/* $NetBSD: machdep.c,v 1.38.8.1 2019/11/16 16:39:11 martin Exp $ */ /* $OpenBSD: zaurus_machdep.c,v 1.25 2006/06/20 18:24:04 todd Exp $ */ /* * Copyright (c) 2002, 2003 Genetec Corporation. All rights reserved. * Written by Hiroyuki Bessho for Genetec Corporation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of Genetec Corporation may not be used to endorse or * promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Machine dependent functions for kernel setup for * Intel DBPXA250 evaluation board (a.k.a. Lubbock). * Based on iq80310_machhdep.c */ /* * Copyright (c) 2001 Wasabi Systems, Inc. * All rights reserved. * * Written by Jason R. Thorpe for Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the NetBSD Project by * Wasabi Systems, Inc. * 4. The name of Wasabi Systems, Inc. may not be used to endorse * or promote products derived from this software without specific prior * written permission. * * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997,1998 Mark Brinicombe. * Copyright (c) 1997,1998 Causality Limited. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Mark Brinicombe * for the NetBSD Project. * 4. The name of the company nor the name of the author may be used to * endorse or promote products derived from this software without specific * prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * Machine dependent functions for kernel setup for Intel IQ80310 evaluation * boards using RedBoot firmware. */ #include __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.38.8.1 2019/11/16 16:39:11 martin Exp $"); #include "opt_ddb.h" #include "opt_kgdb.h" #include "opt_modular.h" #include "opt_pmap_debug.h" #include "opt_md.h" #include "opt_com.h" #include "ksyms.h" #include "opt_kloader.h" #ifndef KLOADER_KERNEL_PATH #define KLOADER_KERNEL_PATH "/netbsd" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KGDB #include #endif #include #include #ifdef KLOADER #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 /* XXX */ #include "apm.h" #endif /* XXX */ #if NAPM > 0 #include #endif /* Kernel text starts 2MB in from the bottom of the kernel address space. */ #define KERNEL_TEXT_BASE ((vaddr_t)&KERNEL_BASE_virt) #ifndef KERNEL_VM_BASE #define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000) #endif /* * The range 0xc4000000 - 0xcfffffff is available for kernel VM space * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff */ #define KERNEL_VM_SIZE 0x0c000000 int zaurusmod; /* Zaurus model */ BootConfig bootconfig; /* Boot config storage */ char *boot_file = NULL; char *boot_args = NULL; paddr_t physical_start; paddr_t physical_freestart; paddr_t physical_freeend; paddr_t physical_end; u_int free_pages; #ifndef PMAP_STATIC_L1S int max_processes = 64; /* Default number */ #endif /* !PMAP_STATIC_L1S */ /* Physical and virtual addresses for some global pages */ pv_addr_t minidataclean; paddr_t msgbufphys; #ifdef PMAP_DEBUG extern int pmap_debug_level; #endif #define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */ #define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */ #define KERNEL_PT_KERNEL_NUM ((KERNEL_VM_BASE - KERNEL_BASE) >> 22) #define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM) /* Page tables for mapping kernel VM */ #define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */ #define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM) pv_addr_t kernel_pt_table[NUM_KERNEL_PTS]; const char *console = #ifdef FFUARTCONSOLE "ffuart"; #else "glass"; #endif int glass_console = 0; #ifdef KLOADER pv_addr_t bootinfo_pt; pv_addr_t bootinfo_pg; struct kloader_bootinfo kbootinfo; int kloader_howto = 0; #else struct bootinfo _bootinfo; #endif struct bootinfo *bootinfo; struct btinfo_howto *bi_howto; extern char etext[], end[]; extern void *esym; #if NKSYMS || defined(DDB) || defined(MODULAR) #include #endif #define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys) #define BOOTINFO_PAGE (KERNEL_BASE_PHYS - PAGE_SIZE) /* Prototypes */ void consinit(void); void dumpsys(void); #ifdef KGDB void kgdb_port_init(void); #endif #ifdef KLOADER static int parseboot(char *arg, char **filename, int *howto); static char *gettrailer(char *arg); static int parseopts(const char *opts, int *howto); #endif #if defined(CPU_XSCALE_PXA250) static struct pxa2x0_gpioconf pxa25x_boarddep_gpioconf[] = { { 34, GPIO_ALT_FN_1_IN }, /* FFRXD */ { 35, GPIO_ALT_FN_1_IN }, /* FFCTS */ { 39, GPIO_ALT_FN_2_OUT }, /* FFTXD */ { 40, GPIO_ALT_FN_2_OUT }, /* FFDTR */ { 41, GPIO_ALT_FN_2_OUT }, /* FFRTS */ { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ { -1 } }; static struct pxa2x0_gpioconf *pxa25x_zaurus_gpioconf[] = { pxa25x_com_btuart_gpioconf, pxa25x_com_ffuart_gpioconf, pxa25x_com_stuart_gpioconf, pxa25x_boarddep_gpioconf, NULL }; #else static struct pxa2x0_gpioconf *pxa25x_zaurus_gpioconf[] = { NULL }; #endif #if defined(CPU_XSCALE_PXA270) static struct pxa2x0_gpioconf pxa27x_boarddep_gpioconf[] = { { 34, GPIO_ALT_FN_1_IN }, /* FFRXD */ { 35, GPIO_ALT_FN_1_IN }, /* FFCTS */ { 39, GPIO_ALT_FN_2_OUT }, /* FFTXD */ { 40, GPIO_ALT_FN_2_OUT }, /* FFDTR */ { 41, GPIO_ALT_FN_2_OUT }, /* FFRTS */ { 44, GPIO_ALT_FN_1_IN }, /* BTCST */ { 45, GPIO_ALT_FN_2_OUT }, /* BTRST */ { 104, GPIO_ALT_FN_1_OUT }, /* pSKTSEL */ { -1 } }; static struct pxa2x0_gpioconf *pxa27x_zaurus_gpioconf[] = { pxa27x_com_btuart_gpioconf, pxa27x_com_ffuart_gpioconf, pxa27x_com_stuart_gpioconf, pxa27x_i2c_gpioconf, pxa27x_i2s_gpioconf, pxa27x_pxamci_gpioconf, pxa27x_boarddep_gpioconf, NULL }; #else static struct pxa2x0_gpioconf *pxa27x_zaurus_gpioconf[] = { NULL }; #endif /* * void cpu_reboot(int howto, char *bootstr) * * Reboots the system * * Deal with any syncing, unmounting, dumping and shutdown hooks, * then reset the CPU. */ void cpu_reboot(int howto, char *bootstr) { /* * If we are still cold then hit the air brakes * and crash to earth fast */ if (cold) { howto |= RB_HALT; goto haltsys; } boothowto = howto; #ifdef KLOADER if ((howto & RB_HALT) == 0 && panicstr == NULL) { char *filename = NULL; if ((howto & RB_STRING) && (bootstr != NULL)) { if (parseboot(bootstr, &filename, &kloader_howto) == 0){ filename = NULL; kloader_howto = 0; } } if (kloader_howto != 0) { printf("howto: 0x%x\n", kloader_howto); } if (filename != NULL) { kloader_reboot_setup(filename); } else { kloader_reboot_setup(KLOADER_KERNEL_PATH); } } #endif /* * If RB_NOSYNC was not specified sync the discs. * Note: Unless cold is set to 1 here, syslogd will die during the * unmount. It looks like syslogd is getting woken up only to find * that it cannot page part of the binary in as the filesystem has * been unmounted. */ if (!(howto & RB_NOSYNC)) { bootsync(); /* * If we've been adjusting the clock, the todr * will be out of synch; adjust it now. */ resettodr(); } /* Wait 3s */ delay(3 * 1000 * 1000); /* Say NO to interrupts */ splhigh(); /* Do a dump if requested. */ if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP) dumpsys(); haltsys: /* Run any shutdown hooks */ doshutdownhooks(); pmf_system_shutdown(boothowto); /* Make sure IRQ's are disabled */ IRQdisable; if (howto & RB_HALT) { #if NAPM > 0 if (howto & RB_POWERDOWN) { printf("\nAttempting to power down...\n"); zapm_poweroff(); } #endif printf("The operating system has halted.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } #ifdef KLOADER else if (panicstr == NULL) { delay(1 * 1000 * 1000); kloader_reboot(); printf("\n"); printf("Failed to load a new kernel.\n"); printf("Please press any key to reboot.\n\n"); cngetc(); } #endif printf("rebooting...\n"); delay(1 * 1000 * 1000); zaurus_restart(); printf("REBOOT FAILED!!!