/* $NetBSD: acpi_pmtr.c,v 1.8 2015/04/23 23:23:00 pgoyette Exp $ */ /*- * Copyright (c) 2011 Jukka Ruohonen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: acpi_pmtr.c,v 1.8 2015/04/23 23:23:00 pgoyette Exp $"); #include #include #include #include #include #include #define _COMPONENT ACPI_RESOURCE_COMPONENT ACPI_MODULE_NAME ("acpi_pmtr") #define ACPIPMTR_CAP_FLAGS 0 #define ACPIPMTR_CAP_UNIT 1 #define ACPIPMTR_CAP_TYPE 2 #define ACPIPMTR_CAP_ACCURACY 3 #define ACPIPMTR_CAP_SAMPLING 4 #define ACPIPMTR_CAP_IVAL_MIN 5 #define ACPIPMTR_CAP_IVAL_MAX 6 #define ACPIPMTR_CAP_HYSTERESIS 7 #define ACPIPMTR_CAP_HWLIMIT 8 #define ACPIPMTR_CAP_HWLIMIT_MIN 9 #define ACPIPMTR_CAP_HWLIMIT_MAX 10 #define ACPIPMTR_CAP_COUNT 11 /* ACPIPMTR_CAP_MODEL 11 */ /* ACPIPMTR_CAP_SERIAL 12 */ /* ACPIPMTR_CAP_OEM 13 */ #define ACPIPMTR_FLAGS_MEASURE __BIT(0) #define ACPIPMTR_FLAGS_TRIP __BIT(1) #define ACPIPMTR_FLAGS_HWLIMIT __BIT(2) #define ACPIPMTR_FLAGS_NOTIFY __BIT(3) #define ACPIPMTR_FLAGS_DISCHARGE __BIT(8) #define ACPIPMTR_POWER_INPUT 0x00 #define ACPIPMTR_POWER_OUTPUT 0x01 #define ACPIPMTR_NOTIFY_CAP 0x80 #define ACPIPMTR_NOTIFY_TRIP 0x81 #define ACPIPMTR_NOTIFY_HWLIMIT1 0x82 #define ACPIPMTR_NOTIFY_HWLIMIT2 0x83 #define ACPIPMTR_NOTIFY_INTERVAL 0x84 struct acpipmtr_softc { device_t sc_dev; struct acpi_devnode *sc_node; struct sysmon_envsys *sc_sme; envsys_data_t sc_sensor_i; envsys_data_t sc_sensor_o; uint32_t sc_cap[ACPIPMTR_CAP_COUNT]; int32_t sc_interval; kmutex_t sc_mtx; }; const char * const acpi_pmtr_ids[] = { "ACPI000D", NULL }; static int acpipmtr_match(device_t, cfdata_t, void *); static void acpipmtr_attach(device_t, device_t, void *); static int acpipmtr_detach(device_t, int); static bool acpipmtr_cap_get(device_t, bool); static bool acpipmtr_dev_print(device_t); static bool acpipmtr_sensor_init(device_t); static void acpipmtr_sensor_type(device_t); static int32_t acpipmtr_sensor_get(device_t, const char *); static int32_t acpipmtr_sensor_get_reading(device_t); static int32_t acpipmtr_sensor_get_interval(device_t); static void acpipmtr_sensor_refresh(struct sysmon_envsys*,envsys_data_t *); static void acpipmtr_notify(ACPI_HANDLE, uint32_t, void *); CFATTACH_DECL_NEW(acpipmtr, sizeof(struct acpipmtr_softc), acpipmtr_match, acpipmtr_attach, acpipmtr_detach, NULL); static int acpipmtr_match(device_t parent, cfdata_t match, void *aux) { struct acpi_attach_args *aa = aux; if (aa->aa_node->ad_type != ACPI_TYPE_DEVICE) return 0; return acpi_match_hid(aa->aa_node->ad_devinfo, acpi_pmtr_ids); } static void acpipmtr_attach(device_t parent, device_t self, void *aux) { struct acpipmtr_softc *sc = device_private(self); struct acpi_attach_args *aa = aux; uint32_t acc; sc->sc_sme = NULL; sc->sc_dev = self; sc->sc_node = aa->aa_node; aprint_naive("\n"); aprint_normal(": ACPI Power Meter\n"); (void)pmf_device_register(self, NULL, NULL); mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE); if (acpipmtr_cap_get(self, true) != true) return; if (acpipmtr_sensor_init(self) != true) return; (void)acpipmtr_dev_print(self); (void)acpi_register_notify(sc->sc_node, acpipmtr_notify); if ((acc = sc->sc_cap[ACPIPMTR_CAP_ACCURACY]) == 0) acc = 100000; aprint_verbose_dev(self, "measuring %s power at %u.