++) { v = bt_read(sc, _BT_DATAIN_REG); if (i != IPMI_BTMSG_SEQ) *(data++) = v; } bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY); *rxlen = len - 1; return (0); } int bt_reset(struct ipmi_softc *sc) { return (-1); } int bt_probe(struct ipmi_softc *sc) { uint8_t rv; rv = bmc_read(sc, _BT_CTRL_REG); rv &= BT_HOST_BUSY; rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN; bmc_write(sc, _BT_CTRL_REG, rv); rv = bmc_read(sc, _BT_INTMASK_REG); rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI; rv |= BT_IM_HIRQ_PEND; bmc_write(sc, _BT_INTMASK_REG, rv); #if 0 printf("bt_probe: %2x\n", v); printf(" WR : %2x\n", v & BT_CLR_WR_PTR); printf(" RD : %2x\n", v & BT_CLR_RD_PTR); printf(" H2B : %2x\n", v & BT_HOST2BMC_ATN); printf(" B2H : %2x\n", v & BT_BMC2HOST_ATN); printf(" EVT : %2x\n", v & BT_EVT_ATN); printf(" HBSY : %2x\n", v & BT_HOST_BUSY); printf(" BBSY : %2x\n", v & BT_BMC_BUSY); #endif return (0); } /* * SMIC interface */ #define _SMIC_DATAIN_REG 0 #define _SMIC_DATAOUT_REG 0 #define _SMIC_CTRL_REG 1 #define SMS_CC_GET_STATUS 0x40 #define SMS_CC_START_TRANSFER 0x41 #define SMS_CC_NEXT_TRANSFER 0x42 #define SMS_CC_END_TRANSFER 0x43 #define SMS_CC_START_RECEIVE 0x44 #define SMS_CC_NEXT_RECEIVE 0x45 #define SMS_CC_END_RECEIVE 0x46 #define SMS_CC_TRANSFER_ABORT 0x47 #define SMS_SC_READY 0xc0 #define SMS_SC_WRITE_START 0xc1 #define SMS_SC_WRITE_NEXT 0xc2 #define SMS_SC_WRITE_END 0xc3 #define SMS_SC_READ_START 0xc4 #define SMS_SC_READ_NEXT 0xc5 #define SMS_SC_READ_END 0xc6 #define _SMIC_FLAG_REG 2 #define SMIC_BUSY (1L << 0) #define SMIC_SMS_ATN (1L << 2) #define SMIC_EVT_ATN (1L << 3) #define SMIC_SMI (1L << 4) #define SMIC_TX_DATA_RDY (1L << 6) #define SMIC_RX_DATA_RDY (1L << 7) int smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *); int smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *); int smic_read_data(struct ipmi_softc *, uint8_t *); int smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl) { int v; /* Wait for expected flag bits */ v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, "smicwait"); if (v < 0) return (-1); /* Return current status */ v = bmc_read(sc, _SMIC_CTRL_REG); dbg_printf(99, "smic_wait(%s) = %.2x\n", lbl, v); return (v); } int smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data) { int sts, v; dbg_printf(50, "smic_wcd: %.2x %.2x\n", cmd, data ? *data : -1); sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY, "smic_write_cmd_data ready"); if (sts < 0) return (sts); bmc_write(sc, _SMIC_CTRL_REG, cmd); if (data) bmc_write(sc, _SMIC_DATAOUT_REG, *data); /* Toggle BUSY bit, then wait for busy bit to clear */ v = bmc_read(sc, _SMIC_FLAG_REG); bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY); return (smic_wait(sc, SMIC_BUSY, 0, "smic_write_cmd_data busy")); } int smic_read_data(struct ipmi_softc *sc, uint8_t *data) { int sts; sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY, "smic_read_data"); if (sts >= 0) { *data = bmc_read(sc, _SMIC_DATAIN_REG); dbg_printf(50, "smic_readdata: %.2x\n", *data); } return (sts); } #define ErrStat(a,b) if (a) printf(b); int smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data) { int sts, idx; sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]); ErrStat(sts != SMS_SC_WRITE_START, "smic_sendmsg: wstart"); for (idx = 1; idx < len - 1; idx++) { sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER, &data[idx]); ErrStat(sts != SMS_SC_WRITE_NEXT, "smic_sendmsg: write"); } sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]); if (sts != SMS_SC_WRITE_END) { dbg_printf(50, "smic_sendmsg %d/%d = %.2x\n", idx, len, sts); return (-1); } return (0); } int smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data) { int sts, idx; *len = 0; sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, "smic_recvmsg"); if (sts < 0) return (-1); sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL); ErrStat(sts != SMS_SC_READ_START, "smic_recvmsg: rstart"); for (idx = 0;; ) { sts = smic_read_data(sc, &data[idx++]); if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT) break; smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL); } ErrStat(sts != SMS_SC_READ_END, "smic_recvmsg: rend"); *len = idx; sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL); if (sts != SMS_SC_READY) { dbg_printf(50, "smic_recvmsg %d/%d = %.2x\n", idx, maxlen, sts); return (-1); } return (0); } int smic_reset(struct ipmi_softc *sc) { return (-1); } int smic_probe(struct ipmi_softc *sc) { /* Flag register should not be 0xFF on a good system */ if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF) return (-1); return (0); } /* * KCS interface */ #define _KCS_DATAIN_REGISTER 0 #define _KCS_DATAOUT_REGISTER 0 #define KCS_READ_NEXT 0x68 #define _KCS_COMMAND_REGISTER 1 #define KCS_GET_STATUS 0x60 #define KCS_WRITE_START 0x61 #define KCS_WRITE_END 0x62 #define _KCS_STATUS_REGISTER 1 #define KCS_OBF (1L << 0) #define KCS_IBF (1L << 1) #define KCS_SMS_ATN (1L << 2) #define KCS_CD (1L << 3) #define KCS_OEM1 (1L << 4) #define KCS_OEM2 (1L << 5) #define KCS_STATE_MASK 0xc0 #define KCS_IDLE_STATE 0x00 #define KCS_READ_STATE 0x40 #define KCS_WRITE_STATE 0x80 #define KCS_ERROR_STATE 0xC0 int kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *); int kcs_write_cmd(struct ipmi_softc *, uint8_t); int kcs_write_data(struct ipmi_softc *, uint8_t); int kcs_read_data(struct ipmi_softc *, uint8_t *); int kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl) { int v; v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl); if (v < 0) return (v); /* Check if output buffer full, read dummy byte */ if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE)) bmc_read(sc, _KCS_DATAIN_REGISTER); /* Check for error state */ if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) { bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS); while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF) ; aprint_error("ipmi: error code: %x\n", bmc_read(sc, _KCS_DATAIN_REGISTER)); } return (v & KCS_STATE_MASK); } int kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd) { /* ASSERT: IBF and OBF are clear */ dbg_printf(50, "kcswritecmd: %.2x\n", cmd); bmc_write(sc, _KCS_COMMAND_REGISTER, cmd); return (kcs_wait(sc, KCS_IBF, 0, "write_cmd")); } int kcs_write_data(struct ipmi_softc *sc, uint8_t data) { /* ASSERT: IBF and OBF are clear */ dbg_printf(50, "kcswritedata: %.2x\n", data); bmc_write(sc, _KCS_DATAOUT_REGISTER, data); return (kcs_wait(sc, KCS_IBF, 0, "write_data")); } int kcs_read_data(struct ipmi_softc *sc, uint8_t * data) { int sts; sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, "read_data"); if (sts != KCS_READ_STATE) return (sts); /* ASSERT: OBF is set read data, request next byte */ *data = bmc_read(sc, _KCS_DATAIN_REGISTER); bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT); dbg_printf(50, "kcsreaddata: %.2x\n", *data); return (sts); } /* Exported KCS functions */ int kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data) { int idx, sts; /* ASSERT: IBF is clear */ dbg_dump(50, "kcs sendmsg", len, data); sts = kcs_write_cmd(sc, KCS_WRITE_START); for (idx = 0; idx < len; idx++) { if (idx == len - 1) sts = kcs_write_cmd(sc, KCS_WRITE_END); if (sts != KCS_WRITE_STATE) break; sts = kcs_write_data(sc, data[idx]); } if (sts != KCS_READ_STATE) { dbg_printf(1, "kcs sendmsg = %d/%d <%.2x>\n", idx, len, sts); dbg_dump(1, "kcs_sendmsg", len, data); return (-1); } return (0); } int kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data) { int idx, sts; for (idx = 0; idx < maxlen; idx++) { sts = kcs_read_data(sc, &data[idx]); if (sts != KCS_READ_STATE) break; } sts = kcs_wait(sc, KCS_IBF, 0, "recv"); *rxlen = idx; if (sts != KCS_IDLE_STATE) { dbg_printf(1, "kcs read = %d/%d <%.2x>\n", idx, maxlen, sts); return (-1); } dbg_dump(50, "kcs recvmsg", idx, data); return (0); } int kcs_reset(struct ipmi_softc *sc) { return (-1); } int kcs_probe(struct ipmi_softc *sc) { uint8_t v; v = bmc_read(sc, _KCS_STATUS_REGISTER); #if 0 printf("kcs_probe: %2x\n", v); printf(" STS: %2x\n", v & KCS_STATE_MASK); printf(" ATN: %2x\n", v & KCS_SMS_ATN); printf(" C/D: %2x\n", v & KCS_CD); printf(" IBF: %2x\n", v & KCS_IBF); printf(" OBF: %2x\n", v & KCS_OBF); #else __USE(v); #endif return (0); } /* * IPMI code */ #define READ_SMS_BUFFER 0x37 #define WRITE_I2C 0x50 #define GET_MESSAGE_CMD 0x33 #define SEND_MESSAGE_CMD 0x34 #define IPMB_CHANNEL_NUMBER 0 #define PUBLIC_BUS 0 #define MIN_I2C_PACKET_SIZE 3 #define MIN_IMB_PACKET_SIZE 7 /* one byte for cksum */ #define MIN_BTBMC_REQ_SIZE 4 #define MIN_BTBMC_RSP_SIZE 5 #define MIN_BMC_REQ_SIZE 2 #define MIN_BMC_RSP_SIZE 3 #define BMC_SA 0x20 /* BMC/ESM3 */ #define FPC_SA 0x22 /* front panel */ #define BP_SA 0xC0 /* Primary Backplane */ #define BP2_SA 0xC2 /* Secondary Backplane */ #define PBP_SA 0xC4 /* Peripheral Backplane */ #define DRAC_SA 0x28 /* DRAC-III */ #define DRAC3_SA 0x30 /* DRAC-III */ #define BMC_LUN 0 #define SMS_LUN 2 struct ipmi_request { uint8_t rsSa; uint8_t rsLun; uint8_t netFn; uint8_t cmd; uint8_t data_len; uint8_t *data; }; struct ipmi_response { uint8_t cCode; uint8_t data_len; uint8_t *data; }; struct ipmi_bmc_request { uint8_t bmc_nfLn; uint8_t bmc_cmd; uint8_t bmc_data_len; uint8_t bmc_data[1]; }; struct ipmi_bmc_response { uint8_t bmc_nfLn; uint8_t bmc_cmd; uint8_t bmc_cCode; uint8_t bmc_data_len; uint8_t bmc_data[1]; }; CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc), ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL); /* Scan memory for signature */ void * scan_sig(long start, long end, int skip, int len, const void *data) { void *va; while (start < end) { va = ISA_HOLE_VADDR(start); if (memcmp(va, data, len) == 0) return (va); start += skip; } return (NULL); } void dumpb(const char *lbl, int len, const uint8_t *data) { int idx; printf("%s: ", lbl); for (idx = 0; idx < len; idx++) printf("%.2x ", data[idx]); printf("\n"); } void ipmi_smbios_probe(struct smbios_ipmi *pipmi, struct ipmi_attach_args *ia) { const char *platform; dbg_printf(1, "ipmi_smbios_probe: %02x %02x %02x %02x " "%08" PRIx64 " %02x %02x\n", pipmi->smipmi_if_type, pipmi->smipmi_if_rev, pipmi->smipmi_i2c_address, pipmi->smipmi_nvram_address, pipmi->smipmi_base_address, pipmi->smipmi_base_flags, pipmi->smipmi_irq); ia->iaa_if_type = pipmi->smipmi_if_type; ia->iaa_if_rev = pipmi->smipmi_if_rev; ia->iaa_if_irq = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQEN) ? pipmi->smipmi_irq : -1; ia->iaa_if_irqlvl = (pipmi->smipmi_base_flags & SMIPMI_FLAG_IRQLVL) ? IST_LEVEL : IST_EDGE; switch (SMIPMI_FLAG_IFSPACING(pipmi->smipmi_base_flags)) { case IPMI_IOSPACING_BYTE: ia->iaa_if_iospacing = 1; break; case