/* $NetBSD: pci.c,v 1.152.6.2 2019/01/31 06:02:50 martin Exp $ */ /* * Copyright (c) 1995, 1996, 1997, 1998 * Christopher G. Demetriou. All rights reserved. * Copyright (c) 1994 Charles M. Hannum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Charles M. Hannum. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * PCI bus autoconfiguration. */ #include __KERNEL_RCSID(0, "$NetBSD: pci.c,v 1.152.6.2 2019/01/31 06:02:50 martin Exp $"); #ifdef _KERNEL_OPT #include "opt_pci.h" #endif #include #include #include #include #include #include #include #include #include #include #include "locators.h" static bool pci_child_register(device_t); #ifdef PCI_CONFIG_DUMP int pci_config_dump = 1; #else int pci_config_dump = 0; #endif int pciprint(void *, const char *); #ifdef PCI_MACHDEP_ENUMERATE_BUS #define pci_enumerate_bus PCI_MACHDEP_ENUMERATE_BUS #endif /* * Important note about PCI-ISA bridges: * * Callbacks are used to configure these devices so that ISA/EISA bridges * can attach their child busses after PCI configuration is done. * * This works because: * (1) there can be at most one ISA/EISA bridge per PCI bus, and * (2) any ISA/EISA bridges must be attached to primary PCI * busses (i.e. bus zero). * * That boils down to: there can only be one of these outstanding * at a time, it is cleared when configuring PCI bus 0 before any * subdevices have been found, and it is run after all subdevices * of PCI bus 0 have been found. * * This is needed because there are some (legacy) PCI devices which * can show up as ISA/EISA devices as well (the prime example of which * are VGA controllers). If you attach ISA from a PCI-ISA/EISA bridge, * and the bridge is seen before the video board is, the board can show * up as an ISA device, and that can (bogusly) complicate the PCI device's * attach code, or make the PCI device not be properly attached at all. * * We use the generic config_defer() facility to achieve this. */ int pcirescan(device_t self, const char *ifattr, const int *locators) { struct pci_softc *sc = device_private(self); KASSERT(ifattr && !strcmp(ifattr, "pci")); KASSERT(locators); pci_enumerate_bus(sc, locators, NULL, NULL); return 0; } int pcimatch(device_t parent, cfdata_t cf, void *aux) { struct pcibus_attach_args *pba = aux; /* Check the locators */ if (cf->cf_loc[PCIBUSCF_BUS] != PCIBUSCF_BUS_DEFAULT && cf->cf_loc[PCIBUSCF_BUS] != pba->pba_bus) return 0; /* sanity */ if (pba->pba_bus < 0 || pba->pba_bus > 255) return 0; /* * XXX check other (hardware?) indicators */ return 1; } void pciattach(device_t parent, device_t self, void *aux) { struct pcibus_attach_args *pba = aux; struct pci_softc *sc = device_private(self); int io_enabled, mem_enabled, mrl_enabled, mrm_enabled, mwi_enabled; const char *sep = ""; static const int wildcard[PCICF_NLOCS] = { PCICF_DEV_DEFAULT, PCICF_FUNCTION_DEFAULT }; sc->sc_dev = self; pci_attach_hook(parent, self, pba); aprint_naive("\n"); aprint_normal("\n"); io_enabled = (pba->pba_flags & PCI_FLAGS_IO_OKAY); mem_enabled = (pba->pba_flags & PCI_FLAGS_MEM_OKAY); mrl_enabled = (pba->pba_flags & PCI_FLAGS_MRL_OKAY); mrm_enabled = (pba->pba_flags & PCI_FLAGS_MRM_OKAY); mwi_enabled = (pba->pba_flags & PCI_FLAGS_MWI_OKAY); if (io_enabled == 0 && mem_enabled == 0) { aprint_error_dev(self, "no spaces enabled!