%u %% accuracy, %u ms sampling\n", (sc->sc_cap[ACPIPMTR_CAP_TYPE] != 0) ? "output" : "input", acc / 1000, acc % 1000, sc->sc_cap[ACPIPMTR_CAP_SAMPLING]); aprint_debug_dev(self, "%s hw-limits, capabilities 0x%02x\n", (sc->sc_cap[ACPIPMTR_CAP_HWLIMIT] != 0) ? "rw" : "ro", sc->sc_cap[ACPIPMTR_CAP_FLAGS]); } static int acpipmtr_detach(device_t self, int flags) { struct acpipmtr_softc *sc = device_private(self); pmf_device_deregister(self); acpi_deregister_notify(sc->sc_node); if (sc->sc_sme != NULL) sysmon_envsys_unregister(sc->sc_sme); mutex_destroy(&sc->sc_mtx); return 0; } static bool acpipmtr_cap_get(device_t self, bool print) { struct acpipmtr_softc *sc = device_private(self); ACPI_OBJECT *elm, *obj; ACPI_BUFFER buf; ACPI_STATUS rv; uint32_t i; for (i = 0; i < __arraycount(sc->sc_cap); i++) sc->sc_cap[i] = 0; rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PMC", &buf); if (ACPI_FAILURE(rv)) goto out; obj = buf.Pointer; if (obj->Type != ACPI_TYPE_PACKAGE) { rv = AE_TYPE; goto out; } elm = obj->Package.Elements; if (obj->Package.Count != 14) { rv = AE_LIMIT; goto out; } CTASSERT(__arraycount(sc->sc_cap) == 11); for (i = 0; i < __arraycount(sc->sc_cap); i++) { if (elm[i].Type != ACPI_TYPE_INTEGER) { rv = AE_TYPE; goto out; } if (elm[i].Integer.Value > UINT32_MAX) { rv = AE_AML_NUMERIC_OVERFLOW; goto out; } sc->sc_cap[i] = elm[i].Integer.Value; } if (print != true) goto out; for (; i < 14; i++) { if (elm[i].Type != ACPI_TYPE_STRING) goto out; if (elm[i].String.Pointer == NULL) goto out; if (elm[i].String.Pointer[0] == '\0') goto out; } aprint_debug_dev(self, "%s, serial %s, " "model %s\n", elm[13].String.Pointer, elm[12].String.Pointer, elm[11].String.Pointer); out: if (ACPI_FAILURE(rv)) aprint_error_dev(self, "failed to evaluate _PMC: %s\n", AcpiFormatException(rv)); if (buf.Pointer != NULL) ACPI_FREE(buf.Pointer); return (rv != AE_OK) ? false : true; } static bool acpipmtr_dev_print(device_t self) { struct acpipmtr_softc *sc = device_private(self); struct acpi_devnode *ad; ACPI_OBJECT *elm, *obj; ACPI_BUFFER buf; ACPI_HANDLE hdl; ACPI_STATUS rv; uint32_t i, n; /* * The _PMD method returns a package of devices whose total power * drawn should roughly correspond with the readings from the meter. */ rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PMD", &buf); if (ACPI_FAILURE(rv)) goto out; obj = buf.Pointer; if (obj->Type != ACPI_TYPE_PACKAGE) { rv = AE_TYPE; goto out; } n = obj->Package.Count; if (n == 0) { rv = AE_LIMIT; goto out; } aprint_debug_dev(self, "measured devices: "); for (i = 0; i < n; i++) { elm = &obj->Package.Elements[i]; rv = acpi_eval_reference_handle(elm, &hdl); if (ACPI_FAILURE(rv)) continue; ad = acpi_match_node(hdl); if (ad == NULL) continue; aprint_debug("%s ", ad->ad_name); } aprint_debug("\n"); out: if (ACPI_FAILURE(rv)) aprint_debug_dev(self, "failed to evaluate _PMD: %s\n", AcpiFormatException(rv)); if (buf.Pointer != NULL) ACPI_FREE(buf.Pointer); return (rv != AE_OK) ? false : true; } static bool acpipmtr_sensor_init(device_t self) { struct acpipmtr_softc *sc = device_private(self); const size_t siz = sizeof(sc->sc_sensor_i.desc); int32_t val; val = acpipmtr_sensor_get_reading(self); sc->sc_interval = acpipmtr_sensor_get_interval(self); if (val < 0) { aprint_error_dev(self, "failed to get sensor reading\n"); return false; } /* Always mW in ACPI 4.0. */ if (sc->sc_cap[ACPIPMTR_CAP_UNIT] != 0) aprint_error_dev(self, "invalid measurement unit\n"); sc->sc_sme = sysmon_envsys_create(); sc->sc_sensor_i.units = ENVSYS_SWATTS; sc->sc_sensor_o.units = ENVSYS_SWATTS; sc->sc_sensor_i.value_cur = val * 1000; sc->sc_sensor_o.value_cur = val * 1000; acpipmtr_sensor_type(self); (void)strlcpy(sc->sc_sensor_i.desc, "input power", siz); (void)strlcpy(sc->sc_sensor_o.desc, "output