/* $NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $ */ /* $OpenBSD: ar9285.c,v 1.19 2012/06/10 21:23:36 kettenis Exp $ */ /*- * Copyright (c) 2009-2010 Damien Bergamini * Copyright (c) 2008-2010 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Atheros 802.11a/g/n chipsets. * Routines for AR9285 and AR9271 chipsets. */ #include __KERNEL_RCSID(0, "$NetBSD: arn9285.c,v 1.3 2013/10/17 21:24:24 christos Exp $"); #ifndef _MODULE #include "athn_usb.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define Static static Static int ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); Static void ar9285_get_pdadcs(struct athn_softc *, struct ieee80211_channel *, int, uint8_t, uint8_t *, uint8_t *); Static const struct ar_spur_chan * ar9285_get_spur_chans(struct athn_softc *, int); Static void ar9285_init_from_rom(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); Static void ar9285_set_power_calib(struct athn_softc *, struct ieee80211_channel *); Static void ar9285_set_txpower(struct athn_softc *, struct ieee80211_channel *, struct ieee80211_channel *); Static void ar9285_setup(struct athn_softc *); Static void ar9285_swap_rom(struct athn_softc *); PUBLIC int ar9285_attach(struct athn_softc *sc) { sc->sc_eep_base = AR9285_EEP_START_LOC; sc->sc_eep_size = sizeof(struct ar9285_eeprom); sc->sc_def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE; sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 12; sc->sc_led_pin = (sc->sc_flags & ATHN_FLAG_USB) ? 15 : 1; sc->sc_workaround = AR9285_WA_DEFAULT; sc->sc_ops.setup = ar9285_setup; sc->sc_ops.swap_rom = ar9285_swap_rom; sc->sc_ops.init_from_rom = ar9285_init_from_rom; sc->sc_ops.set_txpower = ar9285_set_txpower; sc->sc_ops.set_synth = ar9280_set_synth; sc->sc_ops.spur_mitigate = ar9280_spur_mitigate; sc->sc_ops.get_spur_chans = ar9285_get_spur_chans; #if NATHN_USB > 0 if (AR_SREV_9271(sc)) sc->sc_ini = &ar9271_ini; else #endif sc->sc_ini = &ar9285_1_2_ini; sc->sc_serdes = &ar9280_2_0_serdes; return ar5008_attach(sc); } Static void ar9285_setup(struct athn_softc *sc) { const struct ar9285_eeprom *eep = sc->sc_eep; uint8_t type; /* Select initialization values based on ROM. */ type = eep->baseEepHeader.txGainType; DPRINTFN(DBG_TX, sc, "Tx gain type=0x%x\n", type); #if NATHN_USB > 0 if (AR_SREV_9271(sc)) { if (type == AR_EEP_TXGAIN_HIGH_POWER) sc->sc_tx_gain = &ar9271_tx_gain_high_power; else sc->sc_tx_gain = &ar9271_tx_gain; } else #endif /* NATHN_USB */ if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) { /* XE rev. */ if (type == AR_EEP_TXGAIN_HIGH_POWER) sc->sc_tx_gain = &ar9285_2_0_tx_gain_high_power; else sc->sc_tx_gain = &ar9285_2_0_tx_gain; } else { if (type == AR_EEP_TXGAIN_HIGH_POWER) sc->sc_tx_gain = &ar9285_1_2_tx_gain_high_power; else sc->sc_tx_gain = &ar9285_1_2_tx_gain; } } Static void ar9285_swap_rom(struct athn_softc *sc) { struct ar9285_eeprom *eep = sc->sc_eep; int i; eep->modalHeader.antCtrlCommon = bswap32(eep->modalHeader.antCtrlCommon); eep->modalHeader.antCtrlChain = bswap32(eep->modalHeader.antCtrlChain); for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { eep->modalHeader.spurChans[i].spurChan = bswap16(eep->modalHeader.spurChans[i].spurChan); } } Static const struct ar_spur_chan * ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz) { const struct ar9285_eeprom *eep = sc->sc_eep; KASSERT(is2ghz); return eep->modalHeader.spurChans; } Static void ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { const struct ar9285_eeprom *eep = sc->sc_eep; const struct ar9285_modal_eep_header *modal = &eep->modalHeader; uint32_t reg, offset = 0x1000; uint8_t ob[5], db1[5], db2[5]; uint8_t txRxAtten; AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain); reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI); reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ); AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg); if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) { reg = AR_READ(sc, AR_PHY_GAIN_2GHZ); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, modal->bswMargin); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, modal->bswAtten); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, modal->xatten2Margin); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, modal->xatten2Db); AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg); /* Duplicate values of chain 0 for chain 1. */ reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, modal->bswMargin); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, modal->bswAtten); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, modal->xatten2Margin); reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, modal->xatten2Db); AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); } if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) txRxAtten = modal->txRxAtten; else /* Workaround for ROM versions < 14.3. */ txRxAtten = 23; reg = AR_READ(sc, AR_PHY_RXGAIN); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin); AR_WRITE(sc, AR_PHY_RXGAIN, reg); /* Duplicate values of chain 0 for chain 1. */ reg = AR_READ(sc, AR_PHY_RXGAIN + offset); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin); AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); if (modal->version >= 3) { /* Setup antenna diversity from ROM. */ reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL); reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0); reg = RW(reg, AR9285_PHY_ANT_DIV_CTL, (modal->ob_234 >> 12) & 0x1); reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF, (modal->db1_234 >> 12) & 0x3); reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF, (modal->db1_234 >> 14) & 0x3); reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB, (modal->ob_234 >> 13) & 0x1); reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB, (modal->ob_234 >> 14) & 0x1); AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg); reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL); /* Flush. */ reg = AR_READ(sc, AR_PHY_CCK_DETECT); if (modal->ob_234 & (1 << 15)) reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; else reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); reg = AR_READ(sc, AR_PHY_CCK_DETECT); /* Flush. */ } if (modal->version >= 2) { ob [0] = (modal->ob_01 >> 0) & 0xf; ob [1] = (modal->ob_01 >> 4) & 0xf; ob [2] = (modal->ob_234 >> 0) & 0xf; ob [3] = (modal->ob_234 >> 4) & 0xf; ob [4] = (modal->ob_234 >> 8) & 0xf; db1[0] = (modal->db1_01 >> 0) & 0xf; db1[1] = (modal->db1_01 >> 4) & 0xf; db1[2] = (modal->db1_234 >> 0) & 0xf; db1[3] = (modal->db1_234 >> 4) & 0xf; db1[4] = (modal->db1_234 >> 8) & 0xf; db2[0] = (modal->db2_01 >> 0) & 0xf; db2[1] = (modal->db2_01 >> 4) & 0xf; db2[2] = (modal->db2_234 >> 0) & 0xf; db2[3] = (modal->db2_234 >> 4) & 0xf; db2[4] = (modal->db2_234 >> 8) & 0xf; } else if (modal->version == 1) { ob [0] = (modal->ob_01 >> 0) & 0xf; ob [1] = (modal->ob_01 >> 4) & 0xf; /* Field ob_234 does not exist, use ob_01. */ ob [2] = ob [3] = ob [4] = ob [1]; db1[0] = (modal->db1_01 >> 0) & 0xf; db1[1] = (modal->db1_01 >> 4) & 0xf; /* Field db1_234 does not exist, use db1_01. */ db1[2] = db1[3] = db1[4] = db1[1]; db2[0] = (modal->db2_01 >> 0) & 0xf; db2[1] = (modal->db2_01 >> 4) & 0xf; /* Field db2_234 does not exist, use db2_01. */ db2[2] = db2[3] = db2[4] = db2[1]; } else { ob [0] = modal->ob_01; ob [1] = ob [2] = ob [3] = ob [4] = ob [0]; db1[0] = modal->db1_01; db1[1] = db1[2] = db1[3] = db1[4] = db1[0]; /* Field db2_01 does not exist, use db1_01. */ db2[0] = modal->db1_01; db2[1] = db2[2] = db2[3] = db2[4] = db2[0]; } #if NATHN_USB > 0 if (AR_SREV_9271(sc)) { reg = AR_READ(sc, AR9285_AN_RF2G3); reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]); reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]); reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]); reg = RW(reg, AR9271_AN_RF2G3_DB1, db1[0]); AR_WRITE(sc, AR9285_AN_RF2G3, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR9285_AN_RF2G4); reg = RW(reg, AR9271_AN_RF2G4_DB2, db2[0]); AR_WRITE(sc, AR9285_AN_RF2G4, reg); AR_WRITE_BARRIER(sc); DELAY(100); } else #endif /* ATHN_USB */ { reg = AR_READ(sc, AR9285_AN_RF2G3); reg = RW(reg, AR9285_AN_RF2G3_OB_0, ob [0]); reg = RW(reg, AR9285_AN_RF2G3_OB_1, ob [1]); reg = RW(reg, AR9285_AN_RF2G3_OB_2, ob [2]); reg = RW(reg, AR9285_AN_RF2G3_OB_3, ob [3]); reg = RW(reg, AR9285_AN_RF2G3_OB_4, ob [4]); reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]); reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]); reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]); AR_WRITE(sc, AR9285_AN_RF2G3, reg); AR_WRITE_BARRIER(sc); DELAY(100); reg = AR_READ(sc, AR9285_AN_RF2G4); reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]); reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]); reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]); reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]); reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]); reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]); reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]); AR_WRITE(sc, AR9285_AN_RF2G4, reg); AR_WRITE_BARRIER(sc); DELAY(100); } reg = AR_READ(sc, AR_PHY_SETTLING); reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); AR_WRITE(sc, AR_PHY_SETTLING, reg); reg = AR_READ(sc, AR_PHY_DESIRED_SZ); reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); AR_WRITE(sc, AR_PHY_RF_CTL4, reg); reg = AR_READ(sc, AR_PHY_RF_CTL3); reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); AR_WRITE(sc, AR_PHY_RF_CTL3, reg); reg = AR_READ(sc, AR_PHY_CCA(0)); reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_CCA(0), reg); reg = AR_READ(sc, AR_PHY_EXT_CCA0); reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) { reg = AR_READ(sc, AR_PHY_RF_CTL2); reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn); reg = RW(reg, AR_PHY_TX_END_DATA_START, modal->txFrameToDataStart); AR_WRITE(sc, AR_PHY_RF_CTL2, reg); } #ifndef IEEE80211_NO_HT if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) { reg = AR_READ(sc, AR_PHY_SETTLING); reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); AR_WRITE(sc, AR_PHY_SETTLING, reg); } #endif AR_WRITE_BARRIER(sc); } PUBLIC void ar9285_pa_calib(struct athn_softc *sc) { /* List of registers that need to be saved/restored. */ static const uint16_t regs[] = { AR9285_AN_TOP3, AR9285_AN_RXTXBB1, AR9285_AN_RF2G1, AR9285_AN_RF2G2, AR9285_AN_TOP2, AR9285_AN_RF2G8, AR9285_AN_RF2G7 }; uint32_t svg[7], reg, ccomp_svg; size_t i; /* No PA calibration needed for high power solutions. */ if (AR_SREV_9285(sc) && ((struct ar9285_base_eep_header *)sc->sc_eep)->txGainType == AR_EEP_TXGAIN_HIGH_POWER) /* XXX AR9287? */ return; /* Save registers. */ for (i = 0; i < __arraycount(regs); i++) svg[i] = AR_READ(sc, regs[i]); AR_CLRBITS(sc, AR9285_AN_RF2G6, 1); AR_SETBITS(sc, AR_PHY(2), 1 << 27); AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC); AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1); AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I); AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF); AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL); AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB); AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL); /* Power down PA drivers. */ AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1); AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2); AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT); reg = AR_READ(sc, AR9285_AN_RF2G8); reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); AR_WRITE(sc, AR9285_AN_RF2G8, reg); reg = AR_READ(sc, AR9285_AN_RF2G7); reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); AR_WRITE(sc, AR9285_AN_RF2G7, reg); reg = AR_READ(sc, AR9285_AN_RF2G6); /* Save compensation capacitor value. */ ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP); /* Program compensation capacitor for dynamic PA. */ reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf); AR_WRITE(sc, AR9285_AN_RF2G6, reg); AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT); AR_WRITE_BARRIER(sc); DELAY(30); /* Clear offsets 6-1. */ AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1); /* Clear offset 0. */ AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); /* Set offsets 6-1. */ for (i = 6; i >= 1; i--) { AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i)); AR_WRITE_BARRIER(sc); DELAY(1); if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) { AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i)); } else { AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i)); } } /* Set offset 0. */ AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); AR_WRITE_BARRIER(sc); DELAY(1); if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); else AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); AR_WRITE_BARRIER(sc); AR_SETBITS(sc, AR9285_AN_RF2G6, 1); AR_CLRBITS(sc, AR_PHY(2), 1 << 27); /* Restore registers. */ for (i = 0; i < __arraycount(regs); i++) AR_WRITE(sc, regs[i], svg[i]); /* Restore compensation capacitor value. */ reg = AR_READ(sc, AR9285_AN_RF2G6); reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg); AR_WRITE(sc, AR9285_AN_RF2G6, reg); AR_WRITE_BARRIER(sc); } PUBLIC void ar9271_pa_calib(struct athn_softc *sc) { #if NATHN_USB > 0 /* List of registers that need to be saved/restored. */ static const uint16_t regs[] = { AR9285_AN_TOP3, AR9285_AN_RXTXBB1, AR9285_AN_RF2G1, AR9285_AN_RF2G2, AR9285_AN_TOP2, AR9285_AN_RF2G8, AR9285_AN_RF2G7 }; uint32_t svg[7], reg, rf2g3_svg; size_t i; /* Save registers. */ for (i = 0; i < __arraycount(regs); i++) svg[i] = AR_READ(sc, regs[i]); AR_CLRBITS(sc, AR9285_AN_RF2G6, 1); AR_SETBITS(sc, AR_PHY(2), 1 << 27); AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC); AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1); AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I); AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF); AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL); AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB); AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL); /* Power down PA drivers. */ AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1); AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2); AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT); reg = AR_READ(sc, AR9285_AN_RF2G8); reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); AR_WRITE(sc, AR9285_AN_RF2G8, reg); reg = AR_READ(sc, AR9285_AN_RF2G7); reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); AR_WRITE(sc, AR9285_AN_RF2G7, reg); /* Save compensation capacitor value. */ reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3); /* Program compensation capacitor for dynamic PA. */ reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff); AR_WRITE(sc, AR9285_AN_RF2G3, reg); AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT); AR_WRITE_BARRIER(sc); DELAY(30); /* Clear offsets 6-0. */ AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0); /* Set offsets 6-1. */ for (i = 6; i >= 1; i--) { reg = AR_READ(sc, AR9285_AN_RF2G6); reg |= AR9271_AN_RF2G6_OFFS(i); AR_WRITE(sc, AR9285_AN_RF2G6, reg); AR_WRITE_BARRIER(sc); DELAY(1); if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)) reg &= ~AR9271_AN_RF2G6_OFFS(i); AR_WRITE(sc, AR9285_AN_RF2G6, reg); } AR_WRITE_BARRIER(sc); AR_SETBITS(sc, AR9285_AN_RF2G6, 1); AR_CLRBITS(sc, AR_PHY(2), 1 << 27); /* Restore registers. */ for (i = 0; i < __arraycount(regs); i++) AR_WRITE(sc, regs[i], svg[i]); /* Restore compensation capacitor value. */ AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg); AR_WRITE_BARRIER(sc); #endif /* NATHN_USB */ } /* * Carrier Leakage Calibration. */ int ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { int ntries; AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); #ifndef IEEE80211_NO_HT if (0 && extc == NULL) { /* XXX IS_CHAN_HT20!! */ AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); for (ntries = 0; ntries < 10000; ntries++) { if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_CAL)) break; DELAY(10); } if (ntries == 10000) return ETIMEDOUT; AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); } #endif AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); for (ntries = 0; ntries < 10000; ntries++) { if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_CAL)) break; DELAY(10); } if (ntries == 10000) return ETIMEDOUT; AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); AR_WRITE_BARRIER(sc); return 0; } PUBLIC void ar9271_load_ani(struct athn_softc *sc) { #if NATHN_USB > 0 /* Write ANI registers. */ AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2); AR_WRITE(sc, AR_PHY_AGC_CTL1, 0x3139605e); AR_WRITE(sc, AR_PHY_FIND_SIG, 0x7ec84d2e); AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881); AR_WRITE(sc, AR_PHY_SFCORR, 0x5ac640d0); AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8); AR_WRITE(sc, AR_PHY_TIMING5, 0xd00a8007); AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4); AR_WRITE_BARRIER(sc); #endif /* NATHN_USB */ } int ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { uint32_t reg, mask, clcgain, rf2g5_svg; int i, maxgain, nclcs, thresh, error; /* Do carrier leakage calibration. */ if ((error = ar9285_cl_cal(sc, c, extc)) != 0) return error; /* Workaround for high temperature is not applicable on AR9271. */ if (AR_SREV_9271(sc)) return 0; mask = 0; nclcs = 0; reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7); maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX); for (i = 0; i <= maxgain; i++) { reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i)); clcgain = MS(reg, AR_PHY_TX_GAIN_CLC); /* NB: clcgain <= 0xf. */ if (!(mask & (1 << clcgain))) { mask |= 1 << clcgain; nclcs++; } } thresh = 0; for (i = 0; i < nclcs; i++) { reg = AR_READ(sc, AR_PHY_CLC_TBL(i)); if (MS(reg, AR_PHY_CLC_I0) == 0) thresh++; if (MS(reg, AR_PHY_CLC_Q0) == 0) thresh++; } if (thresh <= AR9285_CL_CAL_REDO_THRESH) return 0; /* No need to redo. */ /* Threshold reached, redo carrier leakage calibration. */ DPRINTFN(DBG_INIT, sc, "CLC threshold=%d\n", thresh); rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5); if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) /* XE rev. */ reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5); else reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4); AR_WRITE(sc, AR9285_AN_RF2G5, reg); AR_WRITE_BARRIER(sc); error = ar9285_cl_cal(sc, c, extc); AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg); AR_WRITE_BARRIER(sc); return error; } Static void ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) { const struct ar9285_eeprom *eep = sc->sc_eep; const struct ar9285_cal_data_per_freq *pierdata; const uint8_t *pierfreq; struct athn_pier lopier, hipier; uint8_t fbin; int i, lo, hi, npiers; pierfreq = eep->calFreqPier2G; pierdata = eep->calPierData2G; npiers = AR9285_NUM_2G_CAL_PIERS; /* Find channel in ROM pier table. */ fbin = athn_chan2fbin(c); athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); lopier.fbin = pierfreq[lo]; hipier.fbin = pierfreq[hi]; for (i = 0; i < nxpdgains; i++) { lopier.pwr[i] = pierdata[lo].pwrPdg[i]; lopier.vpd[i] = pierdata[lo].vpdPdg[i]; hipier.pwr[i] = pierdata[lo].pwrPdg[i]; hipier.vpd[i] = pierdata[lo].vpdPdg[i]; } ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); } Static void ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) { const struct ar9285_eeprom *eep = sc->sc_eep; uint8_t boundaries[AR_PD_GAINS_IN_MASK]; uint8_t pdadcs[AR_NUM_PDADC_VALUES]; uint8_t xpdgains[AR9285_NUM_PD_GAINS]; uint8_t