\n"); goto fail; } #define PRINT(str) \ do { \ aprint_verbose("%s%s", sep, str); \ sep = ", "; \ } while (/*CONSTCOND*/0) aprint_verbose_dev(self, ""); if (io_enabled) PRINT("i/o space"); if (mem_enabled) PRINT("memory space"); aprint_verbose(" enabled"); if (mrl_enabled || mrm_enabled || mwi_enabled) { if (mrl_enabled) PRINT("rd/line"); if (mrm_enabled) PRINT("rd/mult"); if (mwi_enabled) PRINT("wr/inv"); aprint_verbose(" ok"); } aprint_verbose("\n"); #undef PRINT sc->sc_iot = pba->pba_iot; sc->sc_memt = pba->pba_memt; sc->sc_dmat = pba->pba_dmat; sc->sc_dmat64 = pba->pba_dmat64; sc->sc_pc = pba->pba_pc; sc->sc_bus = pba->pba_bus; sc->sc_bridgetag = pba->pba_bridgetag; sc->sc_maxndevs = pci_bus_maxdevs(pba->pba_pc, pba->pba_bus); sc->sc_intrswiz = pba->pba_intrswiz; sc->sc_intrtag = pba->pba_intrtag; sc->sc_flags = pba->pba_flags; device_pmf_driver_set_child_register(sc->sc_dev, pci_child_register); pcirescan(sc->sc_dev, "pci", wildcard); fail: if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "couldn't establish power handler\n"); } int pcidetach(device_t self, int flags) { int rc; if ((rc = config_detach_children(self, flags)) != 0) return rc; pmf_device_deregister(self); return 0; } int pciprint(void *aux, const char *pnp) { struct pci_attach_args *pa = aux; char devinfo[256]; const struct pci_quirkdata *qd; if (pnp) { pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof(devinfo)); aprint_normal("%s at %s", devinfo, pnp); } aprint_normal(" dev %d function %d", pa->pa_device, pa->pa_function); if (pci_config_dump) { printf(": "); pci_conf_print(pa->pa_pc, pa->pa_tag, NULL); if (!pnp) pci_devinfo(pa->pa_id, pa->pa_class, 1, devinfo, sizeof(devinfo)); printf("%s at %s", devinfo, pnp ? pnp : "?"); printf(" dev %d function %d (", pa->pa_device, pa->pa_function); #ifdef __i386__ printf("tag %#lx, intrtag %#lx, intrswiz %#lx, intrpin %#lx", *(long *)&pa->pa_tag, *(long *)&pa->pa_intrtag, (long)pa->pa_intrswiz, (long)pa->pa_intrpin); #else printf("intrswiz %#lx, intrpin %#lx", (long)pa->pa_intrswiz, (long)pa->pa_intrpin); #endif printf(", i/o %s, mem %s,", pa->pa_flags & PCI_FLAGS_IO_OKAY ? "on" : "off", pa->pa_flags & PCI_FLAGS_MEM_OKAY ? "on" : "off"); qd = pci_lookup_quirkdata(PCI_VENDOR(pa->pa_id), PCI_PRODUCT(pa->pa_id)); if (qd == NULL) { printf(" no quirks"); } else { snprintb(devinfo, sizeof (devinfo), "\002\001multifn\002singlefn\003skipfunc0" "\004skipfunc1\005skipfunc2\006skipfunc3" "\007skipfunc4\010skipfunc5\011skipfunc6" "\012skipfunc7", qd->quirks); printf(" quirks %s", devinfo); } printf(")"); } return UNCONF; } int pci_probe_device(struct pci_softc *sc, pcitag_t tag, int (*match)(const struct pci_attach_args *), struct pci_attach_args *pap) { pci_chipset_tag_t pc = sc->sc_pc; struct pci_attach_args pa; pcireg_t id, /* csr, */ pciclass, intr, bhlcr, bar, endbar; #ifdef __HAVE_PCI_MSI_MSIX pcireg_t cap; int off; #endif int ret, pin, bus, device, function, i, width; int locs[PCICF_NLOCS]; pci_decompose_tag(pc, tag, &bus, &device, &function); /* a driver already attached? */ if (sc->PCI_SC_DEVICESC(device, function).c_dev != NULL && !match) return 0; bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlcr) > 2) return 0; id = pci_conf_read(pc, tag, PCI_ID_REG); /* csr = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); */ pciclass = pci_conf_read(pc, tag, PCI_CLASS_REG); /* Invalid vendor ID value? */ if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) return 0; /* XXX Not invalid, but we've done this ~forever. */ if (PCI_VENDOR(id) == 0) return 0; /* Collect memory range info */ memset(sc->PCI_SC_DEVICESC(device, function).c_range, 0, sizeof(sc->PCI_SC_DEVICESC(device, function).c_range)); i = 0; switch (PCI_HDRTYPE_TYPE(bhlcr)) { case PCI_HDRTYPE_PPB: endbar = PCI_MAPREG_PPB_END; break; case PCI_HDRTYPE_PCB: endbar = PCI_MAPREG_PCB_END; break; default: endbar = PCI_MAPREG_END; break; } for (bar = PCI_MAPREG_START; bar < endbar; bar += width) { struct pci_range *r; pcireg_t type; width = 4; if (pci_mapreg_probe(pc, tag, bar, &type) == 0) continue; if (PCI_MAPREG_TYPE(type) == PCI_MAPREG_TYPE_MEM) { if (PCI_MAPREG_MEM_TYPE(type) == PCI_MAPREG_MEM_TYPE_64BIT) width = 8; r = &sc->PCI_SC_DEVICESC(device, function).c_range[i++]; if (pci_mapreg_info(pc, tag, bar, type, &r->r_offset, &r->r_size, &r->r_flags) != 0) break; if ((PCI_VENDOR(id) == PCI_VENDOR_ATI) && (bar == 0x10) && (r->r_size == 0x1000000)) { struct pci_range *nr; /* * this has to be a mach64 * split things up so each half-aperture can * be mapped PREFETCHABLE except the last page * which may contain registers */ r->r_size = 0x7ff000; r->r_flags = BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE; nr = &sc->PCI_SC_DEVICESC(device, function).c_range[i++]; nr->r_offset = r->r_offset + 0x800000; nr->r_size = 0x7ff000; nr->r_flags = BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE; } else if ((PCI_VENDOR(id) == PCI_VENDOR_SILMOTION) && (PCI_PRODUCT(id) == PCI_PRODUCT_SILMOTION_SM502) && (bar == 0x10)) { r->r_flags = BUS_SPACE_MAP_LINEAR | BUS_SPACE_MAP_PREFETCHABLE; } } } pa.pa_iot = sc->sc_iot; pa.pa_memt = sc->sc_memt; pa.pa_dmat = sc->sc_dmat; pa.pa_dmat64 = sc->sc_dmat64; pa.pa_pc = pc; pa.pa_bus = bus; pa.pa_device = device; pa.pa_function = function; pa.pa_tag = tag; pa.pa_id = id; pa.pa_class = pciclass; /* * Set up memory, I/O enable, and PCI command flags * as appropriate. */ pa.pa_flags = sc->sc_flags; /* * If the cache line size is not configured, then * clear the MRL/MRM/MWI command-ok flags. */ if (PCI_CACHELINE(bhlcr) == 0) { pa.pa_flags &= ~(PCI_FLAGS_MRL_OKAY| PCI_FLAGS_MRM_OKAY|PCI_FLAGS_MWI_OKAY); } if (sc->sc_bridgetag == NULL) { pa.pa_intrswiz = 0; pa.pa_intrtag = tag; } else { pa.pa_intrswiz = sc->sc_intrswiz + device; pa.pa_intrtag = sc->sc_intrtag; } intr = pci_conf_read(pc, tag, PCI_INTERRUPT_REG); pin = PCI_INTERRUPT_PIN(intr); pa.pa_rawintrpin = pin; if (pin == PCI_INTERRUPT_PIN_NONE) { /* no interrupt */ pa.pa_intrpin = 0; } else { /* * swizzle it based on the number of busses we're * behind and our device number. */ pa.pa_intrpin = /* XXX */ ((pin + pa.pa_intrswiz - 1) % 4) + 1; } pa.pa_intrline = PCI_INTERRUPT_LINE(intr); #ifdef __HAVE_PCI_MSI_MSIX if (pci_get_ht_capability(pc, tag, PCI_HT_CAP_MSIMAP, &off, &cap)) { /* * XXX Should we enable MSI mapping ourselves on * systems that have it disabled? */ if (cap & PCI_HT_MSI_ENABLED) { uint64_t addr; if ((cap & PCI_HT_MSI_FIXED) == 0) { addr = pci_conf_read(pc, tag, off + PCI_HT_MSI_ADDR_LO); addr |= (uint64_t)pci_conf_read(pc, tag, off + PCI_HT_MSI_ADDR_HI) << 32; } else addr = PCI_HT_MSI_FIXED_ADDR; /* * XXX This will fail to enable MSI on systems * that don't use the canonical address. */ if (addr == PCI_HT_MSI_FIXED_ADDR) { pa.pa_flags |= PCI_FLAGS_MSI_OKAY; pa.pa_flags |= PCI_FLAGS_MSIX_OKAY; } else aprint_verbose_dev(sc->sc_dev, "HyperTransport MSI mapping is not supported yet. Disable MSI/MSI-X.\n"); } } #endif if (match != NULL) { ret = (*match)(&pa); if (ret != 0 && pap != NULL) *pap = pa; } else { struct pci_child *c; locs[PCICF_DEV] = device; locs[PCICF_FUNCTION] = function; c = &sc->PCI_SC_DEVICESC(device, function); pci_conf_capture(pc, tag, &c->c_conf); if (pci_get_powerstate(pc, tag, &c->c_powerstate) == 0) c->c_psok = true; else c->c_psok = false; c->c_dev = config_found_sm_loc(sc->sc_dev, "pci", locs, &pa, pciprint, config_stdsubmatch); ret = (c->c_dev != NULL); } return ret; } void pcidevdetached(device_t self, device_t child) { struct pci_softc *sc = device_private(self); int d, f; pcitag_t tag; struct pci_child *c; d = device_locator(child, PCICF_DEV); f = device_locator(child, PCICF_FUNCTION); c = &sc->PCI_SC_DEVICESC(d, f); KASSERT(c->c_dev == child); tag = pci_make_tag(sc->sc_pc, sc->sc_bus, d, f); if (c->c_psok) pci_set_powerstate(sc->sc_pc, tag, c->c_powerstate); pci_conf_restore(sc->sc_pc, tag, &c->c_conf); c->c_dev = NULL; } CFATTACH_DECL3_NEW(pci, sizeof(struct pci_softc), pcimatch, pciattach, pcidetach, NULL, pcirescan, pcidevdetached, DVF_DETACH_SHUTDOWN); int pci_get_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid, int *offset, pcireg_t *value) { pcireg_t reg; unsigned int ofs; reg = pci_conf_read(pc, tag, PCI_COMMAND_STATUS_REG); if (!