power", siz); sc->sc_sme->sme_cookie = self; sc->sc_sme->sme_flags = SME_POLL_ONLY; sc->sc_sme->sme_name = device_xname(self); sc->sc_sme->sme_refresh = acpipmtr_sensor_refresh; if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_i) != 0) goto fail; if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor_o) != 0) goto fail; if (sysmon_envsys_register(sc->sc_sme) != 0) goto fail; return true; fail: aprint_error_dev(self, "failed to initialize sysmon\n"); sysmon_envsys_destroy(sc->sc_sme); sc->sc_sme = NULL; return false; } static void acpipmtr_sensor_type(device_t self) { struct acpipmtr_softc *sc = device_private(self); mutex_enter(&sc->sc_mtx); switch (sc->sc_cap[ACPIPMTR_CAP_TYPE]) { case ACPIPMTR_POWER_INPUT: sc->sc_sensor_i.state = ENVSYS_SVALID; sc->sc_sensor_o.state = ENVSYS_SINVALID; break; case ACPIPMTR_POWER_OUTPUT: sc->sc_sensor_i.state = ENVSYS_SINVALID; sc->sc_sensor_o.state = ENVSYS_SVALID; break; default: sc->sc_sensor_i.state = ENVSYS_SINVALID; sc->sc_sensor_o.state = ENVSYS_SINVALID; break; } mutex_exit(&sc->sc_mtx); } static int32_t acpipmtr_sensor_get(device_t self, const char *path) { struct acpipmtr_softc *sc = device_private(self); ACPI_INTEGER val = 0; ACPI_STATUS rv; rv = acpi_eval_integer(sc->sc_node->ad_handle, path, &val); if (ACPI_FAILURE(rv)) goto fail; if (val == 0 || val > INT32_MAX) { rv = AE_LIMIT; goto fail; } return val; fail: aprint_debug_dev(self, "failed to evaluate " "%s: %s\n", path, AcpiFormatException(rv)); return -1; } static int32_t acpipmtr_sensor_get_reading(device_t self) { return acpipmtr_sensor_get(self, "_PMM"); } static int32_t acpipmtr_sensor_get_interval(device_t self) { return acpipmtr_sensor_get(self, "_GAI"); } static void acpipmtr_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata) { device_t self = sme->sme_cookie; struct acpipmtr_softc *sc; int32_t val; sc = device_private(self); sc->sc_sensor_i.state = ENVSYS_SINVALID; sc->sc_sensor_o.state = ENVSYS_SINVALID; val = acpipmtr_sensor_get_reading(self) * 1000; if (val < 0) return; sc->sc_sensor_i.value_cur = val; sc->sc_sensor_o.value_cur = val; acpipmtr_sensor_type(self); } static void acpipmtr_notify(ACPI_HANDLE hdl, uint32_t evt, void *aux) { struct acpipmtr_softc *sc; device_t self = aux; int32_t val; sc = device_private(self); switch (evt) { case ACPIPMTR_NOTIFY_CAP: mutex_enter(&sc->sc_mtx); if (acpipmtr_cap_get(self, false) != true) { mutex_exit(&sc->sc_mtx); break; } mutex_exit(&sc->sc_mtx); acpipmtr_sensor_type(self); break; case ACPIPMTR_NOTIFY_INTERVAL: val = acpipmtr_sensor_get_interval(self); if (val < 0 || val == sc->sc_interval) break; aprint_debug_dev(self, "averaging interval changed " "from %u ms to %u ms\n", sc->sc_interval, val); sc->sc_interval = val; break; case ACPIPMTR_NOTIFY_TRIP: /* AE_SUPPORT */ case ACPIPMTR_NOTIFY_HWLIMIT1: /* AE_SUPPORT */ case ACPIPMTR_NOTIFY_HWLIMIT2: /* AE_SUPPORT */ break; default: aprint_debug_dev(self, "unknown notify 0x%02x\n", evt); } } MODULE(MODULE_CLASS_DRIVER, acpipmtr, "sysmon_envsys"); #ifdef _MODULE #include "ioconf.c" #endif static int acpipmtr_modcmd(modcmd_t cmd, void *aux) { int rv = 0; switch (cmd) { case MODULE_CMD_INIT: #ifdef _MODULE rv = config_init_component(cfdriver_ioconf_acpipmtr, cfattach_ioconf_acpipmtr, cfdata_ioconf_acpipmtr); #endif break; case MODULE_CMD_FINI: #ifdef _MODULE rv = config_fini_component(cfdriver_ioconf_acpipmtr, cfattach_ioconf_acpipmtr, cfdata_ioconf_acpipmtr); #endif break; default: rv = ENOTTY; } return rv; }