/* $NetBSD: rf_map.c,v 1.47 2016/10/15 20:31:15 oster Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: Mark Holland * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /************************************************************************** * * map.c -- main code for mapping RAID addresses to physical disk addresses * **************************************************************************/ #include __KERNEL_RCSID(0, "$NetBSD: rf_map.c,v 1.47 2016/10/15 20:31:15 oster Exp $"); #include #include "rf_threadstuff.h" #include "rf_raid.h" #include "rf_general.h" #include "rf_map.h" #include "rf_shutdown.h" static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list); static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list); /*************************************************************************** * * MapAccess -- main 1st order mapping routine. Maps an access in the * RAID address space to the corresponding set of physical disk * addresses. The result is returned as a list of AccessStripeMap * structures, one per stripe accessed. Each ASM structure contains a * pointer to a list of PhysDiskAddr structures, which describe the * physical locations touched by the user access. Note that this * routine returns only static mapping information, i.e. the list of * physical addresses returned does not necessarily identify the set * of physical locations that will actually be read or written. The * routine also maps the parity. The physical disk location returned * always indicates the entire parity unit, even when only a subset of * it is being accessed. This is because an access that is not stripe * unit aligned but that spans a stripe unit boundary may require * access two distinct portions of the parity unit, and we can't yet * tell which portion(s) we'll actually need. We leave it up to the * algorithm selection code to decide what subset of the parity unit * to access. Note that addresses in the RAID address space must * always be maintained as longs, instead of ints. * * This routine returns NULL if numBlocks is 0 * * raidAddress - starting address in RAID address space * numBlocks - number of blocks in RAID address space to access * buffer - buffer to supply/recieve data * remap - 1 => remap address to spare space ***************************************************************************/ RF_AccessStripeMapHeader_t * rf_MapAccess(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddress, RF_SectorCount_t numBlocks, void *buffer, int remap) { RF_RaidLayout_t *layoutPtr = &(raidPtr->Layout); RF_AccessStripeMapHeader_t *asm_hdr = NULL; RF_AccessStripeMap_t *asm_list = NULL, *asm_p = NULL; int faultsTolerated = layoutPtr->map->faultsTolerated; /* we'll change raidAddress along the way */ RF_RaidAddr_t startAddress = raidAddress; RF_RaidAddr_t endAddress = raidAddress + numBlocks; RF_RaidDisk_t *disks = raidPtr->Disks; RF_PhysDiskAddr_t *pda_p; #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) RF_PhysDiskAddr_t *pda_q; #endif RF_StripeCount_t numStripes = 0; RF_RaidAddr_t stripeRealEndAddress, stripeEndAddress, nextStripeUnitAddress; RF_RaidAddr_t startAddrWithinStripe, lastRaidAddr; RF_StripeCount_t totStripes; RF_StripeNum_t stripeID, lastSID, SUID, lastSUID; RF_AccessStripeMap_t *asmList, *t_asm; RF_PhysDiskAddr_t *pdaList, *t_pda; /* allocate all the ASMs and PDAs up front */ lastRaidAddr = raidAddress + numBlocks - 1; stripeID = rf_RaidAddressToStripeID(layoutPtr, raidAddress); lastSID = rf_RaidAddressToStripeID(layoutPtr, lastRaidAddr); totStripes = lastSID - stripeID + 1; SUID = rf_RaidAddressToStripeUnitID(layoutPtr, raidAddress); lastSUID = rf_RaidAddressToStripeUnitID(layoutPtr, lastRaidAddr); asmList = rf_AllocASMList(totStripes); /* may also need pda(s) per stripe for parity */ pdaList = rf_AllocPDAList(lastSUID - SUID + 1 + faultsTolerated * totStripes); if (raidAddress + numBlocks > raidPtr->totalSectors) { RF_ERRORMSG1("Unable to map access because offset (%d) was invalid\n", (int) raidAddress); return (NULL); } #if RF_DEBUG_MAP if (rf_mapDebug) rf_PrintRaidAddressInfo(raidPtr, raidAddress, numBlocks); #endif for (; raidAddress < endAddress;) { /* make the next stripe structure */ RF_ASSERT(asmList); t_asm = asmList; asmList = asmList->next; memset((char *) t_asm, 0, sizeof(RF_AccessStripeMap_t)); if (!asm_p) asm_list = asm_p = t_asm; else { asm_p->next = t_asm; asm_p = asm_p->next; } numStripes++; /* map SUs from current location to the end of the stripe */ asm_p->stripeID = /* rf_RaidAddressToStripeID(layoutPtr, raidAddress) */ stripeID++; stripeRealEndAddress = rf_RaidAddressOfNextStripeBoundary(layoutPtr, raidAddress); stripeEndAddress = RF_MIN(endAddress, stripeRealEndAddress); asm_p->raidAddress = raidAddress; asm_p->endRaidAddress = stripeEndAddress; /* map each stripe unit in the stripe */ pda_p = NULL; /* Raid addr of start of portion of access that is within this stripe */ startAddrWithinStripe = raidAddress; for (; raidAddress < stripeEndAddress;) { RF_ASSERT(pdaList); t_pda = pdaList; pdaList = pdaList->next; memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); if (!pda_p) asm_p->physInfo = pda_p = t_pda; else { pda_p->next = t_pda; pda_p = pda_p->next; } pda_p->type = RF_PDA_TYPE_DATA; (layoutPtr->map->MapSector) (raidPtr, raidAddress, &(pda_p->col), &(pda_p->startSector), remap); /* mark any failures we find. failedPDA is * don't-care if there is more than one * failure */ /* the RAID address corresponding to this physical diskaddress */ pda_p->raidAddress = raidAddress; nextStripeUnitAddress = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, raidAddress); pda_p->numSector = RF_MIN(endAddress, nextStripeUnitAddress) - raidAddress; RF_ASSERT(pda_p->numSector != 0); rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 0); pda_p->bufPtr = (char *)buffer + rf_RaidAddressToByte(raidPtr, (raidAddress - startAddress)); asm_p->totalSectorsAccessed += pda_p->numSector; asm_p->numStripeUnitsAccessed++; raidAddress = RF_MIN(endAddress, nextStripeUnitAddress); } /* Map the parity. At this stage, the startSector and * numSector fields for the parity unit are always set * to indicate the entire parity unit. We may modify * this after mapping the data portion. */ switch (faultsTolerated) { case 0: break; case 1: /* single fault tolerant */ RF_ASSERT(pdaList); t_pda = pdaList; pdaList = pdaList->next; memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); pda_p = asm_p->parityInfo = t_pda; pda_p->type = RF_PDA_TYPE_PARITY; (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), &(pda_p->col), &(pda_p->startSector), remap); pda_p->numSector = layoutPtr->sectorsPerStripeUnit; /* raidAddr may be needed to find unit to redirect to */ pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); break; #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) case 2: /* two fault tolerant */ RF_ASSERT(pdaList && pdaList->next); t_pda = pdaList; pdaList = pdaList->next; memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); pda_p = asm_p->parityInfo = t_pda; pda_p->type = RF_PDA_TYPE_PARITY; t_pda = pdaList; pdaList = pdaList->next; memset((char *) t_pda, 0, sizeof(RF_PhysDiskAddr_t)); pda_q = asm_p->qInfo = t_pda; pda_q->type = RF_PDA_TYPE_Q; (layoutPtr->map->MapParity) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), &(pda_p->col), &(pda_p->startSector), remap); (layoutPtr->map->MapQ) (raidPtr, rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe), &(pda_q->col), &(pda_q->startSector), remap); pda_q->numSector = pda_p->numSector = layoutPtr->sectorsPerStripeUnit; /* raidAddr may be needed to find unit to redirect to */ pda_p->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); pda_q->raidAddress = rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, startAddrWithinStripe); /* failure mode stuff */ rf_ASMCheckStatus(raidPtr, pda_p, asm_p, disks, 1); rf_ASMCheckStatus(raidPtr, pda_q, asm_p, disks, 1); rf_ASMParityAdjust(asm_p->parityInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); rf_ASMParityAdjust(asm_p->qInfo, startAddrWithinStripe, endAddress, layoutPtr, asm_p); break; #endif } } RF_ASSERT(asmList == NULL && pdaList == NULL); /* make the header structure */ asm_hdr = rf_AllocAccessStripeMapHeader(); RF_ASSERT(numStripes == totStripes); asm_hdr->numStripes = numStripes; asm_hdr->stripeMap = asm_list; #if RF_DEBUG_MAP if (rf_mapDebug) rf_PrintAccessStripeMap(asm_hdr); #endif return (asm_hdr); } /*************************************************************************** * This routine walks through an ASM list and marks the PDAs that have * failed. It's called only when a disk failure causes an in-flight * DAG to fail. The parity may consist of two components, but we want * to use only one failedPDA pointer. Thus we set failedPDA to point * to the first parity component, and rely on the rest of the code to * do the right thing with this. ***************************************************************************/ void rf_MarkFailuresInASMList(RF_Raid_t *raidPtr, RF_AccessStripeMapHeader_t *asm_h) { RF_RaidDisk_t *disks = raidPtr->Disks; RF_AccessStripeMap_t *asmap; RF_PhysDiskAddr_t *pda; for (asmap = asm_h->stripeMap; asmap; asmap = asmap->next) { asmap->numDataFailed = 0; asmap->numParityFailed = 0; asmap->numQFailed = 0; asmap->numFailedPDAs = 0; memset((char *) asmap->failedPDAs, 0, RF_MAX_FAILED_PDA * sizeof(RF_PhysDiskAddr_t *)); for (pda = asmap->physInfo; pda; pda = pda->next) { if (RF_DEAD_DISK(disks[pda->col].status)) { asmap->numDataFailed++; asmap->failedPDAs[asmap->numFailedPDAs] = pda; asmap->numFailedPDAs++; } } pda = asmap->parityInfo; if (pda && RF_DEAD_DISK(disks[pda->col].status)) { asmap->numParityFailed++; asmap->failedPDAs[asmap->numFailedPDAs] = pda; asmap->numFailedPDAs++; } pda = asmap->qInfo; if (pda && RF_DEAD_DISK(disks[pda->col].status)) { asmap->numQFailed++; asmap->failedPDAs[asmap->numFailedPDAs] = pda; asmap->numFailedPDAs++; } } } /*************************************************************************** * * routines to allocate and free list elements. All allocation * routines zero the structure before returning it. * * FreePhysDiskAddr is static. It should never be called directly, * because FreeAccessStripeMap takes care of freeing the PhysDiskAddr * list. * ***************************************************************************/ #define RF_MAX_FREE_ASMHDR 128 #define RF_MIN_FREE_ASMHDR 32 #define RF_MAX_FREE_ASM 192 #define RF_MIN_FREE_ASM 64 #define RF_MAX_FREE_PDA 192 #define RF_MIN_FREE_PDA 64 #define RF_MAX_FREE_ASMHLE 64 #define RF_MIN_FREE_ASMHLE 16 #define RF_MAX_FREE_FSS 128 #define RF_MIN_FREE_FSS 32 #define RF_MAX_FREE_VFPLE 128 #define RF_MIN_FREE_VFPLE 32 #define RF_MAX_FREE_VPLE 128 #define RF_MIN_FREE_VPLE 32 /* called at shutdown time. So far, all that is necessary is to release all the free lists */ static void rf_ShutdownMapModule(void *); static void rf_ShutdownMapModule(void *ignored) { pool_destroy(&rf_pools.asm_hdr); pool_destroy(&rf_pools.asmap); pool_destroy(&rf_pools.asmhle); pool_destroy(&rf_pools.pda); pool_destroy(&rf_pools.fss); pool_destroy(&rf_pools.vfple); pool_destroy(&rf_pools.vple); } int