/* $NetBSD: acpi_apm.c,v 1.20 2010/10/24 07:53:04 jruoho Exp $ */ /*- * Copyright (c) 2006 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Christos Zoulas and by Jared McNeill. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Autoconfiguration support for the Intel ACPI Component Architecture * ACPI reference implementation. */ #include __KERNEL_RCSID(0, "$NetBSD: acpi_apm.c,v 1.20 2010/10/24 07:53:04 jruoho Exp $"); #include #include #include #include #include #include #include #include #include static void acpiapm_disconnect(void *); static void acpiapm_enable(void *, int); static int acpiapm_set_powstate(void *, u_int, u_int); static int acpiapm_get_powstat(void *, u_int, struct apm_power_info *); static bool apm_per_sensor(const struct sysmon_envsys *, const envsys_data_t *, void *); static int acpiapm_get_event(void *, u_int *, u_int *); static void acpiapm_cpu_busy(void *); static void acpiapm_cpu_idle(void *); static void acpiapm_get_capabilities(void *, u_int *, u_int *); struct apm_accessops acpiapm_accessops = { acpiapm_disconnect, acpiapm_enable, acpiapm_set_powstate, acpiapm_get_powstat, acpiapm_get_event, acpiapm_cpu_busy, acpiapm_cpu_idle, acpiapm_get_capabilities, }; #ifdef ACPI_APM_DEBUG #define DPRINTF(a) uprintf a #else #define DPRINTF(a) #endif #ifndef ACPI_APM_DEFAULT_STANDBY_STATE #define ACPI_APM_DEFAULT_STANDBY_STATE (1) #endif #ifndef ACPI_APM_DEFAULT_SUSPEND_STATE #define ACPI_APM_DEFAULT_SUSPEND_STATE (3) #endif #define ACPI_APM_DEFAULT_CAP \ ((ACPI_APM_DEFAULT_STANDBY_STATE!=0 ? APM_GLOBAL_STANDBY : 0) | \ (ACPI_APM_DEFAULT_SUSPEND_STATE!=0 ? APM_GLOBAL_SUSPEND : 0)) #define ACPI_APM_STATE_MIN (0) #define ACPI_APM_STATE_MAX (4) /* It is assumed that there is only acpiapm instance. */ static int resumed = 0, capability_changed = 0; static int standby_state = ACPI_APM_DEFAULT_STANDBY_STATE; static int suspend_state = ACPI_APM_DEFAULT_SUSPEND_STATE; static int capabilities = ACPI_APM_DEFAULT_CAP; static int acpiapm_node = CTL_EOL, standby_node = CTL_EOL; struct acpi_softc; extern void acpi_enter_sleep_state(int); static int acpiapm_match(device_t, cfdata_t , void *); static void acpiapm_attach(device_t, device_t, void *); static int sysctl_state(SYSCTLFN_PROTO); CFATTACH_DECL_NEW(acpiapm, sizeof(struct apm_softc), acpiapm_match, acpiapm_attach, NULL, NULL); static int /*ARGSUSED*/ acpiapm_match(device_t parent, cfdata_t match, void *aux) { return apm_match(); } static void /*ARGSUSED*/ acpiapm_attach(device_t parent, device_t self, void *aux) { struct apm_softc *sc = device_private(self); sc->sc_dev = self; sc->sc_ops = &acpiapm_accessops; sc->sc_cookie = parent; sc->sc_vers = 0x0102; sc->sc_detail = 0; sc->sc_hwflags = APM_F_DONT_RUN_HOOKS; apm_attach(sc); } static int get_state_value(int id) { const int states[] = { ACPI_STATE_S0, ACPI_STATE_S1, ACPI_STATE_S2, ACPI_STATE_S3, ACPI_STATE_S4 }; if (id < ACPI_APM_STATE_MIN || id > ACPI_APM_STATE_MAX) return ACPI_STATE_S0; return states[id]; } static int sysctl_state(SYSCTLFN_ARGS) { int newstate, error, *ref, cap, oldcap; struct sysctlnode node; if (rnode->sysctl_num == standby_node) { ref = &standby_state; cap = APM_GLOBAL_STANDBY; } else { ref = &suspend_state; cap = APM_GLOBAL_SUSPEND; } newstate = *ref; node = *rnode; node.sysctl_data = &newstate; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; if (newstate < ACPI_APM_STATE_MIN || newstate > ACPI_APM_STATE_MAX) return EINVAL; *ref = newstate; oldcap = capabilities; capabilities = newstate != 0 ? oldcap | cap : oldcap & ~cap; if ((capabilities ^ oldcap) != 0) capability_changed = 1; return 0; } SYSCTL_SETUP(sysctl_acpiapm_setup, "sysctl machdep.acpiapm subtree setup") { const struct sysctlnode *node; if (sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL, NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL)) return; if (sysctl_createv(clog, 0, NULL, &node, CTLFLAG_PERMANENT, CTLTYPE_NODE, "acpiapm", NULL, NULL, 0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL)) return; acpiapm_node = node->sysctl_num; if (sysctl_createv(clog, 0, NULL, &node, CTLFLAG_READWRITE, CTLTYPE_INT, "standby", NULL, &sysctl_state, 0, NULL, 0, CTL_MACHDEP, acpiapm_node, CTL_CREATE, CTL_EOL)) return; standby_node = node->sysctl_num; if (sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_READWRITE, CTLTYPE_INT, "suspend", NULL, &sysctl_state, 0, NULL, 0, CTL_MACHDEP, acpiapm_node, CTL_CREATE, CTL_EOL)) return; } /***************************************************************************** * Minimalistic ACPI /dev/apm emulation support, for ACPI suspend *****************************************************************************/ static void /*ARGSUSED*/ acpiapm_disconnect(void *opaque) { return; } static void /*ARGSUSED*/ acpiapm_enable(void *opaque, int onoff) { return; } static int acpiapm_set_powstate(void *opaque, u_int devid, u_int powstat) { if (devid != APM_DEV_ALLDEVS) return APM_ERR_UNRECOG_DEV; switch (powstat) { case APM_SYS_READY: break; case APM_SYS_STANDBY: acpi_enter_sleep_state(get_state_value(standby_state)); resumed = 1; break; case APM_SYS_SUSPEND: acpi_enter_sleep_state(get_state_value(suspend_state)); resumed = 1; break; case APM_SYS_OFF: break; case APM_LASTREQ_INPROG: break; case APM_LASTREQ_REJECTED: break; } return 0; } struct apm_sensor_info { struct apm_power_info *pinfo; int present; int lastcap, descap, cap, warncap, lowcap, discharge; int lastcap_valid, cap_valid, discharge_valid; }; static bool apm_per_sensor(const struct sysmon_envsys *sme, const envsys_data_t *edata, void *arg) { struct apm_sensor_info *info = (struct apm_sensor_info *)arg; int data; if (sme->sme_class != SME_CLASS_ACADAPTER && sme->sme_class != SME_CLASS_BATTERY) return false; if (edata->state == ENVSYS_SINVALID) return true; data = edata->value_cur; DPRINTF(("%s (%s) %d\n", sme->sme_name, edata->desc, data)); if (strstr(edata->desc, "connected")) { info->pinfo->ac_state = data ? APM_AC_ON : APM_AC_OFF; } else if (strstr(edata->desc, "present") && data != 0) info->present++; else if (strstr(edata->desc, "charging")) { if (data) info->pinfo->battery_flags |= APM_BATT_FLAG_CHARGING; else info->pinfo->battery_flags &= ~APM_BATT_FLAG_CHARGING; } else if (strstr(edata->desc, "last full cap")) { info->lastcap += data / 1000; info->lastcap_valid = 1; } else if (strstr(edata->desc, "design cap")) info->descap = data / 1000; else if (strstr(edata->desc, "charge") && strstr(edata->desc, "charge rate") == NULL && strstr(edata->desc, "charge