(reg & PCI_STATUS_CAPLIST_SUPPORT)) return 0; /* Determine the Capability List Pointer register to start with. */ reg = pci_conf_read(pc, tag, PCI_BHLC_REG); switch (PCI_HDRTYPE_TYPE(reg)) { case 0: /* standard device header */ case 1: /* PCI-PCI bridge header */ ofs = PCI_CAPLISTPTR_REG; break; case 2: /* PCI-CardBus Bridge header */ ofs = PCI_CARDBUS_CAPLISTPTR_REG; break; default: return 0; } ofs = PCI_CAPLIST_PTR(pci_conf_read(pc, tag, ofs)); while (ofs != 0) { if ((ofs & 3) || (ofs < 0x40)) { int bus, device, function; pci_decompose_tag(pc, tag, &bus, &device, &function); printf("Skipping broken PCI header on %d:%d:%d\n", bus, device, function); break; } reg = pci_conf_read(pc, tag, ofs); if (PCI_CAPLIST_CAP(reg) == capid) { if (offset) *offset = ofs; if (value) *value = reg; return 1; } ofs = PCI_CAPLIST_NEXT(reg); } return 0; } int pci_get_ht_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid, int *offset, pcireg_t *value) { pcireg_t reg; unsigned int ofs; if (pci_get_capability(pc, tag, PCI_CAP_LDT, &ofs, NULL) == 0) return 0; while (ofs != 0) { #ifdef DIAGNOSTIC if ((ofs & 3) || (ofs < 0x40)) panic("pci_get_ht_capability"); #endif reg = pci_conf_read(pc, tag, ofs); if (PCI_HT_CAP(reg) == capid) { if (offset) *offset = ofs; if (value) *value = reg; return 1; } ofs = PCI_CAPLIST_NEXT(reg); } return 0; } /* * return number of the devices's MSI vectors * return 0 if the device does not support MSI */ int pci_msi_count(pci_chipset_tag_t pc, pcitag_t tag) { pcireg_t reg; uint32_t mmc; int count, offset; if (pci_get_capability(pc, tag, PCI_CAP_MSI, &offset, NULL) == 0) return 0; reg = pci_conf_read(pc, tag, offset + PCI_MSI_CTL); mmc = PCI_MSI_CTL_MMC(reg); count = 1 << mmc; if (count > PCI_MSI_MAX_VECTORS) { aprint_error("detect an illegal device! The device use reserved MMC values.\n"); return 0; } return count; } /* * return number of the devices's MSI-X vectors * return 0 if the device does not support MSI-X */ int pci_msix_count(pci_chipset_tag_t pc, pcitag_t tag) { pcireg_t reg; int offset; if (pci_get_capability(pc, tag, PCI_CAP_MSIX, &offset, NULL) == 0) return 0; reg = pci_conf_read(pc, tag, offset + PCI_MSIX_CTL); return PCI_MSIX_CTL_TBLSIZE(reg); } int pci_get_ext_capability(pci_chipset_tag_t pc, pcitag_t tag, int capid, int *offset, pcireg_t *value) { pcireg_t reg; unsigned int ofs; /* Only supported for PCI-express devices */ if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, NULL, NULL)) return 0; ofs = PCI_EXTCAPLIST_BASE; reg = pci_conf_read(pc, tag, ofs); if (reg == 0xffffffff || reg == 0) return 0; for (;;) { #ifdef DIAGNOSTIC if ((ofs & 3) || ofs < PCI_EXTCAPLIST_BASE) panic("%s: invalid offset %u", __func__, ofs); #endif if (PCI_EXTCAPLIST_CAP(reg) == capid) { if (offset != NULL) *offset = ofs; if (value != NULL) *value = reg; return 1; } ofs = PCI_EXTCAPLIST_NEXT(reg); if (ofs == 0) break; reg = pci_conf_read(pc, tag, ofs); } return 0; } int pci_find_device(struct pci_attach_args *pa, int (*match)(const struct pci_attach_args *)) { extern struct cfdriver pci_cd; device_t pcidev; int i; static const int wildcard[2] = { PCICF_DEV_DEFAULT, PCICF_FUNCTION_DEFAULT }; for (i = 0; i < pci_cd.cd_ndevs; i++) { pcidev = device_lookup(&pci_cd, i); if (pcidev != NULL && pci_enumerate_bus(device_private(pcidev), wildcard, match, pa) != 0) return 1; } return 0; } #ifndef PCI_MACHDEP_ENUMERATE_BUS /* * Generic PCI bus enumeration routine. Used unless machine-dependent * code needs to provide