rf_ConfigureMapModule(RF_ShutdownList_t **listp) { rf_pool_init(&rf_pools.asm_hdr, sizeof(RF_AccessStripeMapHeader_t), "rf_asmhdr_pl", RF_MIN_FREE_ASMHDR, RF_MAX_FREE_ASMHDR); rf_pool_init(&rf_pools.asmap, sizeof(RF_AccessStripeMap_t), "rf_asm_pl", RF_MIN_FREE_ASM, RF_MAX_FREE_ASM); rf_pool_init(&rf_pools.asmhle, sizeof(RF_ASMHeaderListElem_t), "rf_asmhle_pl", RF_MIN_FREE_ASMHLE, RF_MAX_FREE_ASMHLE); rf_pool_init(&rf_pools.pda, sizeof(RF_PhysDiskAddr_t), "rf_pda_pl", RF_MIN_FREE_PDA, RF_MAX_FREE_PDA); rf_pool_init(&rf_pools.fss, sizeof(RF_FailedStripe_t), "rf_fss_pl", RF_MIN_FREE_FSS, RF_MAX_FREE_FSS); rf_pool_init(&rf_pools.vfple, sizeof(RF_VoidFunctionPointerListElem_t), "rf_vfple_pl", RF_MIN_FREE_VFPLE, RF_MAX_FREE_VFPLE); rf_pool_init(&rf_pools.vple, sizeof(RF_VoidPointerListElem_t), "rf_vple_pl", RF_MIN_FREE_VPLE, RF_MAX_FREE_VPLE); rf_ShutdownCreate(listp, rf_ShutdownMapModule, NULL); return (0); } RF_AccessStripeMapHeader_t * rf_AllocAccessStripeMapHeader(void) { RF_AccessStripeMapHeader_t *p; p = pool_get(&rf_pools.asm_hdr, PR_WAITOK); memset((char *) p, 0, sizeof(RF_AccessStripeMapHeader_t)); return (p); } void rf_FreeAccessStripeMapHeader(RF_AccessStripeMapHeader_t *p) { pool_put(&rf_pools.asm_hdr, p); } RF_VoidFunctionPointerListElem_t * rf_AllocVFPListElem(void) { RF_VoidFunctionPointerListElem_t *p; p = pool_get(&rf_pools.vfple, PR_WAITOK); memset((char *) p, 0, sizeof(RF_VoidFunctionPointerListElem_t)); return (p); } void rf_FreeVFPListElem(RF_VoidFunctionPointerListElem_t *p) { pool_put(&rf_pools.vfple, p); } RF_VoidPointerListElem_t * rf_AllocVPListElem(void) { RF_VoidPointerListElem_t *p; p = pool_get(&rf_pools.vple, PR_WAITOK); memset((char *) p, 0, sizeof(RF_VoidPointerListElem_t)); return (p); } void rf_FreeVPListElem(RF_VoidPointerListElem_t *p) { pool_put(&rf_pools.vple, p); } RF_ASMHeaderListElem_t * rf_AllocASMHeaderListElem(void) { RF_ASMHeaderListElem_t *p; p = pool_get(&rf_pools.asmhle, PR_WAITOK); memset((char *) p, 0, sizeof(RF_ASMHeaderListElem_t)); return (p); } void rf_FreeASMHeaderListElem(RF_ASMHeaderListElem_t *p) { pool_put(&rf_pools.asmhle, p); } RF_FailedStripe_t * rf_AllocFailedStripeStruct(void) { RF_FailedStripe_t *p; p = pool_get(&rf_pools.fss, PR_WAITOK); memset((char *) p, 0, sizeof(RF_FailedStripe_t)); return (p); } void rf_FreeFailedStripeStruct(RF_FailedStripe_t *p) { pool_put(&rf_pools.fss, p); } RF_PhysDiskAddr_t * rf_AllocPhysDiskAddr(void) { RF_PhysDiskAddr_t *p; p = pool_get(&rf_pools.pda, PR_WAITOK); memset((char *) p, 0, sizeof(RF_PhysDiskAddr_t)); return (p); } /* allocates a list of PDAs, locking the free list only once when we * have to call calloc, we do it one component at a time to simplify * the process of freeing the list at program shutdown. This should * not be much of a performance hit, because it should be very * infrequently executed. */ RF_PhysDiskAddr_t * rf_AllocPDAList(int count) { RF_PhysDiskAddr_t *p, *prev; int i; p = NULL; prev = NULL; for (i = 0; i < count; i++) { p = pool_get(&rf_pools.pda, PR_WAITOK); p->next = prev; prev = p; } return (p); } void rf_FreePhysDiskAddr(RF_PhysDiskAddr_t *p) { pool_put(&rf_pools.pda, p); } static void rf_FreePDAList(RF_PhysDiskAddr_t *pda_list) { RF_PhysDiskAddr_t *p, *tmp; p=pda_list; while (p) { tmp = p->next; pool_put(&rf_pools.pda, p); p = tmp; } } /* this is essentially identical to AllocPDAList. I should combine * the two. when we have to call calloc, we do it one component at a * time to simplify the process of freeing the list at program * shutdown. This should not be much of a performance hit, because it * should be very infrequently executed. */ RF_AccessStripeMap_t * rf_AllocASMList(int count) { RF_AccessStripeMap_t *p, *prev; int i; p = NULL; prev = NULL; for (i = 0; i < count; i++) { p = pool_get(&rf_pools.asmap, PR_WAITOK); p->next = prev; prev = p; } return (p); } static void rf_FreeASMList(RF_AccessStripeMap_t *asm_list) { RF_AccessStripeMap_t *p, *tmp; p=asm_list; while (p) { tmp = p->next; pool_put(&rf_pools.asmap, p); p = tmp; } } void rf_FreeAccessStripeMap(RF_AccessStripeMapHeader_t *hdr) { RF_AccessStripeMap_t *p; RF_PhysDiskAddr_t *pdp, *trailer, *pdaList = NULL, *pdaEnd = NULL; int count = 0, t; for (p = hdr->stripeMap; p; p = p->next) { /* link the 3 pda lists into the accumulating pda list */ if (!pdaList) pdaList = p->qInfo; else pdaEnd->next = p->qInfo; for (trailer = NULL, pdp = p->qInfo; pdp;) { trailer = pdp; pdp = pdp->next; count++; } if (trailer) pdaEnd = trailer; if (!pdaList) pdaList = p->parityInfo; else pdaEnd->next = p->parityInfo; for (trailer = NULL, pdp = p->parityInfo; pdp;) { trailer = pdp; pdp = pdp->next; count++; } if (trailer) pdaEnd = trailer; if (!pdaList) pdaList = p->physInfo; else pdaEnd->next = p->physInfo; for (trailer = NULL, pdp = p->physInfo; pdp;) { trailer = pdp; pdp = pdp->next; count++; } if (trailer) pdaEnd = trailer; } /* debug only */ for (t = 0, pdp = pdaList; pdp; pdp = pdp->next) t++; RF_ASSERT(t == count); if (pdaList) rf_FreePDAList(pdaList); rf_FreeASMList(hdr->stripeMap); rf_FreeAccessStripeMapHeader(hdr); } /* We can't use the large write optimization if there are any failures * in the stripe. In the declustered layout, there is no way to * immediately determine what disks constitute a stripe, so we * actually have to hunt through the stripe looking for failures. The * reason we map the parity instead of just using asm->parityInfo->col * is because the latter may have been already redirected to a spare * drive, which would mess up the computation of the stripe offset. * * ASSUMES AT MOST ONE FAILURE IN THE STRIPE. */ int rf_CheckStripeForFailures(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) { RF_RowCol_t tcol, pcol, *diskids, i; RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_StripeCount_t stripeOffset; int numFailures; RF_RaidAddr_t sosAddr; RF_SectorNum_t diskOffset, poffset; /* quick out in the fault-free case. */ rf_lock_mutex2(raidPtr->mutex); numFailures = raidPtr->numFailures; rf_unlock_mutex2(raidPtr->mutex); if (numFailures == 0) return (0); sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); (layoutPtr->map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids); (layoutPtr->map->MapParity) (raidPtr, asmap->raidAddress, &pcol, &poffset, 0); /* get pcol */ /* this need not be true if we've redirected the access to a * spare in another row RF_ASSERT(row == testrow); */ stripeOffset = 0; for (i = 0; i < layoutPtr->numDataCol + layoutPtr->numParityCol; i++) { if (diskids[i] != pcol) { if (RF_DEAD_DISK(raidPtr->Disks[diskids[i]].status)) { if (raidPtr->status != rf_rs_reconstructing) return (1); RF_ASSERT(raidPtr->reconControl->fcol == diskids[i]); layoutPtr->map->MapSector(raidPtr, sosAddr + stripeOffset * layoutPtr->sectorsPerStripeUnit, &tcol, &diskOffset, 0); RF_ASSERT(tcol == diskids[i]); if (!rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, diskOffset)) return (1); asmap->flags |= RF_ASM_REDIR_LARGE_WRITE; return (0); } stripeOffset++; } } return (0); } #if (RF_INCLUDE_DECL_PQ > 0) || (RF_INCLUDE_RAID6 > 0) || (RF_INCLUDE_EVENODD >0) /* return the number of failed data units in the stripe. */ int rf_NumFailedDataUnitsInStripe(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap) { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_RowCol_t tcol, i; RF_SectorNum_t diskOffset; RF_RaidAddr_t