\n"); for (;;) continue; /*NOTREACHED*/ } /* * Do a GPIO reset, immediately causing the processor to begin the normal * boot sequence. See 2.7 Reset in the PXA27x Developer's Manual for the * summary of effects of this kind of reset. */ void zaurus_restart(void) { uint32_t rv; if (ZAURUS_ISC1000 || ZAURUS_ISC3000) { rv = pxa2x0_memctl_read(MEMCTL_MSC0); if ((rv & 0xffff0000) == 0x7ff00000) { pxa2x0_memctl_write(MEMCTL_MSC0, (rv & 0xffff) | 0x7ee00000); } /* External reset circuit presumably asserts nRESET_GPIO. */ pxa2x0_gpio_set_function(89, GPIO_OUT | GPIO_SET); } else { /* SL-C7x0/SL-C860 */ /* Clear all reset status */ ioreg_write(ZAURUS_POWMAN_VBASE + POWMAN_RCSR, POWMAN_HWR|POWMAN_WDR|POWMAN_SMR|POWMAN_GPR); /* watchdog reset */ saost_reset(); } delay(1 * 1000 * 1000); /* wait 1s */ } static inline pd_entry_t * read_ttb(void) { u_long ttb; __asm volatile("mrc p15, 0, %0, c2, c0, 0" : "=r" (ttb)); return (pd_entry_t *)(ttb & ~((1 << 14) - 1)); } /* * Static device mappings. These peripheral registers are mapped at * fixed virtual addresses very early in initarm() so that we can use * them while booting the kernel, and stay at the same address * throughout whole kernel's life time. * * We use this table twice; once with bootstrap page table, and once * with kernel's page table which we build up in initarm(). * * Since we map these registers into the bootstrap page table using * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map * registers segment-aligned and segment-rounded in order to avoid * using the 2nd page tables. */ #define _A(a) ((a) & ~L1_S_OFFSET) #define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1)) static const struct pmap_devmap zaurus_devmap[] = { { ZAURUS_GPIO_VBASE, _A(PXA2X0_GPIO_BASE), _S(PXA2X0_GPIO_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_CLKMAN_VBASE, _A(PXA2X0_CLKMAN_BASE), _S(PXA2X0_CLKMAN_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_INTCTL_VBASE, _A(PXA2X0_INTCTL_BASE), _S(PXA2X0_INTCTL_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_MEMCTL_VBASE, _A(PXA2X0_MEMCTL_BASE), _S(PXA2X0_MEMCTL_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_SCOOP0_VBASE, _A(C3000_SCOOP0_BASE), _S(SCOOP_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_SCOOP1_VBASE, _A(C3000_SCOOP1_BASE), _S(SCOOP_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_FFUART_VBASE, _A(PXA2X0_FFUART_BASE), _S(4 * COM_NPORTS), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_BTUART_VBASE, _A(PXA2X0_BTUART_BASE), _S(4 * COM_NPORTS), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_STUART_VBASE, _A(PXA2X0_STUART_BASE), _S(4 * COM_NPORTS), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, { ZAURUS_POWMAN_VBASE, _A(PXA2X0_POWMAN_BASE), _S(PXA2X0_POWMAN_SIZE), VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE, }, {0, 0, 0, 0, 0,} }; #undef _A #undef _S void green_on(int virt); void green_on(int virt) { /* clobber green led p */ volatile uint16_t *p; if (virt) { p = (volatile uint16_t *)(ZAURUS_SCOOP0_VBASE + SCOOP_GPWR); } else { p = (volatile uint16_t *)(C3000_SCOOP0_BASE + SCOOP_GPWR); } *p |= (1 << SCOOP0_LED_GREEN); } void irda_on(int virt); void irda_on(int virt) { /* clobber IrDA led p */ volatile uint16_t *p; if (virt) { /* XXX scoop1 registers are not page-aligned! */ int o = C3000_SCOOP1_BASE - trunc_page(C3000_SCOOP1_BASE); p = (volatile uint16_t *)(ZAURUS_SCOOP1_VBASE + o + SCOOP_GPWR); } else { p = (volatile uint16_t *)(C3000_SCOOP1_BASE + SCOOP_GPWR); } *p &= ~(1 << SCOOP1_IR_ON); } static int hw_isc1000(void) { /* XXX scoop1 registers are not page-aligned! */ const u_long baseaddr = ZAURUS_SCOOP1_VBASE + (C3000_SCOOP1_BASE - trunc_page(C3000_SCOOP1_BASE)); uint16_t mcr, cdr, csr, cpr, ccr, irr, irm, imr, isr; uint16_t gpcr, gpwr, gprr; mcr = ioreg16_read(baseaddr + SCOOP_MCR); cdr = ioreg16_read(baseaddr + SCOOP_CDR); csr = ioreg16_read(baseaddr + SCOOP_CSR); cpr = ioreg16_read(baseaddr + SCOOP_CPR); ccr = ioreg16_read(baseaddr + SCOOP_CCR); irr = ioreg16_read(baseaddr + SCOOP_IRR); irm = ioreg16_read(baseaddr + SCOOP_IRM); imr = ioreg16_read(baseaddr + SCOOP_IMR); isr = ioreg16_read(baseaddr + SCOOP_ISR); gpcr = ioreg16_read(baseaddr + SCOOP_GPCR); gpwr = ioreg16_read(baseaddr + SCOOP_GPWR); gprr = ioreg16_read(baseaddr + SCOOP_GPRR); if (mcr == 0 && cdr == 0 && csr == 0 && cpr == 0 && ccr == 0 && irr == 0 && irm == 0 && imr == 0 && isr == 0 && gpcr == 0 && gpwr == 0 && gprr == 0) { /* scoop1 isn't found: hardware is SL-C1000 */ return 1; } return 0; } /* * u_int initarm(...) * * Initial entry point on startup. This gets called before main() is * entered. * It should be responsible for setting up everything that must be * in place when main is called. * This includes * Taking a copy of the boot configuration structure. * Initialising the physical console so characters can be printed. * Setting up page tables for the kernel * Relocating the kernel to the bottom of physical memory */ u_int initarm(void *arg) { #ifdef DIAGNOSTIC extern vsize_t xscale_minidata_clean_size; /* used in KASSERT */ #endif extern vaddr_t xscale_cache_clean_addr; extern char KERNEL_BASE_phys[], KERNEL_BASE_virt[]; int loop; int loop1; u_int l1pagetable; paddr_t memstart; psize_t memsize; struct pxa2x0_gpioconf **zaurus_gpioconf; u_int *magicaddr; #if NKSYMS || defined(DDB) || defined(MODULAR) u_int symbolsize; #endif /* Get ready for zaurus_restart() */ pxa2x0_memctl_bootstrap(PXA2X0_MEMCTL_BASE); /* * Heads up ... Setup the CPU / MMU / TLB functions */ if (set_cpufuncs()) panic("cpu not recognized!"); /* Get ready for splfoo() */ pxa2x0_intr_bootstrap(PXA2X0_INTCTL_BASE); /* map some peripheral registers at static I/O area */ pmap_devmap_bootstrap((vaddr_t)read_ttb(), zaurus_devmap); /* set new memctl register address so that zaurus_restart() doesn't touch illegal address. */ pxa2x0_memctl_bootstrap(ZAURUS_MEMCTL_VBASE); /* set new intc register address so that splfoo() doesn't touch illegal address. */ pxa2x0_intr_bootstrap(ZAURUS_INTCTL_VBASE); /* * Examine the boot args string for options we need to know about * now. */ magicaddr = (u_int *)(KERNEL_BASE_PHYS - BOOTARGS_BUFSIZ); if (*magicaddr == BOOTARGS_MAGIC) { #ifdef KLOADER bootinfo = &kbootinfo.bootinfo; #else bootinfo = &_bootinfo; #endif memcpy(bootinfo, (void *)(KERNEL_BASE_PHYS - BOOTINFO_MAXSIZE), BOOTINFO_MAXSIZE); bi_howto = lookup_bootinfo(BTINFO_HOWTO); boothowto = (bi_howto != NULL) ? bi_howto->howto : RB_AUTOBOOT; } else { boothowto = RB_AUTOBOOT; } *magicaddr = 0xdeadbeef; #ifdef RAMDISK_HOOKS boothowto |= RB_DFLTROOT; #endif /* RAMDISK_HOOKS */ if (boothowto & RB_MD1) { /* serial console */ console = "ffuart"; } memstart = PXA2X0_SDRAM0_START; memsize = 0x04000000; /* 64MB */ /* * This test will work for now but has to be revised when support * for other models is added. */ if ((cputype & ~CPU_ID_XSCALE_COREREV_MASK) == CPU_ID_PXA27X) { if (hw_isc1000()) zaurusmod = ZAURUS_C1000; /* SL-C1000 */ else zaurusmod = ZAURUS_C3000; /* SL-C3x00 */ zaurus_gpioconf = pxa27x_zaurus_gpioconf; } else { zaurusmod = ZAURUS_C860; /* SL-C7x0/860 */ if (cputype == CPU_ID_PXA250B) { /* SL-C700 */ memsize = 0x02000000; /* 32MB */ } zaurus_gpioconf = pxa25x_zaurus_gpioconf; } /* setup a serial console for very early boot */ pxa2x0_gpio_bootstrap(ZAURUS_GPIO_VBASE); pxa2x0_gpio_config(zaurus_gpioconf); pxa2x0_clkman_bootstrap(ZAURUS_CLKMAN_VBASE); if (strcmp(console, "glass") != 0) consinit(); #ifdef KGDB kgdb_port_init(); #endif #ifdef VERBOSE_INIT_ARM /* Talk to the user */ printf("\nNetBSD/zaurus booting ...\n"); #endif #ifdef KLOADER /* copy boot parameter for kloader */ kloader_bootinfo_set(&kbootinfo, 0, NULL, NULL, true); #endif #ifdef VERBOSE_INIT_ARM printf("initarm: Configuring system ...