overlap; uint32_t reg; int i, nxpdgains; if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) { overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP); } else overlap = eep->modalHeader.pdGainOverlap; nxpdgains = 0; memset(xpdgains, 0, sizeof(xpdgains)); for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) { if (nxpdgains >= AR9285_NUM_PD_GAINS) break; if (eep->modalHeader.xpdGain & (1 << i)) xpdgains[nxpdgains++] = i; } reg = AR_READ(sc, AR_PHY_TPCRG1); reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); AR_WRITE(sc, AR_PHY_TPCRG1, reg); /* NB: No open loop power control for AR9285. */ ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs); /* Write boundaries. */ reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]); reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]); AR_WRITE(sc, AR_PHY_TPCRG5, reg); /* Write PDADC values. */ for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) { AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i, pdadcs[i + 0] << 0 | pdadcs[i + 1] << 8 | pdadcs[i + 2] << 16 | pdadcs[i + 3] << 24); } AR_WRITE_BARRIER(sc); } Static void ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, struct ieee80211_channel *extc) { const struct ar9285_eeprom *eep = sc->sc_eep; #ifdef notyet const struct ar9285_modal_eep_header *modal = &eep->modalHeader; #endif uint8_t tpow_cck[4], tpow_ofdm[4]; #ifndef IEEE80211_NO_HT uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; uint8_t tpow_ht20[8], tpow_ht40[8]; uint8_t ht40inc; #endif int16_t power[ATHN_POWER_COUNT]; int i; ar9285_set_power_calib(sc, c); #ifdef notyet /* Compute transmit power reduction due to antenna gain. */ uint16_t max_ant_gain = modal->antennaGain; /* XXX */ #endif /* Get CCK target powers. */ ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck); /* Get OFDM target powers. */ ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm); #ifndef IEEE80211_NO_HT /* Get HT-20 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20, AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20); if (extc != NULL) { /* Get HT-40 target powers. */ ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS, tpow_ht40); /* Get secondary channel CCK target powers. */ ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext); /* Get secondary channel OFDM target powers. */ ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext); } #endif memset(power, 0, sizeof(power)); /* Shuffle target powers accross transmit rates. */ power[ATHN_POWER_OFDM6 ] = power[ATHN_POWER_OFDM9 ] = power[ATHN_POWER_OFDM12 ] = power[ATHN_POWER_OFDM18 ] = power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0]; power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1]; power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2]; power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3]; power[ATHN_POWER_XR ] = tpow_ofdm[0]; power[ATHN_POWER_CCK1_LP ] = tpow_cck[0]; power[ATHN_POWER_CCK2_LP ] = power[ATHN_POWER_CCK2_SP ] = tpow_cck[1]; power[ATHN_POWER_CCK55_LP] = power[ATHN_POWER_CCK55_SP] = tpow_cck[2]; power[ATHN_POWER_CCK11_LP] = power[ATHN_POWER_CCK11_SP] = tpow_cck[3]; #ifndef IEEE80211_NO_HT for (i = 0; i < __arraycount(tpow_ht20); i++) power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; if (extc != NULL) { /* Correct PAR difference between HT40 and HT20/Legacy. */ if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) ht40inc = modal->ht40PowerIncForPdadc; else ht40inc = AR_HT40_POWER_INC_FOR_PDADC; for (i = 0; i < __arraycount(tpow_ht40); i++) power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0]; power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0]; } #endif for (i = 0; i < ATHN_POWER_COUNT; i++) { power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */ if (power[i] > AR_MAX_RATE_POWER) power[i] = AR_MAX_RATE_POWER; } /* Commit transmit power values to hardware. */ ar5008_write_txpower(sc, power); }