IPMI_IOSPACING_DWORD: ia->iaa_if_iospacing = 4; break; case IPMI_IOSPACING_WORD: ia->iaa_if_iospacing = 2; break; default: ia->iaa_if_iospacing = 1; aprint_error("ipmi: unknown register spacing\n"); } /* Calculate base address (PCI BAR format) */ if (pipmi->smipmi_base_address & 0x1) { ia->iaa_if_iotype = 'i'; ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0x1; } else { ia->iaa_if_iotype = 'm'; ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0xF; } if (pipmi->smipmi_base_flags & SMIPMI_FLAG_ODDOFFSET) ia->iaa_if_iobase++; platform = pmf_get_platform("system-product"); if (platform != NULL && strcmp(platform, "ProLiant MicroServer") == 0 && pipmi->smipmi_base_address != 0) { ia->iaa_if_iospacing = 1; ia->iaa_if_iobase = pipmi->smipmi_base_address & ~0x7; ia->iaa_if_iotype = 'i'; return; } if (pipmi->smipmi_base_flags == 0x7f) { /* IBM 325 eServer workaround */ ia->iaa_if_iospacing = 1; ia->iaa_if_iobase = pipmi->smipmi_base_address; ia->iaa_if_iotype = 'i'; return; } } /* * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data * This is used by BT protocol * * Returns a buffer to an allocated message, txlen contains length * of allocated message */ void * bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len, const void *data, int *txlen) { uint8_t *buf; /* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */ *txlen = len + 4; buf = ipmi_buf_acquire(sc, *txlen); if (buf == NULL) return (NULL); buf[IPMI_BTMSG_LEN] = len + 3; buf[IPMI_BTMSG_NFLN] = nfLun; buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++; buf[IPMI_BTMSG_CMD] = cmd; if (len && data) memcpy(buf + IPMI_BTMSG_DATASND, data, len); return (buf); } /* * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data * This is used by both SMIC and KCS protocols * * Returns a buffer to an allocated message, txlen contains length * of allocated message */ void * cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len, const void *data, int *txlen) { uint8_t *buf; /* Common needs two extra bytes: nfLun/cmd + data */ *txlen = len + 2; buf = ipmi_buf_acquire(sc, *txlen); if (buf == NULL) return (NULL); buf[IPMI_MSG_NFLN] = nfLun; buf[IPMI_MSG_CMD] = cmd; if (len && data) memcpy(buf + IPMI_MSG_DATASND, data, len); return (buf); } /* * ipmi_sendcmd: caller must hold sc_cmd_mtx. * * Send an IPMI command */ int ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd, int txlen, const void *data) { uint8_t *buf; int rc = -1; dbg_printf(50, "ipmi_sendcmd: rssa=%.2x nfln=%.2x cmd=%.2x len=%.2x\n", rssa, NETFN_LUN(netfn, rslun), cmd, txlen); dbg_dump(10, " send", txlen, data); if (rssa != BMC_SA) { #if 0 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN), APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen); pI2C->bus = (sc->if_ver == 0x09) ? PUBLIC_BUS : IPMB_CHANNEL_NUMBER; imbreq->rsSa = rssa; imbreq->nfLn = NETFN_LUN(netfn, rslun); imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn); imbreq->rqSa = BMC_SA; imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN); imbreq->cmd = cmd; if (txlen) memcpy(imbreq->data, data, txlen); /* Set message checksum */ imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3); #endif goto done; } else buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd, txlen, data, &txlen); if (buf == NULL) { printf("ipmi: sendcmd buffer busy\n"); goto done; } rc = sc->sc_if->sendmsg(sc, txlen, buf); ipmi_buf_release(sc, buf); ipmi_delay(sc, 50); /* give bmc chance to digest command */ done: return (rc); } void ipmi_buf_release(struct ipmi_softc *sc, char *buf) { KASSERT(sc->sc_buf_rsvd); KASSERT(sc->sc_buf == buf); sc->sc_buf_rsvd = false; } char * ipmi_buf_acquire(struct ipmi_softc *sc, size_t len) { KASSERT(len <= sizeof(sc->sc_buf)); if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf)) return NULL; sc->sc_buf_rsvd = true; return sc->sc_buf; } /* * ipmi_recvcmd: caller must hold sc_cmd_mtx. */ int ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data) { uint8_t *buf, rc = 0; int rawlen; /* Need three extra bytes: netfn/cmd/ccode + data */ buf = ipmi_buf_acquire(sc, maxlen + 3); if (buf == NULL) { printf("ipmi: ipmi_recvcmd: malloc fails\n"); return (-1); } /* Receive message from interface, copy out result data */ if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) { ipmi_buf_release(sc, buf); return (-1); } *rxlen = rawlen - IPMI_MSG_DATARCV; if (*rxlen > 0 && data) memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen); if ((rc = buf[IPMI_MSG_CCODE]) != 0) dbg_printf(1, "ipmi_recvmsg: nfln=%.2x cmd=%.2x err=%.2x\n", buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]); dbg_printf(50, "ipmi_recvcmd: nfln=%.2x cmd=%.2x err=%.2x len=%.2x\n", buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE], *rxlen); dbg_dump(10, " recv", *rxlen, data); ipmi_buf_release(sc, buf); return (rc); } /* * ipmi_delay: caller must hold sc_cmd_mtx. */ void ipmi_delay(struct ipmi_softc *sc, int ms) { if (cold) delay(ms * 1000); else { mutex_enter(&sc->sc_sleep_mtx); cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, mstohz(ms)); mutex_exit(&sc->sc_sleep_mtx); } } /* Read a partial SDR entry */ int get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId, uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId) { uint8_t cmd[256 + 8]; int len; ((uint16_t *) cmd)[0] = reserveId; ((uint16_t *) cmd)[1] = recordId; cmd[4] = offset; cmd[5] = length; mutex_enter(&sc->sc_cmd_mtx); if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR, 6, cmd)) { mutex_exit(&sc->sc_cmd_mtx); printf("ipmi: sendcmd fails\n"); return (-1); } if (ipmi_recvcmd(sc, 8 + length, &len, cmd)) { mutex_exit(&sc->sc_cmd_mtx); printf("ipmi: getSdrPartial: recvcmd fails\n"); return (-1); } mutex_exit(&sc->sc_cmd_mtx); if (nxtRecordId) *nxtRecordId = *(uint16_t *) cmd; memcpy(buffer, cmd + 2, len - 2); return (0); } int maxsdrlen = 0x10; /* Read an entire SDR; pass to add sensor */ int get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec) { uint16_t resid = 0; int len, sdrlen, offset; uint8_t *psdr; struct sdrhdr shdr; mutex_enter(&sc->sc_cmd_mtx); /* Reserve SDR */ if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR, 0, NULL)) { mutex_exit(&sc->sc_cmd_mtx); printf("ipmi: reserve send fails\n"); return (-1); } if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) { mutex_exit(&sc->sc_cmd_mtx); printf("ipmi: reserve recv fails\n"); return (-1); } mutex_exit(&sc->sc_cmd_mtx); /* Get SDR Header */ if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) { printf("ipmi: get header fails\n"); return (-1); } /* Allocate space for entire SDR Length of SDR in header does not * include header length */ sdrlen = sizeof(shdr) + shdr.record_length; psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK|M_CANFAIL); if (psdr == NULL) return -1; memcpy(psdr, &shdr, sizeof(shdr)); /* Read SDR Data maxsdrlen bytes at a time */ for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) { len = sdrlen - offset; if (len > maxsdrlen) len = maxsdrlen; if (get_sdr_partial(sc, recid, resid, offset, len, psdr + offset, NULL)) { printf("ipmi: get chunk : %d,%d fails\n", offset, len); free(psdr, M_DEVBUF); return (-1); } } /* Add SDR to sensor list, if not wanted, free buffer */ if (add_sdr_sensor(sc, psdr) == 0) free(psdr, M_DEVBUF); return (0); } int getbits(uint8_t *bytes, int bitpos, int bitlen) { int v; int mask; bitpos += bitlen - 1; for (v = 0; bitlen--;) { v <<= 1; mask = 1L << (bitpos & 7); if (bytes[bitpos >> 3] & mask) v |= 1; bitpos--; } return (v); } /* Decode IPMI sensor name */ void ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits) { int i, slen; char bcdplus[] = "0123456789 -.:,_"; slen = typelen & 0x1F; switch (typelen >> 6) { case IPMI_NAME_UNICODE: //unicode break; case IPMI_NAME_BCDPLUS: /* Characters are encoded in 4-bit BCDPLUS */ if (len < slen * 2 + 1) slen = (len >> 1) - 1; for (i = 0; i < slen; i++) { *(name++) = bcdplus[bits[i] >> 4]; *(name++) = bcdplus[bits[i] & 0xF]; } break; case IPMI_NAME_ASCII6BIT: /* Characters are encoded in 6-bit ASCII * 0x00 - 0x3F maps to 0x20 - 0x5F */ /* XXX: need to calculate max len: slen = 3/4 * len */ if (len < slen + 1) slen = len - 1; for (i = 0; i < slen * 8; i += 6) *(name++) = getbits(bits, i, 6) + ' '; break; case IPMI_NAME_ASCII8BIT: /* Characters are 8-bit ascii */ if (len < slen + 1) slen = len - 1; while (slen--) *(name++) = *(bits++); break; } *name = 0; } /* Sign extend a n-bit value */ long signextend(unsigned long val, int bits) { long msk = (1L << (bits-1))-1; return (-(val & ~msk) | val); } /* fixpoint arithmetic */ #define FIX2INT(x) ((int64_t)((x) >> 32)) #define INT2FIX(x) ((int64_t)((uint64_t)(x) << 32)) #define FIX2 0x0000000200000000ll /* 2.0 */ #define FIX3 0x0000000300000000ll /* 3.0 */ #define FIXE 0x00000002b7e15163ll /* 2.71828182845904523536 */ #define FIX10 0x0000000a00000000ll /* 10.0 */ #define FIXMONE 0xffffffff00000000ll /* -1.0 */ #define FIXHALF 0x0000000080000000ll /* 0.5 */ #define FIXTHIRD 0x0000000055555555ll /* 0.33333333333333333333 */ #define FIX1LOG2 0x0000000171547653ll /* 1.0/log(2) */ #define FIX1LOGE 0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */ #define FIX1LOG10 0x000000006F2DEC55ll /* 1.0/log(10) */ #define FIX1E 0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */ static int64_t fixlog_a[] = { 0x0000000100000000ll /* 1.0/1.0 */, 0xffffffff80000000ll /* -1.0/2.0 */, 0x0000000055555555ll /* 1.0/3.0 */, 0xffffffffc0000000ll /* -1.0/4.0 */, 0x0000000033333333ll /* 1.0/5.0 */, 0x000000002aaaaaabll /* -1.0/6.0 */, 0x0000000024924925ll /* 1.0/7.0 */, 0x0000000020000000ll /* -1.0/8.0 */, 0x000000001c71c71cll /* 1.0/9.0 */ }; static int64_t fixexp_a[] = { 0x0000000100000000ll /* 1.0/1.0 */, 0x0000000100000000ll /* 1.0/1.0 */, 0x0000000080000000ll /* 1.0/2.0 */, 0x000000002aaaaaabll /* 1.0/6.0 */, 0x000000000aaaaaabll /* 1.0/24.0 */, 0x0000000002222222ll /* 1.0/120.0 */, 0x00000000005b05b0ll /* 1.0/720.0 */, 0x00000000000d00d0ll /* 1.0/5040.0 */, 0x000000000001a01all /* 1.0/40320.0 */ }; static int64_t fixmul(int64_t x, int64_t y) { int64_t z; int64_t a,b,c,d; int neg; neg = 0; if (x < 0) { x = -x; neg = !neg; } if (y < 0) { y = -y; neg = !neg; } a = FIX2INT(x); b = x - INT2FIX(a); c = FIX2INT(y); d = y - INT2FIX(c); z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30); return neg ? -z : z; } static int64_t poly(int64_t x0, int64_t x, int64_t a[], int n) { int64_t z; int i; z = fixmul(x0, a[0]); for (i=1; i= FIXE) { x = fixmul(x, FIX1E); z += INT2FIX(1); } while (x < INT2FIX(1)) { x = fixmul(x, FIXE); z -= INT2FIX(1); } x -= INT2FIX(1); z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0])); z = fixmul(z, y); done: return z; } static int64_t powx(int64_t x, int64_t y) { int64_t k; if (x == INT2FIX(0)) goto done; x = logx(x,y); if (x < INT2FIX(0)) { x = INT2FIX(0) - x; k = -FIX2INT(x); x = INT2FIX(-k) - x; } else { k = FIX2INT(x); x = x - INT2FIX(k); } x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0])); while (k < 0) { x = fixmul(x, FIX1E); ++k; } while (k > 0) { x = fixmul(x, FIXE); --k; } done: return x; } /* Convert IPMI reading from sensor factors */ long ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj) { int64_t M, B; char K1, K2; int64_t val, v1, v2, vs; int sign = (s1->units1 >> 6) & 0x3; vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v; if ((vs < 0) && (sign == 0x1)) vs++; /* Calculate linear reading variables */ M = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10); B = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10); K1 = signextend(s1->rbexp & 0xF, 4); K2 = signextend(s1->rbexp >> 4, 4); /* Calculate sensor reading: * y = L((M * v + (B * 10^K1)) * 10^(K2+adj) * * This commutes out to: * y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */ v1 = powx(FIX10, INT2FIX(K2 + adj)); v2 = powx(FIX10, INT2FIX(K1 + K2 + adj)); val = M * vs * v1 + B * v2; /* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y = * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube * root(x) */ switch (s1->linear & 0x7f) { case 0: break; case 1: val = logx(val,FIX1LOGE); break; case 2: val = logx(val,FIX1LOG10); break; case 3: val = logx(val,FIX1LOG2); break; case 4: val = powx(FIXE,val); break; case 5: val = powx(FIX10,val); break; case 6: val = powx(FIX2,val); break; case 7: val = powx(val,FIXMONE); break; case 8: val = powx(val,FIX2); break; case 9: val = powx(val,FIX3); break; case 10: val = powx(val,FIXHALF); break; case 11: val = powx(val,FIXTHIRD); break; } return FIX2INT(val); } int32_t ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor) { struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr; int32_t val; switch (psensor->i_envtype) { case ENVSYS_STEMP: val = ipmi_convert(reading[0], s1, 6) + 273150000; break; case ENVSYS_SVOLTS_DC: val = ipmi_convert(reading[0], s1, 6); break; case ENVSYS_SFANRPM: val = ipmi_convert(reading[0], s1, 0); if (((s1->units1>>3)&0x7) == 0x3) val *= 60; /* RPS -> RPM */ break; default: val = 0; break; } return val; } void ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata, sysmon_envsys_lim_t *limits, uint32_t *props) { struct ipmi_sensor *ipmi_s; /* Find the ipmi_sensor corresponding to this edata */ SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { if (ipmi_s->i_envnum == edata->sensor) { if (limits == NULL) { limits = &ipmi_s->i_deflims; props = &ipmi_s->i_defprops; } *props |= PROP_DRIVER_LIMITS; ipmi_s->i_limits = *limits; ipmi_s->i_props = *props; return; } } return; } void ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata, sysmon_envsys_lim_t *limits, uint32_t *props) { struct ipmi_sensor *ipmi_s; struct ipmi_softc *sc = sme->sme_cookie; /* Find the ipmi_sensor corresponding to this edata */ SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { if (ipmi_s->i_envnum == edata->sensor) { ipmi_get_sensor_limits(sc, ipmi_s, limits, props); ipmi_s->i_limits = *limits; ipmi_s->i_props = *props; if (ipmi_s->i_defprops == 0) { ipmi_s->i_defprops = *props; ipmi_s->i_deflims = *limits; } return; } } return; } void ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor, sysmon_envsys_lim_t *limits, uint32_t *props) { struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr; bool failure; int rxlen; uint8_t data[32]; uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin; int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin; *props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX); data[0] = psensor->i_num; mutex_enter(&sc->sc_cmd_mtx); failure = ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) || ipmi_recvcmd(sc, sizeof(data), &rxlen, data); mutex_exit(&sc->sc_cmd_mtx); if (failure) return; dbg_printf(25, "recvdata: %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", data[0], data[1], data[2], data[3], data[4], data[5], data[6]); switch (s1->linear & 0x7f) { case 7: /* 1/x sensor, exchange upper and lower limits */ prop_critmax = PROP_CRITMIN; prop_warnmax = PROP_WARNMIN; prop_critmin = PROP_CRITMAX; prop_warnmin = PROP_WARNMAX; pcritmax = &limits->sel_critmin; pwarnmax = &limits->sel_warnmin; pcritmin = &limits->sel_critmax; pwarnmin = &limits->sel_warnmax; break; default: prop_critmax = PROP_CRITMAX; prop_warnmax = PROP_WARNMAX; prop_critmin = PROP_CRITMIN; prop_warnmin = PROP_WARNMIN; pcritmax = &limits->sel_critmax; pwarnmax = &limits->sel_warnmax; pcritmin = &limits->sel_critmin; pwarnmin = &limits->sel_warnmin; break; } if (data[0] & 0x20 && data[6] != 0xff) { *pcritmax = ipmi_convert_sensor(&data[6], psensor); *props |= prop_critmax; } if (data[0] & 0x10 && data[5] != 0xff) { *pcritmax = ipmi_convert_sensor(&data[5], psensor); *props |= prop_critmax; } if (data[0] & 0x08 && data[4] != 0xff) { *pwarnmax = ipmi_convert_sensor(&data[4], psensor); *props |= prop_warnmax; } if (data[0] & 0x04 && data[3] != 0x00) { *pcritmin = ipmi_convert_sensor(&data[3], psensor); *props |= prop_critmin; } if (data[0] & 0x02 && data[2] != 0x00) { *pcritmin = ipmi_convert_sensor(&data[2], psensor); *props |= prop_critmin; } if (data[0] & 0x01 && data[1] != 0x00) { *pwarnmin = ipmi_convert_sensor(&data[1], psensor); *props |= prop_warnmin; } return; } int ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor, envsys_data_t *edata, uint8_t *reading) { int etype; /* Get reading of sensor */ edata->value_cur = ipmi_convert_sensor(reading, psensor); /* Return Sensor Status */ etype = (psensor->i_etype << 8) + psensor->i_stype; switch (etype) { case IPMI_SENSOR_TYPE_TEMP: case IPMI_SENSOR_TYPE_VOLT: case IPMI_SENSOR_TYPE_FAN: if (psensor->i_props & PROP_CRITMAX && edata->value_cur > psensor->i_limits.sel_critmax) return ENVSYS_SCRITOVER; if (psensor->i_props & PROP_WARNMAX && edata->value_cur > psensor->i_limits.sel_warnmax) return ENVSYS_SWARNOVER; if (psensor->i_props & PROP_CRITMIN && edata->value_cur < psensor->i_limits.sel_critmin) return ENVSYS_SCRITUNDER; if (psensor->i_props & PROP_WARNMIN && edata->value_cur < psensor->i_limits.sel_warnmin) return ENVSYS_SWARNUNDER; break; case IPMI_SENSOR_TYPE_INTRUSION: edata->value_cur = (reading[2] & 1) ? 0 : 1; if (reading[2] & 0x1) return ENVSYS_SCRITICAL; break; case IPMI_SENSOR_TYPE_PWRSUPPLY: /* Reading: 1 = present+powered, 0 = otherwise */ edata->value_cur = (reading[2] & 1) ? 0 : 1; if (reading[2] & 0x10) { /* XXX: Need envsys type for Power Supply types * ok: power supply installed && powered * warn: power supply installed && !powered * crit: power supply !installed */ return ENVSYS_SCRITICAL; } if (reading[2] & 0x08) { /* Power supply AC lost */ return ENVSYS_SWARNOVER; } break; } return ENVSYS_SVALID; } int read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor) { struct sdrtype1 *s1 = (struct sdrtype1 *) psensor->i_sdr; uint8_t data[8]; int rxlen; envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum]; memset(data, 0, sizeof(data)); data[0] = psensor->i_num; mutex_enter(&sc->sc_cmd_mtx); if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN, SE_GET_SENSOR_READING, 1, data)) goto err; if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data)) goto err; mutex_exit(&sc->sc_cmd_mtx); dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, rbexp=%u, linear=%d\n", s1->m, s1->m_tolerance, s1->b, s1->b_accuracy, s1->rbexp, s1->linear); dbg_printf(10, "values=%.2x %.2x %.2x %.2x %s\n", data[0],data[1],data[2],data[3], edata->desc); if (IPMI_INVALID_SENSOR_P(data[1])) { /* Check if sensor is valid */ edata->state = ENVSYS_SINVALID; } else { edata->state = ipmi_sensor_status(sc, psensor, edata, data); } return 0; err: mutex_exit(&sc->sc_cmd_mtx); return -1; } int ipmi_sensor_type(int type, int ext_type, int entity) { switch (ext_type << 8L | type) { case IPMI_SENSOR_TYPE_TEMP: return (ENVSYS_STEMP); case IPMI_SENSOR_TYPE_VOLT: return (ENVSYS_SVOLTS_DC); case IPMI_SENSOR_TYPE_FAN: return (ENVSYS_SFANRPM); case IPMI_SENSOR_TYPE_PWRSUPPLY: if (entity == IPMI_ENTITY_PWRSUPPLY) return (ENVSYS_INDICATOR); break; case IPMI_SENSOR_TYPE_INTRUSION: return (ENVSYS_INDICATOR); } return (-1); } /* Add Sensor to BSD Sysctl interface */ int add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr) { int rc; struct sdrtype1 *s1 = (struct sdrtype1 *)psdr; struct sdrtype2 *s2 = (struct sdrtype2 *)psdr; char name[64]; switch (s1->sdrhdr.record_type) { case IPMI_SDR_TYPEFULL: ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name); rc = add_child_sensors(sc, psdr, 1, s1->sensor_num, s1->sensor_type, s1->event_code, 0, s1->entity_id, name); break; case IPMI_SDR_TYPECOMPACT: ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name); rc = add_child_sensors(sc, psdr, s2->share1 & 0xF, s2->sensor_num, s2->sensor_type, s2->event_code, s2->share2 & 0x7F, s2->entity_id, name); break; default: return (0); } return rc; } static int ipmi_is_dupname(char *name) { struct ipmi_sensor *ipmi_s; SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { if (strcmp(ipmi_s->i_envdesc, name) == 0) { return 1; } } return 0; } int add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count, int sensor_num, int sensor_type, int ext_type, int sensor_base, int entity, const char *name) { int typ, idx, dupcnt, c; char *e; struct ipmi_sensor *psensor; struct sdrtype1 *s1 = (struct sdrtype1 *)psdr; typ = ipmi_sensor_type(sensor_type, ext_type, entity); if (typ == -1) { dbg_printf(5, "Unknown sensor type:%.2x et:%.2x sn:%.2x " "name:%s\n", sensor_type, ext_type, sensor_num, name); return 0; } dupcnt = 0; sc->sc_nsensors += count; for (idx = 0; idx < count; idx++) { psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF, M_WAITOK|M_CANFAIL); if (psensor == NULL) break; memset(psensor, 0, sizeof(struct ipmi_sensor)); /* Initialize BSD Sensor info */ psensor->i_sdr = psdr; psensor->i_num = sensor_num + idx; psensor->i_stype = sensor_type; psensor->i_etype = ext_type; psensor->i_envtype = typ; if (count > 1) snprintf(psensor->i_envdesc, sizeof(psensor->i_envdesc), "%s - %d", name, sensor_base + idx); else strlcpy(psensor->i_envdesc, name, sizeof(psensor->i_envdesc)); /* * Check for duplicates. If there are duplicates, * make sure there is space in the name (if not, * truncate to make space) for a count (1-99) to * add to make the name unique. If we run the * counter out, just accept the duplicate (@name99) * for now. */ if (ipmi_is_dupname(psensor->i_envdesc)) { if (strlen(psensor->i_envdesc) >= sizeof(psensor->i_envdesc) - 