something else. */ int pci_enumerate_bus(struct pci_softc *sc, const int *locators, int (*match)(const struct pci_attach_args *), struct pci_attach_args *pap) { pci_chipset_tag_t pc = sc->sc_pc; int device, function, nfunctions, ret; const struct pci_quirkdata *qd; pcireg_t id, bhlcr; pcitag_t tag; uint8_t devs[32]; int i, n; device_t bridgedev; bool arien = false; /* Check PCIe ARI */ bridgedev = device_parent(sc->sc_dev); if (device_is_a(bridgedev, "ppb")) { struct ppb_softc *ppbsc = device_private(bridgedev); pci_chipset_tag_t ppbpc = ppbsc->sc_pc; pcitag_t ppbtag = ppbsc->sc_tag; pcireg_t pciecap, reg; if (pci_get_capability(ppbpc, ppbtag, PCI_CAP_PCIEXPRESS, &pciecap, NULL) != 0) { reg = pci_conf_read(ppbpc, ppbtag, pciecap + PCIE_DCSR2); if ((reg & PCIE_DCSR2_ARI_FWD) != 0) arien = true; } } n = pci_bus_devorder(sc->sc_pc, sc->sc_bus, devs, __arraycount(devs)); for (i = 0; i < n; i++) { device = devs[i]; if ((locators[PCICF_DEV] != PCICF_DEV_DEFAULT) && (locators[PCICF_DEV] != device)) continue; tag = pci_make_tag(pc, sc->sc_bus, device, 0); bhlcr = pci_conf_read(pc, tag, PCI_BHLC_REG); if (PCI_HDRTYPE_TYPE(bhlcr) > 2) continue; id = pci_conf_read(pc, tag, PCI_ID_REG); /* Invalid vendor ID value? */ if (PCI_VENDOR(id) == PCI_VENDOR_INVALID) continue; /* XXX Not invalid, but we've done this ~forever. */ if (PCI_VENDOR(id) == 0) continue; qd = pci_lookup_quirkdata(PCI_VENDOR(id), PCI_PRODUCT(id)); if (qd != NULL && (qd->quirks & PCI_QUIRK_MULTIFUNCTION) != 0) nfunctions = 8; else if (qd != NULL && (qd->quirks & PCI_QUIRK_MONOFUNCTION) != 0) nfunctions = 1; else if (arien) nfunctions = 8; /* Scan all if ARI is enabled */ else nfunctions = PCI_HDRTYPE_MULTIFN(bhlcr) ? 8 : 1; #ifdef __PCI_DEV_FUNCORDER char funcs[8]; int j; for (j = 0; j < nfunctions; j++) { funcs[j] = j; } if (j < __arraycount(funcs)) funcs[j] = -1; if (nfunctions > 1) { pci_dev_funcorder(sc->sc_pc, sc->sc_bus, device, nfunctions, funcs); } for (j = 0; j < 8 && (function = funcs[j]) < 8 && function >= 0; j++) { #else for (function = 0; function < nfunctions; function++) { #endif if ((locators[PCICF_FUNCTION] != PCICF_FUNCTION_DEFAULT) && (locators[PCICF_FUNCTION] != function)) continue; if (qd != NULL && (qd->quirks & PCI_QUIRK_SKIP_FUNC(function)) != 0) continue; tag = pci_make_tag(pc, sc->sc_bus, device, function); ret = pci_probe_device(sc, tag, match, pap); if (match != NULL && ret != 0) return ret; } } return 0; } #endif /* PCI_MACHDEP_ENUMERATE_BUS */ /* * Vital Product Data (PCI 2.2) */ int pci_vpd_read(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count, pcireg_t *data) { uint32_t reg; int ofs, i, j; KASSERT(data != NULL); KASSERT((offset + count) < 0x7fff); if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0) return 1; for (i = 0; i < count; offset += sizeof(*data), i++) { reg &= 0x0000ffff; reg &= ~PCI_VPD_OPFLAG; reg |= PCI_VPD_ADDRESS(offset); pci_conf_write(pc, tag, ofs, reg); /* * PCI 2.2 does not specify how long we should poll * for completion nor whether the operation can fail. */ j = 0; do { if (j++ == 20) return 1; delay(4); reg = pci_conf_read(pc, tag, ofs); } while ((reg & PCI_VPD_OPFLAG) == 0); data[i] = pci_conf_read(pc, tag, PCI_VPD_DATAREG(ofs)); } return 0; } int pci_vpd_write(pci_chipset_tag_t pc, pcitag_t tag, int offset, int count, pcireg_t *data) { pcireg_t reg; int ofs, i, j; KASSERT(data != NULL); KASSERT((offset + count) < 0x7fff); if (pci_get_capability(pc, tag, PCI_CAP_VPD, &ofs, ®) == 0) return 1; for (i = 0; i < count; offset += sizeof(*data), i++) { pci_conf_write(pc, tag, PCI_VPD_DATAREG(ofs), data[i]); reg &= 0x0000ffff; reg |= PCI_VPD_OPFLAG; reg |= PCI_VPD_ADDRESS(offset); pci_conf_write(pc, tag, ofs, reg); /* * PCI 2.2 does not specify how long we should