state") == NULL) { /* Update cumulative capacity */ info->cap += data / 1000; /* get warning- & critical-capacity values */ info->warncap = edata->limits.sel_warnmin / 1000; info->lowcap = edata->limits.sel_critmin / 1000; info->cap_valid = 1; info->pinfo->nbattery++; } else if (strstr(edata->desc, "discharge rate")) { info->discharge += data / 1000; info->discharge_valid = 1; } return true; } static int /*ARGSUSED*/ acpiapm_get_powstat(void *opaque, u_int batteryid, struct apm_power_info *pinfo) { #define APM_BATT_FLAG_WATERMARK_MASK (APM_BATT_FLAG_CRITICAL | \ APM_BATT_FLAG_LOW | \ APM_BATT_FLAG_HIGH) struct apm_sensor_info info; /* Denote most variables as uninitialized. */ info.lowcap = info.warncap = info.descap = -1; /* * Prepare to aggregate capacity, charge, and discharge over all * batteries. */ info.cap = info.lastcap = info.discharge = 0; info.cap_valid = info.lastcap_valid = info.discharge_valid = 0; info.present = 0; info.pinfo = pinfo; (void)memset(pinfo, 0, sizeof(*pinfo)); pinfo->ac_state = APM_AC_UNKNOWN; pinfo->minutes_valid = 0; pinfo->minutes_left = 0; pinfo->batteryid = 0; pinfo->nbattery = 0; /* to be incremented as batteries are found */ pinfo->battery_flags = 0; pinfo->battery_state = APM_BATT_UNKNOWN; /* ignored */ pinfo->battery_life = APM_BATT_LIFE_UNKNOWN; sysmon_envsys_foreach_sensor(apm_per_sensor, (void *)&info, true); if (info.present == 0) pinfo->battery_flags |= APM_BATT_FLAG_NO_SYSTEM_BATTERY; if (info.cap_valid > 0) { if (info.warncap != -1 && info.cap < info.warncap) pinfo->battery_flags |= APM_BATT_FLAG_CRITICAL; else if (info.lowcap != -1) { if (info.cap < info.lowcap) pinfo->battery_flags |= APM_BATT_FLAG_LOW; else pinfo->battery_flags |= APM_BATT_FLAG_HIGH; } if (info.lastcap_valid > 0 && info.lastcap != 0) pinfo->battery_life = 100 * info.cap / info.lastcap; else if (info.descap != -1 && info.descap != 0) pinfo->battery_life = 100 * info.cap / info.descap; } if ((pinfo->battery_flags & APM_BATT_FLAG_CHARGING) == 0) { /* discharging */ if (info.discharge != -1 && info.discharge != 0 && info.cap != -1) pinfo->minutes_left = 60 * info.cap / info.discharge; } if ((pinfo->battery_flags & APM_BATT_FLAG_WATERMARK_MASK) == 0 && (pinfo->battery_flags & APM_BATT_FLAG_NO_SYSTEM_BATTERY) == 0) { if (pinfo->ac_state == APM_AC_ON) pinfo->battery_flags |= APM_BATT_FLAG_HIGH; else pinfo->battery_flags |= APM_BATT_FLAG_LOW; } DPRINTF(("%d %d %d %d %d %d\n", info.cap, info.warncap, info.lowcap, info.lastcap, info.descap, info.discharge)); DPRINTF(("pinfo %d %d %d\n", pinfo->battery_flags, pinfo->battery_life, pinfo->battery_life)); return 0; } static int /*ARGSUSED*/ acpiapm_get_event(void *opaque, u_int *event_type, u_int *event_info) { if (capability_changed) { capability_changed = 0; *event_type = APM_CAP_CHANGE; *event_info = 0; return 0; } if (resumed) { resumed = 0; *event_type = APM_NORMAL_RESUME; *event_info = 0; return 0; } return APM_ERR_NOEVENTS; } static void /*ARGSUSED*/ acpiapm_cpu_busy(void *opaque) { return; } static void /*ARGSUSED*/ acpiapm_cpu_idle(void *opaque) { return; } static void /*ARGSUSED*/ acpiapm_get_capabilities(void *opaque, u_int *numbatts, u_int *capflags) { *numbatts = 1; *capflags = capabilities; return; }