3) { e = psensor->i_envdesc + sizeof(psensor->i_envdesc) - 3; } else { e = psensor->i_envdesc + strlen(psensor->i_envdesc); } c = psensor->i_envdesc + sizeof(psensor->i_envdesc) - e; do { dupcnt++; snprintf(e, c, "%d", dupcnt); } while (dupcnt < 100 && ipmi_is_dupname(psensor->i_envdesc)); } dbg_printf(5, "add sensor:%.4x %.2x:%d ent:%.2x:%.2x %s\n", s1->sdrhdr.record_id, s1->sensor_type, typ, s1->entity_id, s1->entity_instance, psensor->i_envdesc); SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list); } return (1); } /* Interrupt handler */ int ipmi_intr(void *arg) { struct ipmi_softc *sc = (struct ipmi_softc *)arg; int v; v = bmc_read(sc, _KCS_STATUS_REGISTER); if (v & KCS_OBF) ++ipmi_nintr; return (0); } /* Handle IPMI Timer - reread sensor values */ void ipmi_refresh_sensors(struct ipmi_softc *sc) { if (SLIST_EMPTY(&ipmi_sensor_list)) return; sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list); if (sc->current_sensor == NULL) sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list); if (read_sensor(sc, sc->current_sensor)) { dbg_printf(1, "ipmi: error reading\n"); } } int ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia) { sc->sc_if = ipmi_get_if(ia->iaa_if_type); if (sc->sc_if == NULL) return (-1); if (ia->iaa_if_iotype == 'i') sc->sc_iot = ia->iaa_iot; else sc->sc_iot = ia->iaa_memt; sc->sc_if_rev = ia->iaa_if_rev; sc->sc_if_iospacing = ia->iaa_if_iospacing; if (bus_space_map(sc->sc_iot, ia->iaa_if_iobase, sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) { printf("ipmi: bus_space_map(..., %x, %x, 0, %p) failed\n", ia->iaa_if_iobase, sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh); return (-1); } #if 0 if (iaa->if_if_irq != -1) sc->ih = isa_intr_establish(-1, iaa->if_if_irq, iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc, device_xname(sc->sc_dev); #endif return (0); } void ipmi_unmap_regs(struct ipmi_softc *sc) { bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_if->nregs * sc->sc_if_iospacing); } int ipmi_probe(struct ipmi_attach_args *ia) { struct dmd_ipmi *pipmi; struct smbtable tbl; tbl.cookie = 0; if (smbios_find_table(SMBIOS_TYPE_IPMIDEV, &tbl)) ipmi_smbios_probe(tbl.tblhdr, ia); else { pipmi = (struct dmd_ipmi *)scan_sig(0xC0000L, 0xFFFFFL, 16, 4, "IPMI"); /* XXX hack to find Dell PowerEdge 8450 */ if (pipmi == NULL) { /* no IPMI found */ return (0); } /* we have an IPMI signature, fill in attach arg structure */ ia->iaa_if_type = pipmi->dmd_if_type; ia->iaa_if_rev = pipmi->dmd_if_rev; } return (1); } int ipmi_match(device_t parent, cfdata_t cf, void *aux) { struct ipmi_softc sc; struct ipmi_attach_args *ia = aux; uint8_t cmd[32]; int len; int rv = 0; memset(&sc, 0, sizeof(sc)); /* Map registers */ if (ipmi_map_regs(&sc, ia) != 0) return 0; sc.sc_if->probe(&sc); mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); cv_init(&sc.sc_cmd_sleep, "ipmimtch"); mutex_enter(&sc.sc_cmd_mtx); /* Identify BMC device early to detect lying bios */ if (ipmi_sendcmd(&sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL)) { mutex_exit(&sc.sc_cmd_mtx); dbg_printf(1, ": unable to send get device id " "command\n"); goto unmap; } if (ipmi_recvcmd(&sc, sizeof(cmd), &len, cmd)) { mutex_exit(&sc.sc_cmd_mtx); dbg_printf(1, ": unable to retrieve device id\n"); goto unmap; } mutex_exit(&sc.sc_cmd_mtx); dbg_dump(1, "bmc data", len, cmd); rv = 1; /* GETID worked, we got IPMI */ unmap: cv_destroy(&sc.sc_cmd_sleep); mutex_destroy(&sc.sc_cmd_mtx); ipmi_unmap_regs(&sc); return rv; } static void ipmi_thread(void *cookie) { device_t self = cookie; struct ipmi_softc *sc = device_private(self); struct ipmi_attach_args *ia = &sc->sc_ia; uint16_t rec; struct ipmi_sensor *ipmi_s; int i; sc->sc_thread_running = true; /* setup ticker */ sc->sc_max_retries = hz * 90; /* 90 seconds max */ /* Map registers */ ipmi_map_regs(sc, ia); /* Scan SDRs, add sensors to list */ for (rec = 0; rec != 0xFFFF;) if (get_sdr(sc, rec, &rec)) break; /* allocate and fill sensor arrays */ sc->sc_sensor = malloc(sizeof(envsys_data_t) * sc->sc_nsensors, M_DEVBUF, M_WAITOK | M_ZERO); if (sc->sc_sensor == NULL) { aprint_error("ipmi: can't allocate envsys_data_t\n"); kthread_exit(0); } sc->sc_envsys = sysmon_envsys_create(); sc->sc_envsys->sme_cookie = sc; sc->sc_envsys->sme_get_limits = ipmi_get_limits; sc->sc_envsys->sme_set_limits = ipmi_set_limits; i = 0; SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { ipmi_s->i_props = 0; ipmi_s->i_envnum = -1; sc->sc_sensor[i].units = ipmi_s->i_envtype; sc->sc_sensor[i].state = ENVSYS_SINVALID; sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY; /* * Monitor threshold limits in the sensors. */ switch (sc->sc_sensor[i].units) { case ENVSYS_STEMP: case ENVSYS_SVOLTS_DC: case ENVSYS_SFANRPM: sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS; break; default: sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL; } (void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc, sizeof(sc->sc_sensor[i].desc)); ++i; if (sysmon_envsys_sensor_attach(sc->sc_envsys, &sc->sc_sensor[i-1])) continue; /* get reference number from envsys */ ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor; } sc->sc_envsys->sme_name = device_xname(sc->sc_dev); sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH; if (sysmon_envsys_register(sc->sc_envsys)) { aprint_error("ipmi: unable to register with sysmon\n"); sysmon_envsys_destroy(sc->sc_envsys); } /* initialize sensor list for thread */ if (!SLIST_EMPTY(&ipmi_sensor_list)) sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list); aprint_verbose_dev(self, "version %d.