poll * for completion nor whether the operation can fail. */ j = 0; do { if (j++ == 20) return 1; delay(1); reg = pci_conf_read(pc, tag, ofs); } while (reg & PCI_VPD_OPFLAG); } return 0; } int pci_dma64_available(const struct pci_attach_args *pa) { #ifdef _PCI_HAVE_DMA64 if (BUS_DMA_TAG_VALID(pa->pa_dmat64)) return 1; #endif return 0; } void pci_conf_capture(pci_chipset_tag_t pc, pcitag_t tag, struct pci_conf_state *pcs) { int off; for (off = 0; off < 16; off++) pcs->reg[off] = pci_conf_read(pc, tag, (off * 4)); /* For PCI-X */ if (pci_get_capability(pc, tag, PCI_CAP_PCIX, &off, NULL) != 0) pcs->x_csr = pci_conf_read(pc, tag, off + PCIX_CMD); /* For PCIe */ if (pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, &off, NULL) != 0) { pcireg_t xcap = pci_conf_read(pc, tag, off + PCIE_XCAP); unsigned int devtype; devtype = PCIE_XCAP_TYPE(xcap); pcs->e_dcr = (uint16_t)pci_conf_read(pc, tag, off + PCIE_DCSR); if (PCIE_HAS_LINKREGS(devtype)) pcs->e_lcr = (uint16_t)pci_conf_read(pc, tag, off + PCIE_LCSR); if ((xcap & PCIE_XCAP_SI) != 0) pcs->e_slcr = (uint16_t)pci_conf_read(pc, tag, off + PCIE_SLCSR); if (PCIE_HAS_ROOTREGS(devtype)) pcs->e_rcr = (uint16_t)pci_conf_read(pc, tag, off + PCIE_RCR); if (__SHIFTOUT(xcap, PCIE_XCAP_VER_MASK) >= 2) { pcs->e_dcr2 = (uint16_t)pci_conf_read(pc, tag, off + PCIE_DCSR2); if (PCIE_HAS_LINKREGS(devtype)) pcs->e_lcr2 = (uint16_t)pci_conf_read(pc, tag, off + PCIE_LCSR2); /* XXX PCIE_SLCSR2 (It's reserved by the PCIe spec) */ } } /* For MSI */ if (pci_get_capability(pc, tag, PCI_CAP_MSI, &off, NULL) != 0) { bool bit64, pvmask; pcs->msi_ctl = pci_conf_read(pc, tag, off + PCI_MSI_CTL); bit64 = pcs->msi_ctl & PCI_MSI_CTL_64BIT_ADDR; pvmask = pcs->msi_ctl & PCI_MSI_CTL_PERVEC_MASK; /* Address */ pcs->msi_maddr = pci_conf_read(pc, tag, off + PCI_MSI_MADDR); if (bit64) pcs->msi_maddr64_hi = pci_conf_read(pc, tag, off + PCI_MSI_MADDR64_HI); /* Data */ pcs->msi_mdata = pci_conf_read(pc, tag, off + (bit64 ? PCI_MSI_MDATA64 : PCI_MSI_MDATA)); /* Per-vector masking */ if (pvmask) pcs->msi_mask = pci_conf_read(pc, tag, off + (bit64 ? PCI_MSI_MASK64 : PCI_MSI_MASK)); } /* For MSI-X */ if (pci_get_capability(pc, tag, PCI_CAP_MSIX, &off, NULL) != 0) pcs->msix_ctl = pci_conf_read(pc, tag, off + PCI_MSIX_CTL); } void pci_conf_restore(pci_chipset_tag_t pc, pcitag_t tag, struct pci_conf_state *pcs) { int off; pcireg_t val; for (off = 15; off >= 0; off--) { val = pci_conf_read(pc, tag, (off * 4)); if (val != pcs->reg[off]) pci_conf_write(pc, tag, (off * 4), pcs->reg[off]); } /* For PCI-X */ if (pci_get_capability(pc, tag, PCI_CAP_PCIX, &off, NULL) != 0) pci_conf_write(pc, tag, off + PCIX_CMD, pcs->x_csr); /* For PCIe */ if (pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, &off, NULL) != 0) { pcireg_t xcap = pci_conf_read(pc, tag, off + PCIE_XCAP); unsigned int devtype; devtype = PCIE_XCAP_TYPE(xcap); pci_conf_write(pc, tag, off + PCIE_DCSR, pcs->e_dcr); /* * PCIe capability is variable sized. To not to write the next * area, check the existence of each register. */ if (PCIE_HAS_LINKREGS(devtype)) pci_conf_write(pc, tag, off + PCIE_LCSR, pcs->e_lcr); if ((xcap & PCIE_XCAP_SI) != 0) pci_conf_write(pc, tag, off + PCIE_SLCSR, pcs->e_slcr); if (PCIE_HAS_ROOTREGS(devtype)) pci_conf_write(pc, tag, off + PCIE_RCR, pcs->e_rcr); if (__SHIFTOUT(xcap, PCIE_XCAP_VER_MASK) >= 2) { pci_conf_write(pc, tag, off + PCIE_DCSR2, pcs->e_dcr2); if (PCIE_HAS_LINKREGS(devtype)) pci_conf_write(pc, tag, off + PCIE_LCSR2, pcs->e_lcr2); /* XXX PCIE_SLCSR2 (It's reserved by the PCIe spec) */ } } /* For MSI */ if (pci_get_capability(pc, tag, PCI_CAP_MSI, &off, NULL) != 0) { pcireg_t reg; bool bit64, pvmask; /* First, drop Enable bit in case it's already set. */ reg = pci_conf_read(pc, tag, off + PCI_MSI_CTL); pci_conf_write(pc, tag, off + PCI_MSI_CTL, reg & ~PCI_MSI_CTL_MSI_ENABLE); bit64 = pcs->msi_ctl & PCI_MSI_CTL_64BIT_ADDR; pvmask = pcs->msi_ctl & PCI_MSI_CTL_PERVEC_MASK; /* Address */ pci_conf_write(pc, tag, off + PCI_MSI_MADDR, pcs->msi_maddr); if (bit64) pci_conf_write(pc, tag, off + PCI_MSI_MADDR64_HI, pcs->msi_maddr64_hi); /* Data */ pci_conf_write(pc, tag, off + (bit64 ? PCI_MSI_MDATA64 : PCI_MSI_MDATA), pcs->msi_mdata); /* Per-vector masking */ if (pvmask) pci_conf_write(pc, tag, off + (bit64 ? PCI_MSI_MASK64 : PCI_MSI_MASK), pcs->msi_mask); /* Write CTRL register in the end */ pci_conf_write(pc, tag, off + PCI_MSI_CTL, pcs->msi_ctl); } /* For MSI-X */ if (pci_get_capability(pc, tag, PCI_CAP_MSIX, &off, NULL) != 0) pci_conf_write(pc, tag, off + PCI_MSIX_CTL, pcs->msix_ctl); } /* * Power Management Capability (Rev 2.2) */ static int pci_get_powerstate_int(pci_chipset_tag_t pc, pcitag_t tag , pcireg_t *state, int offset) { pcireg_t value, now; value = pci_conf_read(pc, tag, offset + PCI_PMCSR); now = value & PCI_PMCSR_STATE_MASK; switch (now) { case PCI_PMCSR_STATE_D0: case PCI_PMCSR_STATE_D1: case PCI_PMCSR_STATE_D2: case PCI_PMCSR_STATE_D3: *state = now; return 0; default: return EINVAL; } } int pci_get_powerstate(pci_chipset_tag_t pc, pcitag_t tag , pcireg_t *state) { int offset; pcireg_t value; if (!pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, &value)) return EOPNOTSUPP; return pci_get_powerstate_int(pc, tag, state, offset); } static int pci_set_powerstate_int(pci_chipset_tag_t pc, pcitag_t tag, pcireg_t state, int offset, pcireg_t cap_reg) { pcireg_t value, cap, now; cap = cap_reg >> PCI_PMCR_SHIFT; value = pci_conf_read(pc, tag, offset + PCI_PMCSR); now = value & PCI_PMCSR_STATE_MASK; value &= ~PCI_PMCSR_STATE_MASK; if (now == state) return 0; switch (state) { case PCI_PMCSR_STATE_D0: break; case PCI_PMCSR_STATE_D1: if (now == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D3) { printf("invalid transition from %d to D1\n", (int)now); return EINVAL; } if (!(cap & PCI_PMCR_D1SUPP)) { printf("D1 not supported\n"); return EOPNOTSUPP; } break; case PCI_PMCSR_STATE_D2: if (now == PCI_PMCSR_STATE_D3) { printf("invalid transition from %d to D2\n", (int)now); return EINVAL; } if (!(cap & PCI_PMCR_D2SUPP)) { printf("D2 not supported\n"); return EOPNOTSUPP; } break; case PCI_PMCSR_STATE_D3: break; default: return EINVAL; } value |= state; pci_conf_write(pc, tag, offset + PCI_PMCSR, value); /* delay according to pcipm1.2, ch. 5.6.1 */ if (state == PCI_PMCSR_STATE_D3 || now == PCI_PMCSR_STATE_D3) DELAY(10000); else if (state == PCI_PMCSR_STATE_D2 || now == PCI_PMCSR_STATE_D2) DELAY(200); return 0; } int pci_set_powerstate(pci_chipset_tag_t pc, pcitag_t tag, pcireg_t state) { int offset; pcireg_t value; if (!pci_get_capability(pc, tag, PCI_CAP_PWRMGMT, &offset, &value)) { printf("pci_set_powerstate not supported\n"); return EOPNOTSUPP; } return pci_set_powerstate_int(pc, tag, state, offset, value); } int pci_activate(pci_chipset_tag_t pc, pcitag_t tag, device_t dev, int (*wakefun)(pci_chipset_tag_t, pcitag_t, device_t, pcireg_t)) { pcireg_t pmode; int error; if ((error = pci_get_powerstate(pc, tag, &pmode))) return error; switch (pmode) { case PCI_PMCSR_STATE_D0: break; case PCI_PMCSR_STATE_D3: if (wakefun == NULL) { /* * The card has lost all configuration data in * this state, so punt. */ aprint_error_dev(dev, "unable to wake up from power state D3\n"); return EOPNOTSUPP; } /*FALLTHROUGH*/ default: if (wakefun) { error = (*wakefun)(pc, tag, dev, pmode); if (error) return error; } aprint_normal_dev(dev, "waking up from power state D%d\n", pmode); if ((error = pci_set_powerstate(pc, tag, PCI_PMCSR_STATE_D0))) return error; } return 0; } int