/* $NetBSD: netbsd32_signal.c,v 1.43.8.2 2023/06/21 21:04:01 martin Exp $ */ /* * Copyright (c) 1998, 2001 Matthew R. Green * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: netbsd32_signal.c,v 1.43.8.2 2023/06/21 21:04:01 martin Exp $"); #if defined(_KERNEL_OPT) #include "opt_ktrace.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int netbsd32_sigaction(struct lwp *l, const struct netbsd32_sigaction_args *uap, register_t *retval) { /* { syscallarg(int) signum; syscallarg(const netbsd32_sigactionp_t) nsa; syscallarg(netbsd32_sigactionp_t) osa; } */ struct sigaction nsa, osa; struct netbsd32_sigaction13 *sa32p, sa32; int error; if (SCARG_P32(uap, nsa)) { sa32p = SCARG_P32(uap, nsa); if (copyin(sa32p, &sa32, sizeof(sa32))) return EFAULT; nsa.sa_handler = (void *)NETBSD32PTR64(sa32.netbsd32_sa_handler); memset(&nsa.sa_mask, 0, sizeof(nsa.sa_mask)); nsa.sa_mask.__bits[0] = sa32.netbsd32_sa_mask; nsa.sa_flags = sa32.netbsd32_sa_flags; } error = sigaction1(l, SCARG(uap, signum), SCARG_P32(uap, nsa) ? &nsa : 0, SCARG_P32(uap, osa) ? &osa : 0, NULL, 0); if (error) return (error); if (SCARG_P32(uap, osa)) { memset(&sa32, 0, sizeof(sa32)); NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler); sa32.netbsd32_sa_mask = osa.sa_mask.__bits[0]; sa32.netbsd32_sa_flags = osa.sa_flags; sa32p = SCARG_P32(uap, osa); if (copyout(&sa32, sa32p, sizeof(sa32))) return EFAULT; } return (0); } int netbsd32___sigaltstack14(struct lwp *l, const struct netbsd32___sigaltstack14_args *uap, register_t *retval) { /* { syscallarg(const netbsd32_sigaltstackp_t) nss; syscallarg(netbsd32_sigaltstackp_t) oss; } */ compat_sigaltstack(uap, netbsd32_sigaltstack, SS_ONSTACK, SS_DISABLE); } /* ARGSUSED */ int netbsd32___sigaction14(struct lwp *l, const struct netbsd32___sigaction14_args *uap, register_t *retval) { /* { syscallarg(int) signum; syscallarg(const struct sigaction *) nsa; syscallarg(struct sigaction *) osa; } */ struct netbsd32_sigaction sa32; struct sigaction nsa, osa; int error; if (SCARG_P32(uap, nsa)) { error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32)); if (error) return (error); nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler); nsa.sa_mask = sa32.netbsd32_sa_mask; nsa.sa_flags = sa32.netbsd32_sa_flags; } error = sigaction1(l, SCARG(uap, signum), SCARG_P32(uap, nsa) ? &nsa : 0, SCARG_P32(uap, osa) ? &osa : 0, NULL, 0); if (error) return (error); if (SCARG_P32(uap, osa)) { memset(&sa32, 0, sizeof(sa32)); NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler); sa32.netbsd32_sa_mask = osa.sa_mask; sa32.netbsd32_sa_flags = osa.sa_flags; error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32)); if (error) return (error); } return (0); } /* ARGSUSED */ int netbsd32___sigaction_sigtramp(struct lwp *l, const struct netbsd32___sigaction_sigtramp_args *uap, register_t *retval) { /* { syscallarg(int) signum; syscallarg(const netbsd32_sigactionp_t) nsa; syscallarg(netbsd32_sigactionp_t) osa; syscallarg(netbsd32_voidp) tramp; syscallarg(int) vers; } */ struct netbsd32_sigaction sa32; struct sigaction nsa, osa; int error; if (SCARG_P32(uap, nsa)) { error = copyin(SCARG_P32(uap, nsa), &sa32, sizeof(sa32)); if (error) return (error); nsa.sa_handler = NETBSD32PTR64(sa32.netbsd32_sa_handler); nsa.sa_mask = sa32.netbsd32_sa_mask; nsa.sa_flags = sa32.netbsd32_sa_flags; } error = sigaction1(l, SCARG(uap, signum), SCARG_P32(uap, nsa) ? &nsa : 0, SCARG_P32(uap, osa) ? &osa : 0, SCARG_P32(uap, tramp), SCARG(uap, vers)); if (error) return (error); if (SCARG_P32(uap, osa)) { memset(&sa32, 0, sizeof(sa32)); NETBSD32PTR32(sa32.netbsd32_sa_handler, osa.sa_handler); sa32.netbsd32_sa_mask = osa.sa_mask; sa32.netbsd32_sa_flags = osa.sa_flags; error = copyout(&sa32, SCARG_P32(uap, osa), sizeof(sa32)); if (error) return (error); } return (0); } void netbsd32_ksi32_to_ksi(struct _ksiginfo *si, const struct __ksiginfo32 *si32) { memset(si, 0, sizeof (*si)); si->_signo = si32->_signo; si->_code = si32->_code; si->_errno = si32->_errno; switch (si32->_signo) { case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP: si->_reason._fault._addr = NETBSD32IPTR64(si32->_reason._fault._addr); si->_reason._fault._trap = si32->_reason._fault._trap; break; case SIGALRM: case SIGVTALRM: case SIGPROF: default: /* see sigqueue() and kill1() */ si->_reason._rt._pid = si32->_reason._rt._pid; si->_reason._rt._uid = si32->_reason._rt._uid; si->_reason._rt._value.sival_int = si32->_reason._rt._value.sival_int; break; case SIGCHLD: si->_reason._child._pid = si32->_reason._child._pid; si->_reason._child._uid = si32->_reason._child._uid; si->_reason._child._utime = si32->_reason._child._utime; si->_reason._child._stime = si32->_reason._child._stime; break; case SIGURG: case SIGIO: si->_reason._poll._band = si32->_reason._poll._band; si->_reason._poll._fd = si32->_reason._poll._fd; break; } } #ifdef KTRACE static void netbsd32_ksi_to_ksi32(struct __ksiginfo32 *si32, const struct _ksiginfo *si) { memset(si32, 0, sizeof (*si32)); si32->_signo = si->_signo; si32->_code = si->_code; si32->_errno = si->_errno; switch (si->_signo) { case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP: si32->_reason._fault._addr = NETBSD32PTR32I(si->_reason._fault._addr); si32->_reason._fault._trap = si->_reason._fault._trap; break; case SIGALRM: case SIGVTALRM: case SIGPROF: default: /* see sigqueue() and kill1() */ si32->_reason._rt._pid = si->_reason._rt._pid; si32->_reason._rt._uid = si->_reason._rt._uid; si32->_reason._rt._value.sival_int = si->_reason._rt._value.sival_int; break; case SIGCHLD: si32->_reason._child._pid = si->_reason._child._pid; si32->_reason._child._uid = si->_reason._child._uid; si32->_reason._child._utime = si->_reason._child._utime; si32->_reason._child._stime = si->_reason._child._stime; break; case SIGURG: case SIGIO: si32->_reason._poll._band = si->_reason._poll._band; si32->_reason._poll._fd = si->_reason._poll._fd; break; } } #endif void netbsd32_si_to_si32(siginfo32_t *si32, const siginfo_t *si) { memset(si32, 0, sizeof (*si32)); si32->si_signo = si->si_signo; si32->si_code = si->si_code; si32->si_errno = si->si_errno; switch (si32->si_signo) { case 0: /* SA */ si32->si_value.sival_int = si->si_value.sival_int; break; case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP: si32->si_addr = (uint32_t)(uintptr_t)si->si_addr; si32->si_trap = si->si_trap; break; case SIGALRM: case SIGVTALRM: case SIGPROF: default: si32->si_pid = si->si_pid; si32->si_uid = si->si_uid; si32->si_value.sival_int = si->si_value.sival_int; break; case SIGCHLD: si32->si_pid = si->si_pid; si32->si_uid = si->si_uid; si32->si_status = si->si_status; si32->si_utime = si->si_utime; si32->si_stime = si->si_stime; break; case SIGURG: case SIGIO: si32->si_band = si->si_band; si32->si_fd = si->si_fd; break; } } void netbsd32_si32_to_si(siginfo_t *si, const siginfo32_t *si32) { memset(si, 0, sizeof (*si)); si->si_signo = si32->si_signo; si->si_code = si32->si_code; si->si_errno = si32->si_errno; switch (si->si_signo) { case 0: /* SA */ si->si_value.sival_int = si32->si_value.sival_int; break; case SIGILL: case SIGBUS: case SIGSEGV: case SIGFPE: case SIGTRAP: si->si_addr = (void *)(uintptr_t)si32->si_addr; si->si_trap = si32->si_trap; break; case SIGALRM: case SIGVTALRM: case SIGPROF: default: si->si_pid = si32->si_pid; si->si_uid = si32->si_uid; si->si_value.sival_int = si32->si_value.sival_int; break; case SIGCHLD: si->si_pid = si32->si_pid; si->si_uid = si32->si_uid; si->si_status = si32->si_status; si->si_utime = si32->si_utime; si->si_stime = si32->si_stime; break; case SIGURG: case SIGIO: si->si_band = si32->si_band; si->si_fd = si32->si_fd; break; } } void getucontext32(struct lwp *l, ucontext32_t *ucp) { struct proc *p = l->l_proc; KASSERT(mutex_owned(p->p_lock)); ucp->uc_flags = 0; ucp->uc_link = (uint32_t)(intptr_t)l->l_ctxlink; ucp->uc_sigmask = l->l_sigmask; ucp->uc_flags |= _UC_SIGMASK; /* * The (unsupplied) definition of the `current execution stack' * in the System V Interface Definition appears to allow returning * the main context stack. */ if ((l->l_sigstk.ss_flags & SS_ONSTACK) == 0) { ucp->uc_stack.ss_sp = USRSTACK32; ucp->uc_stack.ss_size = ctob(p->p_vmspace->vm_ssize); ucp->uc_stack.ss_flags = 0; /* XXX, def. is Very Fishy */ } else { /* Simply copy alternate signal execution stack. */ ucp->uc_stack.ss_sp = (uint32_t)(intptr_t)l->l_sigstk.ss_sp; ucp->uc_stack.ss_size = l->l_sigstk.ss_size; ucp->uc_stack.ss_flags = l->l_sigstk.ss_flags; } ucp->uc_flags |= _UC_STACK; mutex_exit(p->p_lock); cpu_getmcontext32(l, &ucp->uc_mcontext, &ucp->uc_flags); mutex_enter(p->p_lock); } int netbsd32_getcontext(struct lwp *l, const struct netbsd32_getcontext_args *uap, register_t *retval) { /* { syscallarg(netbsd32_ucontextp) ucp; } */ struct proc *p = l->l_proc; ucontext32_t uc; memset(&uc, 0, sizeof(uc)); mutex_enter(p->p_lock); getucontext32(l, &uc); mutex_exit(p->p_lock); return copyout(&uc, SCARG_P32(uap, ucp), sizeof (ucontext32_t)); } int setucontext32(struct lwp *l, const ucontext32_t *ucp) { struct proc *p = l->l_proc; int error; KASSERT(mutex_owned(p->p_lock)); if ((ucp->uc_flags & _UC_SIGMASK) != 0) { error = sigprocmask1(l, SIG_SETMASK, &ucp->uc_sigmask, NULL); if (error != 0) return error; } mutex_exit(p->p_lock); error = cpu_setmcontext32(l, &ucp->uc_mcontext, ucp->uc_flags); mutex_enter(p->p_lock); if (error != 0) return (error); l->l_ctxlink = (void *)(intptr_t)ucp->uc_link; /* * If there was stack information, update whether or not we are * still running on an alternate signal stack. */ if ((ucp->uc_flags & _UC_STACK) != 0) { if (ucp->uc_stack.ss_flags & SS_ONSTACK) l->l_sigstk.ss_flags |= SS_ONSTACK; else l->l_sigstk.ss_flags &= ~SS_ONSTACK; } return 0; } /* ARGSUSED */ int netbsd32_setcontext(struct lwp *l, const struct netbsd32_setcontext_args *uap, register_t *retval) { /* { syscallarg(netbsd32_ucontextp) ucp; } */ ucontext32_t uc; int error; struct proc *p = l->l_proc; error = copyin(SCARG_P32(uap, ucp), &uc, sizeof (uc)); if (error) return (error); if (!