\n"); #endif /* Fake bootconfig structure for the benefit of pmap.c */ /* XXX must make the memory description h/w independent */ bootconfig.dramblocks = 1; bootconfig.dram[0].address = memstart; bootconfig.dram[0].pages = memsize / PAGE_SIZE; /* * Set up the variables that define the availablilty of * physical memory. For now, we're going to set * physical_freestart to 0xa0200000 (where the kernel * was loaded), and allocate the memory we need downwards. * If we get too close to the page tables that RedBoot * set up, we will panic. We will update physical_freestart * and physical_freeend later to reflect what pmap_bootstrap() * wants to see. * * XXX pmap_bootstrap() needs an enema. */ physical_start = bootconfig.dram[0].address; physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE); physical_freestart = PXA2X0_SDRAM0_START + 0x9000; physical_freeend = BOOTINFO_PAGE; physmem = (physical_end - physical_start) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM /* Tell the user about the memory */ printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem, physical_start, physical_end - 1); #endif /* * Okay, the kernel starts 2MB in from the bottom of physical * memory. We are going to allocate our bootstrap pages downwards * from there. * * We need to allocate some fixed page tables to get the kernel * going. We allocate one page directory and a number of page * tables and store the physical addresses in the kernel_pt_table * array. * * The kernel page directory must be on a 16K boundary. The page * tables must be on 4K bounaries. What we do is allocate the * page directory on the first 16K boundary that we encounter, and * the page tables on 4K boundaries otherwise. Since we allocate * at least 3 L2 page tables, we are guaranteed to encounter at * least one 16K aligned region. */ #ifdef VERBOSE_INIT_ARM printf("Allocating page tables\n"); #endif free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n", physical_freestart, free_pages, free_pages); #endif /* Define a macro to simplify memory allocation */ #define valloc_pages(var, np) \ alloc_pages((var).pv_pa, (np)); \ (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start; #define alloc_pages(var, np) \ physical_freeend -= ((np) * PAGE_SIZE); \ if (physical_freeend < physical_freestart) \ panic("initarm: out of memory"); \ (var) = physical_freeend; \ free_pages -= (np); \ memset((char *)(var), 0, ((np) * PAGE_SIZE)); loop1 = 0; for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) { /* Are we 16KB aligned for an L1 ? */ if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0 && kernel_l1pt.pv_pa == 0) { valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE); } else { valloc_pages(kernel_pt_table[loop1], L2_TABLE_SIZE / PAGE_SIZE); ++loop1; } } #ifdef KLOADER valloc_pages(bootinfo_pt, L2_TABLE_SIZE / PAGE_SIZE); #endif /* This should never be able to happen but better confirm that. */ if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0) panic("initarm: Failed to align the kernel page directory"); /* * Allocate a page for the system page mapped to V0x00000000 * This page will just contain the system vectors and can be * shared by all processes. */ alloc_pages(systempage.pv_pa, 1); /* Allocate stacks for all modes */ valloc_pages(irqstack, IRQ_STACK_SIZE); valloc_pages(abtstack, ABT_STACK_SIZE); valloc_pages(undstack, UND_STACK_SIZE); valloc_pages(kernelstack, UPAGES); /* Allocate enough pages for cleaning the Mini-Data cache. */ KASSERT(xscale_minidata_clean_size <= PAGE_SIZE); valloc_pages(minidataclean, 1); #ifdef KLOADER bootinfo_pg.pv_pa = BOOTINFO_PAGE; bootinfo_pg.pv_va = KERNEL_BASE + bootinfo_pg.pv_pa - physical_start; #endif #ifdef VERBOSE_INIT_ARM printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa, irqstack.pv_va); printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa, abtstack.pv_va); printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa, undstack.pv_va); printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa, kernelstack.pv_va); printf("minidataclean: p0x%08lx v0x%08lx, size = %ld\n", minidataclean.pv_pa, minidataclean.pv_va, xscale_minidata_clean_size); #ifdef KLOADER printf("bootinfo_pg: p0x%08lx v0x%08lx\n", bootinfo_pg.pv_pa, bootinfo_pg.pv_va); #endif #endif /* * XXX Defer this to later so that we can reclaim the memory * XXX used by the RedBoot page tables. */ alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE); /* * Ok we have allocated physical pages for the primary kernel * page tables */ #ifdef VERBOSE_INIT_ARM printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa); #endif /* * Now we start construction of the L1 page table * We start by mapping the L2 page tables into the L1. * This means that we can replace L1 mappings later on if necessary */ l1pagetable = kernel_l1pt.pv_pa; /* Map the L2 pages tables in the L1 page table */ pmap_link_l2pt(l1pagetable, 0x00000000, &kernel_pt_table[KERNEL_PT_SYS]); for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_KERNEL + loop]); for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++) pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000, &kernel_pt_table[KERNEL_PT_VMDATA + loop]); #ifdef KLOADER pmap_link_l2pt(l1pagetable, PXA2X0_SDRAM0_START, &bootinfo_pt); #endif /* update the top of the kernel VM */ pmap_curmaxkvaddr = KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000); /* check symbol table loaded by bootloader (zbsdmod.o) */ esym = end; #if NKSYMS || defined(DDB) || defined(MODULAR) symbolsize = 0; Elf_Ehdr *eh = (Elf_Ehdr *)end; #ifdef VERBOSE_INIT_ARM printf("Checking ELF MAGIC at end: %02x %02x %02x %02x\n", end[0], end[1], end[2], end[3]); #endif if (memcmp(eh->e_ident, ELFMAG, SELFMAG) == 0) { Elf_Shdr *sh; #ifdef VERBOSE_INIT_ARM printf("ELF header found at end\n"); #endif sh = (Elf_Shdr *)((char *)end + eh->e_shoff); for (loop = 0; loop < eh->e_shnum; loop++, sh++) { #ifdef VERBOSE_INIT_ARM printf("Checking ELF header %d\n", loop); #endif if (sh->sh_type != SHT_SYMTAB && sh->sh_type != SHT_STRTAB) { continue; } #ifdef VERBOSE_INIT_ARM printf("Section[%2d]: offset = %d, size = %d\n", loop, sh->sh_offset, sh->sh_size); #endif if (sh->sh_offset > 0 && (sh->sh_offset + sh->sh_size) > symbolsize) { symbolsize = sh->sh_offset + sh->sh_size; } #ifdef VERBOSE_INIT_ARM printf("Updating symbolsize = %d\n", symbolsize); #endif } esym = (char *)esym + symbolsize; } #ifdef VERBOSE_INIT_ARM printf("symbolsize = %d\n", symbolsize); #endif #endif /* NKSYMS || defined(DDB) || defined(MODULAR) */ #ifdef VERBOSE_INIT_ARM printf("Mapping kernel\n"); #endif /* Now we fill in the L2 pagetable for the kernel static code/data * and the symbol table. */ { size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE; size_t totalsize = (uintptr_t) esym - KERNEL_TEXT_BASE; u_int logical; textsize = (textsize + PGOFSET) & ~PGOFSET; totalsize = (totalsize + PGOFSET) & ~PGOFSET; /* offset of kernel in RAM */ logical = KERNEL_TEXT_BASE - KERNEL_BASE; logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, KERNEL_BASE + logical, physical_start + logical, totalsize - textsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); } #ifdef VERBOSE_INIT_ARM printf("Constructing L2 page tables\n"); #endif /* Map the stack pages */ pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa, IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa, ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa, UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa, UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa, L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) { pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va, kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); } #ifdef KLOADER pmap_map_chunk(l1pagetable, bootinfo_pt.pv_va, bootinfo_pt.pv_pa, L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE); pmap_map_chunk(l1pagetable, bootinfo_pg.pv_va, bootinfo_pg.pv_pa, PAGE_SIZE, VM_PROT_ALL, PTE_CACHE); #endif /* Map the Mini-Data cache clean area. */ xscale_setup_minidata(l1pagetable, minidataclean.pv_va, minidataclean.pv_pa); /* Map the vector page. */ #if 0 /* MULTI-ICE requires that page 0 is NC/NB so that it can download the * cache-clean code there. */ pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE); #else pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE); #endif /* * map integrated peripherals at same address in l1pagetable * so that we can continue to use console. */ pmap_devmap_bootstrap(l1pagetable, zaurus_devmap); /* * Give the XScale global cache clean code an appropriately * sized chunk of unmapped VA space starting at 0xff000000 * (our device mappings end before this address). */ xscale_cache_clean_addr = 0xff000000U; /* * Now we have the real page tables in place so we can switch to them. * Once this is done we will be running with the REAL kernel page * tables. */ /* * Update the physical_freestart/physical_freeend/free_pages * variables. */ { physical_freestart = physical_start + ((((uintptr_t) esym + PGOFSET) & ~PGOFSET) - KERNEL_BASE); physical_freeend = physical_end; free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE; } /* Switch tables */ #ifdef VERBOSE_INIT_ARM printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n", physical_freestart, free_pages, free_pages); printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa); #endif cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT); cpu_setttb(kernel_l1pt.pv_pa, true); cpu_tlb_flushID(); cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)); /* * Moved from cpu_startup() as data_abort_handler() references * this during uvm init */ uvm_lwp_setuarea(&lwp0, kernelstack.pv_va); #ifdef VERBOSE_INIT_ARM printf("bootstrap done.\n"); #endif arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL); /* * Pages were allocated during the secondary bootstrap for the * stacks for different CPU modes. * We must now set the r13 registers in the different CPU modes to * point to these stacks. * Since the ARM stacks use STMFD etc. we must set r13 to the top end * of the stack memory. */ #ifdef VERBOSE_INIT_ARM printf("init subsystems: stacks "); #endif set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE); set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE); /* * Well we should set a data abort handler. * Once things get going this will change as we will need a proper * handler. * Until then we will use a handler that just panics but tells us * why. * Initialisation of the vectors will just panic on a data abort. * This just fills in a slighly better one. */ #ifdef VERBOSE_INIT_ARM printf("vectors "); #endif data_abort_handler_address = (u_int)data_abort_handler; prefetch_abort_handler_address = (u_int)prefetch_abort_handler; undefined_handler_address = (u_int)undefinedinstruction_bounce; /* Initialise the undefined instruction handlers */ #ifdef VERBOSE_INIT_ARM printf("undefined "); #endif undefined_init(); /* Load memory into UVM. */ #ifdef VERBOSE_INIT_ARM printf("page "); #endif uvm_md_init(); uvm_page_physload(atop(physical_freestart), atop(physical_freeend), atop(physical_freestart), atop(physical_freeend), VM_FREELIST_DEFAULT); /* Boot strap pmap telling it where the kernel page table is */ #ifdef VERBOSE_INIT_ARM printf("pmap "); #endif pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE); #ifdef VERBOSE_INIT_ARM printf("\n"); #endif #ifdef __HAVE_MEMORY_DISK__ md_root_setconf(memory_disk, sizeof memory_disk); #endif #if NKSYMS || defined(DDB) || defined(MODULAR) if (symbolsize > 0) ksyms_addsyms_elf(symbolsize, &end, esym); #endif #ifdef KGDB if (boothowto & RB_KDB) { kgdb_debug_init = 1; kgdb_connect(1); } #endif #ifdef DDB db_machine_init(); if (boothowto & RB_KDB) Debugger(); #endif /* We return the new stack pointer address */ return (kernelstack.pv_va + USPACE_SVC_STACK_TOP); } void * lookup_bootinfo(int type) { struct btinfo_common *help; int n; if (bootinfo == NULL) return (NULL); n = bootinfo->nentries; help = (struct btinfo_common *)(bootinfo->info); while (n--) { if (help->type == type) return (help); help = (struct btinfo_common *)((char *)help + help->len); } return (NULL); } #ifdef KLOADER static int parseboot(char *arg, char **filename, int *howto) { char *opts = NULL; *filename = NULL; *howto = 0; /* if there were no arguments */ if (arg == NULL || *arg == '\0') return 1; /* format is... */ /* [[xxNx:]filename] [-adqsv] */ /* check for just args */ if (arg[0] == '-') { opts = arg; } else { /* there's a file name */ *filename = arg; opts = gettrailer(arg); if (opts == NULL || *opts == '\0') { opts = NULL; } else if (*opts != '-') { printf("invalid arguments\n"); return 0; } } /* at this point, we have dealt with filenames. */ /* now, deal with options */ if (opts) { if (parseopts(opts, howto) == 0) { return 0; } } return 1; } static char * gettrailer(char *arg) { static char nullstr[] = ""; char *options; if ((options = strchr(arg, ' ')) == NULL) return nullstr; else *options++ = '\0'; /* trim leading blanks */ while (*options == ' ') options++; return options; } static int parseopts(const char *opts, int *howto) { int r, tmpopt = *howto; opts++; /* skip - */ while (*opts && *opts != ' ') { r = 0; BOOT_FLAG(*opts, r); if (r == 0) { printf("-%c: unknown flag\n", *opts); return 0; } tmpopt |= r; opts++; } *howto = tmpopt; return 1; } #endif /* * Console */ #include "com.h" #if (NCOM > 0) #include #endif #include "lcd.h" #include "w100lcd.h" #include "wsdisplay.h" #ifndef CONSPEED #define CONSPEED B9600 #endif #ifndef CONMODE #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comcnspeed = CONSPEED; int comcnmode = CONMODE; #ifdef KGDB #ifndef KGDB_DEVNAME #define KGDB_DEVNAME "ffuart" #endif const char kgdb_devname[] = KGDB_DEVNAME; #if (NCOM > 0) #ifndef KGDB_DEVMODE #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */ #endif int comkgdbmode = KGDB_DEVMODE; #endif /* NCOM */ #endif /* KGDB */ void consinit(void) { static int consinit_called = 0; #if (NCOM > 0) && defined(COM_PXA2X0) paddr_t paddr; u_int cken = 0; #endif if (consinit_called) return; consinit_called = 1; #if (NCOM > 0) && defined(COM_PXA2X0) #ifdef KGDB if (strcmp(kgdb_devname, console) == 0) { /* port is reserved for kgdb */ } else #endif if (strcmp(console, "ffuart") == 0) { paddr = PXA2X0_FFUART_BASE; cken = CKEN_FFUART; } else if (strcmp(console, "btuart") == 0) { paddr = PXA2X0_BTUART_BASE; cken = CKEN_BTUART; } else if (strcmp(console, "stuart") == 0) { paddr = PXA2X0_STUART_BASE; cken = CKEN_STUART; irda_on(0); } else #endif if (strcmp(console, "glass") == 0) { #if ((NLCD > 0) || (NW100LCD > 0)) && (NWSDISPLAY > 0) glass_console = 1; #if NLCD > 0 if (ZAURUS_ISC1000 || ZAURUS_ISC3000) lcd_cnattach(); #endif #if NW100LCD > 0 if (ZAURUS_ISC860) w100lcd_cnattach(); #endif #endif } #if (NCOM > 0) && defined(COM_PXA2X0) if (cken != 0 && comcnattach(&pxa2x0_a4x_bs_tag, paddr, comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode) == 0) { pxa2x0_clkman_config(cken, 1); } #endif } #ifdef KGDB void kgdb_port_init(void) { #if (NCOM > 0) && defined(COM_PXA2X0) paddr_t paddr; u_int cken; if (strcmp(kgdb_devname, "ffuart") == 0) { paddr = PXA2X0_FFUART_BASE; cken = CKEN_FFUART; } else if (strcmp(kgdb_devname, "btuart") == 0) { paddr = PXA2X0_BTUART_BASE; cken = CKEN_BTUART; } else if (strcmp(kgdb_devname, "stuart") == 0) { paddr = PXA2X0_STUART_BASE; cken = CKEN_STUART; irda_on(0); } else return; if (com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr, kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode) == 0) { pxa2x0_clkman_config(cken, 1); } #endif } #endif