pci_activate_null(pci_chipset_tag_t pc, pcitag_t tag, device_t dev, pcireg_t state) { return 0; } struct pci_child_power { struct pci_conf_state p_pciconf; pci_chipset_tag_t p_pc; pcitag_t p_tag; bool p_has_pm; int p_pm_offset; pcireg_t p_pm_cap; pcireg_t p_class; pcireg_t p_csr; }; static bool pci_child_suspend(device_t dv, const pmf_qual_t *qual) { struct pci_child_power *priv = device_pmf_bus_private(dv); pcireg_t ocsr, csr; pci_conf_capture(priv->p_pc, priv->p_tag, &priv->p_pciconf); if (!priv->p_has_pm) return true; /* ??? hopefully handled by ACPI */ if (PCI_CLASS(priv->p_class) == PCI_CLASS_DISPLAY) return true; /* XXX */ /* disable decoding and busmastering, see pcipm1.2 ch. 8.2.1 */ ocsr = pci_conf_read(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG); csr = ocsr & ~(PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE); pci_conf_write(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG, csr); if (pci_set_powerstate_int(priv->p_pc, priv->p_tag, PCI_PMCSR_STATE_D3, priv->p_pm_offset, priv->p_pm_cap)) { pci_conf_write(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG, ocsr); aprint_error_dev(dv, "unsupported state, continuing.\n"); return false; } return true; } static void pci_pme_check_and_clear(device_t dv, pci_chipset_tag_t pc, pcitag_t tag, int off) { pcireg_t pmcsr; pmcsr = pci_conf_read(pc, tag, off + PCI_PMCSR); if (pmcsr & PCI_PMCSR_PME_STS) { /* Clear W1C bit */ pmcsr |= PCI_PMCSR_PME_STS; pci_conf_write(pc, tag, off + PCI_PMCSR, pmcsr); aprint_verbose_dev(dv, "Clear PME# now\n"); } } static bool pci_child_resume(device_t dv, const pmf_qual_t *qual) { struct pci_child_power *priv = device_pmf_bus_private(dv); if (priv->p_has_pm) { if (pci_set_powerstate_int(priv->p_pc, priv->p_tag, PCI_PMCSR_STATE_D0, priv->p_pm_offset, priv->p_pm_cap)) { aprint_error_dev(dv, "unsupported state, continuing.\n"); return false; } pci_pme_check_and_clear(dv, priv->p_pc, priv->p_tag, priv->p_pm_offset); } pci_conf_restore(priv->p_pc, priv->p_tag, &priv->p_pciconf); return true; } static bool pci_child_shutdown(device_t dv, int how) { struct pci_child_power *priv = device_pmf_bus_private(dv); pcireg_t csr; /* restore original bus-mastering state */ csr = pci_conf_read(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG); csr &= ~PCI_COMMAND_MASTER_ENABLE; csr |= priv->p_csr & PCI_COMMAND_MASTER_ENABLE; pci_conf_write(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG, csr); return true; } static void pci_child_deregister(device_t dv) { struct pci_child_power *priv = device_pmf_bus_private(dv); free(priv, M_DEVBUF); } static bool pci_child_register(device_t child) { device_t self = device_parent(child); struct pci_softc *sc = device_private(self); struct pci_child_power *priv; int device, function, off; pcireg_t reg; priv = malloc(sizeof(*priv), M_DEVBUF, M_WAITOK); device = device_locator(child, PCICF_DEV); function = device_locator(child, PCICF_FUNCTION); priv->p_pc = sc->sc_pc; priv->p_tag = pci_make_tag(priv->p_pc, sc->sc_bus, device, function); priv->p_class = pci_conf_read(priv->p_pc, priv->p_tag, PCI_CLASS_REG); priv->p_csr = pci_conf_read(priv->p_pc, priv->p_tag, PCI_COMMAND_STATUS_REG); if (pci_get_capability(priv->p_pc, priv->p_tag, PCI_CAP_PWRMGMT, &off, ®)) { priv->p_has_pm = true; priv->p_pm_offset = off; priv->p_pm_cap = reg; pci_pme_check_and_clear(child, priv->p_pc, priv->p_tag, off); } else { priv->p_has_pm = false; priv->p_pm_offset = -1; } device_pmf_bus_register(child, priv, pci_child_suspend, pci_child_resume, pci_child_shutdown, pci_child_deregister); return true; } MODULE(MODULE_CLASS_DRIVER, pci, NULL); static int pci_modcmd(modcmd_t cmd, void *priv) { if (cmd == MODULE_CMD_INIT || cmd == MODULE_CMD_FINI) return 0; return ENOTTY; }