sosAddr; int numFailures; /* quick out in the fault-free case. */ rf_lock_mutex2(raidPtr->mutex); numFailures = raidPtr->numFailures; rf_unlock_mutex2(raidPtr->mutex); if (numFailures == 0) return (0); numFailures = 0; sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, asmap->raidAddress); for (i = 0; i < layoutPtr->numDataCol; i++) { (layoutPtr->map->MapSector) (raidPtr, sosAddr + i * layoutPtr->sectorsPerStripeUnit, &tcol, &diskOffset, 0); if (RF_DEAD_DISK(raidPtr->Disks[tcol].status)) numFailures++; } return numFailures; } #endif /**************************************************************************** * * debug routines * ***************************************************************************/ #if RF_DEBUG_MAP void rf_PrintAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h) { rf_PrintFullAccessStripeMap(asm_h, 0); } #endif /* prbuf - flag to print buffer pointers */ void rf_PrintFullAccessStripeMap(RF_AccessStripeMapHeader_t *asm_h, int prbuf) { int i; RF_AccessStripeMap_t *asmap = asm_h->stripeMap; RF_PhysDiskAddr_t *p; printf("%d stripes total\n", (int) asm_h->numStripes); for (; asmap; asmap = asmap->next) { /* printf("Num failures: %d\n",asmap->numDataFailed); */ /* printf("Num sectors: * %d\n",(int)asmap->totalSectorsAccessed); */ printf("Stripe %d (%d sectors), failures: %d data, %d parity: ", (int) asmap->stripeID, (int) asmap->totalSectorsAccessed, (int) asmap->numDataFailed, (int) asmap->numParityFailed); if (asmap->parityInfo) { printf("Parity [c%d s%d-%d", asmap->parityInfo->col, (int) asmap->parityInfo->startSector, (int) (asmap->parityInfo->startSector + asmap->parityInfo->numSector - 1)); if (prbuf) printf(" b0x%lx", (unsigned long) asmap->parityInfo->bufPtr); if (asmap->parityInfo->next) { printf(", c%d s%d-%d", asmap->parityInfo->next->col, (int) asmap->parityInfo->next->startSector, (int) (asmap->parityInfo->next->startSector + asmap->parityInfo->next->numSector - 1)); if (prbuf) printf(" b0x%lx", (unsigned long) asmap->parityInfo->next->bufPtr); RF_ASSERT(asmap->parityInfo->next->next == NULL); } printf("]\n\t"); } for (i = 0, p = asmap->physInfo; p; p = p->next, i++) { printf("SU c%d s%d-%d ", p->col, (int) p->startSector, (int) (p->startSector + p->numSector - 1)); if (prbuf) printf("b0x%lx ", (unsigned long) p->bufPtr); if (i && !(i & 1)) printf("\n\t"); } printf("\n"); p = asm_h->stripeMap->failedPDAs[0]; if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 1) printf("[multiple failures]\n"); else if (asm_h->stripeMap->numDataFailed + asm_h->stripeMap->numParityFailed > 0) printf("\t[Failed PDA: c%d s%d-%d]\n", p->col, (int) p->startSector, (int) (p->startSector + p->numSector - 1)); } } #if RF_MAP_DEBUG void rf_PrintRaidAddressInfo(RF_Raid_t *raidPtr, RF_RaidAddr_t raidAddr, RF_SectorCount_t numBlocks) { RF_RaidLayout_t *layoutPtr = &raidPtr->Layout; RF_RaidAddr_t ra, sosAddr = rf_RaidAddressOfPrevStripeBoundary(layoutPtr, raidAddr); printf("Raid addrs of SU boundaries from start of stripe to end of access:\n\t"); for (ra = sosAddr; ra <= raidAddr + numBlocks; ra += layoutPtr->sectorsPerStripeUnit) { printf("%d (0x%x), ", (int) ra, (int) ra); } printf("\n"); printf("Offset into stripe unit: %d (0x%x)\n", (int) (raidAddr % layoutPtr->sectorsPerStripeUnit), (int) (raidAddr % layoutPtr->sectorsPerStripeUnit)); } #endif /* given a parity descriptor and the starting address within a stripe, * range restrict the parity descriptor to touch only the correct * stuff. */ void rf_ASMParityAdjust(RF_PhysDiskAddr_t *toAdjust, RF_StripeNum_t startAddrWithinStripe, RF_SectorNum_t endAddress, RF_RaidLayout_t *layoutPtr, RF_AccessStripeMap_t *asm_p) { RF_PhysDiskAddr_t *new_pda; /* when we're