(uc.uc_flags & _UC_CPU)) return (EINVAL); mutex_enter(p->p_lock); error = setucontext32(l, &uc); mutex_exit(p->p_lock); if (error) return (error); return (EJUSTRETURN); } static int netbsd32_sigtimedwait_put_info(const void *src, void *dst, size_t size) { const siginfo_t *info = src; siginfo32_t info32; netbsd32_si_to_si32(&info32, info); return copyout(&info32, dst, sizeof(info32)); } static int netbsd32_sigtimedwait_fetch_timeout(const void *src, void *dst, size_t size) { struct timespec *ts = dst; struct netbsd32_timespec ts32; int error; error = copyin(src, &ts32, sizeof(ts32)); if (error) return error; netbsd32_to_timespec(&ts32, ts); return 0; } static int netbsd32_sigtimedwait_put_timeout(const void *src, void *dst, size_t size) { const struct timespec *ts = src; struct netbsd32_timespec ts32; netbsd32_from_timespec(ts, &ts32); return copyout(&ts32, dst, sizeof(ts32)); } int netbsd32_____sigtimedwait50(struct lwp *l, const struct netbsd32_____sigtimedwait50_args *uap, register_t *retval) { /* { syscallarg(netbsd32_sigsetp_t) set; syscallarg(netbsd32_siginfop_t) info; syscallarg(netbsd32_timespec50p_t) timeout; } */ struct sys_____sigtimedwait50_args ua; NETBSD32TOP_UAP(set, const sigset_t); NETBSD32TOP_UAP(info, siginfo_t); NETBSD32TOP_UAP(timeout, struct timespec); return sigtimedwait1(l, &ua, retval, copyin, netbsd32_sigtimedwait_put_info, netbsd32_sigtimedwait_fetch_timeout, netbsd32_sigtimedwait_put_timeout); } int netbsd32_sigqueueinfo(struct lwp *l, const struct netbsd32_sigqueueinfo_args *uap, register_t *retval) { /* { syscallarg(pid_t) pid; syscallarg(const netbsd32_siginfop_t) info; } */ struct __ksiginfo32 ksi32; ksiginfo_t ksi; int error; if ((error = copyin(SCARG_P32(uap, info), &ksi32, sizeof(ksi32))) != 0) return error; KSI_INIT(&ksi); netbsd32_ksi32_to_ksi(&ksi.ksi_info, &ksi32); return kill1(l, SCARG(uap, pid), &ksi, retval); } struct netbsd32_ktr_psig { int signo; netbsd32_pointer_t action; sigset_t mask; int code; /* and optional siginfo_t */ }; #ifdef KTRACE void netbsd32_ktrpsig(int sig, sig_t action, const sigset_t *mask, const ksiginfo_t *ksi) { struct ktrace_entry *kte; lwp_t *l = curlwp; struct { struct netbsd32_ktr_psig kp; siginfo32_t si; } *kbuf; if (!KTRPOINT(l->l_proc, KTR_PSIG)) return; if (ktealloc(&kte, (void *)&kbuf, l, KTR_PSIG, sizeof(*kbuf))) return; kbuf->kp.signo = (char)sig; NETBSD32PTR32(kbuf->kp.action, action); kbuf->kp.mask = *mask; if (ksi) { kbuf->kp.code = KSI_TRAPCODE(ksi); (void)memset(&kbuf->si, 0, sizeof(kbuf->si)); netbsd32_ksi_to_ksi32(&kbuf->si._info, &ksi->ksi_info); ktesethdrlen(kte, sizeof(*kbuf)); } else { kbuf->kp.code = 0; ktesethdrlen(kte, sizeof(struct netbsd32_ktr_psig)); } ktraddentry(l, kte, KTA_WAITOK); } #endif