%d interface %s %sbase " "0x%x/%x spacing %d\n", ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name, ia->iaa_if_iotype == 'i' ? "io" : "mem", ia->iaa_if_iobase, ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing); if (ia->iaa_if_irq != -1) aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq); /* setup flag to exclude iic */ ipmi_enabled = 1; /* Setup Watchdog timer */ sc->sc_wdog.smw_name = device_xname(sc->sc_dev); sc->sc_wdog.smw_cookie = sc; sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode; sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle; sysmon_wdog_register(&sc->sc_wdog); /* Set up a power handler so we can possibly sleep */ if (!pmf_device_register(self, ipmi_suspend, NULL)) aprint_error_dev(self, "couldn't establish a power handler\n"); mutex_enter(&sc->sc_poll_mtx); while (sc->sc_thread_running) { ipmi_refresh_sensors(sc); cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx, SENSOR_REFRESH_RATE); if (sc->sc_tickle_due) { ipmi_dotickle(sc); sc->sc_tickle_due = false; } } mutex_exit(&sc->sc_poll_mtx); kthread_exit(0); } void ipmi_attach(device_t parent, device_t self, void *aux) { struct ipmi_softc *sc = device_private(self); sc->sc_ia = *(struct ipmi_attach_args *)aux; sc->sc_dev = self; aprint_naive("\n"); aprint_normal("\n"); /* lock around read_sensor so that no one messes with the bmc regs */ mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); mutex_init(&sc->sc_sleep_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); cv_init(&sc->sc_cmd_sleep, "ipmicmd"); mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); cv_init(&sc->sc_poll_cv, "ipmipoll"); if (kthread_create(PRI_NONE, 0, NULL, ipmi_thread, self, &sc->sc_kthread, "ipmi") != 0) { aprint_error("ipmi: unable to create thread, disabled\n"); } } static int ipmi_detach(device_t self, int flags) { struct ipmi_sensor *i; int rc; struct ipmi_softc *sc = device_private(self); mutex_enter(&sc->sc_poll_mtx); sc->sc_thread_running = false; cv_signal(&sc->sc_poll_cv); mutex_exit(&sc->sc_poll_mtx); if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) { if (rc == ERESTART) rc = EINTR; return rc; } /* cancel any pending countdown */ sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK; sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED; sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT; if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0) return rc; ipmi_enabled = 0; if (sc->sc_envsys != NULL) { /* _unregister also destroys */ sysmon_envsys_unregister(sc->sc_envsys); sc->sc_envsys = NULL; } while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) { SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list); free(i, M_DEVBUF); } if (sc->sc_sensor != NULL) { free(sc->sc_sensor, M_DEVBUF); sc->sc_sensor = NULL; } ipmi_unmap_regs(sc); cv_destroy(&sc->sc_poll_cv); mutex_destroy(&sc->sc_poll_mtx); cv_destroy(&sc->sc_cmd_sleep); mutex_destroy(&sc->sc_sleep_mtx); mutex_destroy(&sc->sc_cmd_mtx); return 0; } int ipmi_watchdog_setmode(struct sysmon_wdog *smwdog) { struct ipmi_softc *sc = smwdog->smw_cookie; struct ipmi_get_watchdog gwdog; struct ipmi_set_watchdog swdog; int rc, len; if (smwdog->smw_period < 10) return EINVAL; if (smwdog->smw_period == WDOG_PERIOD_DEFAULT) sc->sc_wdog.smw_period = 10; else sc->sc_wdog.smw_period = smwdog->smw_period; mutex_enter(&sc->sc_cmd_mtx); /* see if we can properly task to the watchdog */ rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, APP_GET_WATCHDOG_TIMER, 0, NULL); rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog); mutex_exit(&sc->sc_cmd_mtx); if (rc) { printf("ipmi: APP_GET_WATCHDOG_TIMER returned 0x%x\n", rc); return EIO; } memset(&swdog, 0, sizeof(swdog)); /* Period is 10ths/sec */ swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10); if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED) swdog.wdog_action = IPMI_WDOG_ACT_DISABLED; else swdog.wdog_action = IPMI_WDOG_ACT_RESET; swdog.wdog_use = IPMI_WDOG_USE_USE_OS; mutex_enter(&sc->sc_cmd_mtx); if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0) rc = ipmi_recvcmd(sc, 0, &len, NULL); mutex_exit(&sc->sc_cmd_mtx); if (rc) { printf("ipmi: APP_SET_WATCHDOG_TIMER returned 0x%x\n", rc); return EIO; } return (0); } int ipmi_watchdog_tickle(struct sysmon_wdog *smwdog) { struct ipmi_softc *sc = smwdog->smw_cookie; mutex_enter(&sc->sc_poll_mtx); sc->sc_tickle_due = true; cv_signal(&sc->sc_poll_cv); mutex_exit(&sc->sc_poll_mtx); return 0; } void ipmi_dotickle(struct ipmi_softc *sc) { int rc, len; mutex_enter(&sc->sc_cmd_mtx); /* tickle the watchdog */ if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, APP_RESET_WATCHDOG, 0, NULL)) == 0) rc = ipmi_recvcmd(sc, 0, &len, NULL); mutex_exit(&sc->sc_cmd_mtx); if (rc != 0) { printf("%s: watchdog tickle returned 0x%x\n", device_xname(sc->sc_dev), rc); } } bool ipmi_suspend(device_t dev, const pmf_qual_t *qual) { struct ipmi_softc *sc = device_private(dev); /* Don't allow suspend if watchdog is armed */ if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED) return false; return true; }