accessing only a portion of one stripe unit, we * want the parity descriptor to identify only the chunk of * parity associated with the data. When the access spans * exactly one stripe unit boundary and is less than a stripe * unit in size, it uses two disjoint regions of the parity * unit. When an access spans more than one stripe unit * boundary, it uses all of the parity unit. * * To better handle the case where stripe units are small, we * may eventually want to change the 2nd case so that if the * SU size is below some threshold, we just read/write the * whole thing instead of breaking it up into two accesses. */ if (asm_p->numStripeUnitsAccessed == 1) { int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); toAdjust->startSector += x; toAdjust->raidAddress += x; toAdjust->numSector = asm_p->physInfo->numSector; RF_ASSERT(toAdjust->numSector != 0); } else if (asm_p->numStripeUnitsAccessed == 2 && asm_p->totalSectorsAccessed < layoutPtr->sectorsPerStripeUnit) { int x = (startAddrWithinStripe % layoutPtr->sectorsPerStripeUnit); /* create a second pda and copy the parity map info * into it */ RF_ASSERT(toAdjust->next == NULL); /* the following will get freed in rf_FreeAccessStripeMap() via rf_FreePDAList() */ new_pda = toAdjust->next = rf_AllocPhysDiskAddr(); *new_pda = *toAdjust; /* structure assignment */ new_pda->next = NULL; /* adjust the start sector & number of blocks for the * first parity pda */ toAdjust->startSector += x; toAdjust->raidAddress += x; toAdjust->numSector = rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, startAddrWithinStripe) - startAddrWithinStripe; RF_ASSERT(toAdjust->numSector != 0); /* adjust the second pda */ new_pda->numSector = endAddress - rf_RaidAddressOfPrevStripeUnitBoundary(layoutPtr, endAddress); /* new_pda->raidAddress = * rf_RaidAddressOfNextStripeUnitBoundary(layoutPtr, * toAdjust->raidAddress); */ RF_ASSERT(new_pda->numSector != 0); } } /* Check if a disk has been spared or failed. If spared, redirect the * I/O. If it has been failed, record it in the asm pointer. Fifth * arg is whether data or parity. */ void rf_ASMCheckStatus(RF_Raid_t *raidPtr, RF_PhysDiskAddr_t *pda_p, RF_AccessStripeMap_t *asm_p, RF_RaidDisk_t *disks, int parity) { RF_DiskStatus_t dstatus; RF_RowCol_t fcol; dstatus = disks[pda_p->col].status; if (dstatus == rf_ds_spared) { /* if the disk has been spared, redirect access to the spare */ fcol = pda_p->col; pda_p->col = disks[fcol].spareCol; } else if (dstatus == rf_ds_dist_spared) { /* ditto if disk has been spared to dist spare space */ #if RF_DEBUG_MAP RF_RowCol_t oc = pda_p->col; RF_SectorNum_t oo = pda_p->startSector; #endif if (pda_p->type == RF_PDA_TYPE_DATA) raidPtr->Layout.map->MapSector(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP); else raidPtr->Layout.map->MapParity(raidPtr, pda_p->raidAddress, &pda_p->col, &pda_p->startSector, RF_REMAP); #if RF_DEBUG_MAP if (rf_mapDebug) { printf("Redirected c %d o %d -> c %d o %d\n", oc, (int) oo, pda_p->col, (int) pda_p->startSector); } #endif } else if (RF_DEAD_DISK(dstatus)) { /* if the disk is inaccessible, mark the * failure */ if (parity) asm_p->numParityFailed++; else { asm_p->numDataFailed++; } asm_p->failedPDAs[asm_p->numFailedPDAs] = pda_p; asm_p->numFailedPDAs++; #if 0 switch (asm_p->numParityFailed + asm_p->numDataFailed) { case 1: asm_p->failedPDAs[0] = pda_p; break; case 2: asm_p->failedPDAs[1] = pda_p; default: break; } #endif } /* the redirected access should never span a stripe unit boundary */ RF_ASSERT(rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress) == rf_RaidAddressToStripeUnitID(&raidPtr->Layout, pda_p->raidAddress + pda_p->numSector - 1)); RF_ASSERT(pda_p->col != -1); }