/* $NetBSD: rf_paritylog.c,v 1.18 2011/05/11 06:03:06 mrg Exp $ */ /* * Copyright (c) 1995 Carnegie-Mellon University. * All rights reserved. * * Author: William V. Courtright II * * Permission to use, copy, modify and distribute this software and * its documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie the * rights to redistribute these changes. */ /* Code for manipulating in-core parity logs * */ #include __KERNEL_RCSID(0, "$NetBSD: rf_paritylog.c,v 1.18 2011/05/11 06:03:06 mrg Exp $"); #include "rf_archs.h" #if RF_INCLUDE_PARITYLOGGING > 0 /* * Append-only log for recording parity "update" and "overwrite" records */ #include #include "rf_threadstuff.h" #include "rf_mcpair.h" #include "rf_raid.h" #include "rf_dag.h" #include "rf_dagfuncs.h" #include "rf_desc.h" #include "rf_layout.h" #include "rf_diskqueue.h" #include "rf_etimer.h" #include "rf_paritylog.h" #include "rf_general.h" #include "rf_map.h" #include "rf_paritylogging.h" #include "rf_paritylogDiskMgr.h" static RF_CommonLogData_t * AllocParityLogCommonData(RF_Raid_t * raidPtr) { RF_CommonLogData_t *common = NULL; /* Return a struct for holding common parity log information from the * free list (rf_parityLogDiskQueue.freeCommonList). If the free list * is empty, call RF_Malloc to create a new structure. NON-BLOCKING */ rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); if (raidPtr->parityLogDiskQueue.freeCommonList) { common = raidPtr->parityLogDiskQueue.freeCommonList; raidPtr->parityLogDiskQueue.freeCommonList = raidPtr->parityLogDiskQueue.freeCommonList->next; rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } else { rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); RF_Malloc(common, sizeof(RF_CommonLogData_t), (RF_CommonLogData_t *)); /* destroy is in rf_paritylogging.c */ rf_init_mutex2(common->mutex, IPL_VM); } common->next = NULL; return (common); } static void FreeParityLogCommonData(RF_CommonLogData_t * common) { RF_Raid_t *raidPtr; /* Insert a single struct for holding parity log information (data) * into the free list (rf_parityLogDiskQueue.freeCommonList). * NON-BLOCKING */ raidPtr = common->raidPtr; rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); common->next = raidPtr->parityLogDiskQueue.freeCommonList; raidPtr->parityLogDiskQueue.freeCommonList = common; rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } static RF_ParityLogData_t * AllocParityLogData(RF_Raid_t * raidPtr) { RF_ParityLogData_t *data = NULL; /* Return a struct for holding parity log information from the free * list (rf_parityLogDiskQueue.freeList). If the free list is empty, * call RF_Malloc to create a new structure. NON-BLOCKING */ rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); if (raidPtr->parityLogDiskQueue.freeDataList) { data = raidPtr->parityLogDiskQueue.freeDataList; raidPtr->parityLogDiskQueue.freeDataList = raidPtr->parityLogDiskQueue.freeDataList->next; rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } else { rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); RF_Malloc(data, sizeof(RF_ParityLogData_t), (RF_ParityLogData_t *)); } data->next = NULL; data->prev = NULL; return (data); } static void FreeParityLogData(RF_ParityLogData_t * data) { RF_ParityLogData_t *nextItem; RF_Raid_t *raidPtr; /* Insert a linked list of structs for holding parity log information * (data) into the free list (parityLogDiskQueue.freeList). * NON-BLOCKING */ raidPtr = data->common->raidPtr; rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); while (data) { nextItem = data->next; data->next = raidPtr->parityLogDiskQueue.freeDataList; raidPtr->parityLogDiskQueue.freeDataList = data; data = nextItem; } rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } static void EnqueueParityLogData( RF_ParityLogData_t * data, RF_ParityLogData_t ** head, RF_ParityLogData_t ** tail) { RF_Raid_t *raidPtr; /* Insert an in-core parity log (*data) into the head of a disk queue * (*head, *tail). NON-BLOCKING */ raidPtr = data->common->raidPtr; if (rf_parityLogDebug) printf("[enqueueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector); RF_ASSERT(data->prev == NULL); RF_ASSERT(data->next == NULL); rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); if (*head) { /* insert into head of queue */ RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); data->next = *head; (*head)->prev = data; *head = data; } else { /* insert into empty list */ RF_ASSERT(*head == NULL); RF_ASSERT(*tail == NULL); *head = data; *tail = data; } RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } static RF_ParityLogData_t * DequeueParityLogData( RF_Raid_t * raidPtr, RF_ParityLogData_t ** head, RF_ParityLogData_t ** tail, int ignoreLocks) { RF_ParityLogData_t *data; /* Remove and return an in-core parity log from the tail of a disk * queue (*head, *tail). NON-BLOCKING */ /* remove from tail, preserving FIFO order */ if (!ignoreLocks) rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); data = *tail; if (data) { if (*head == *tail) { /* removing last item from queue */ *head = NULL; *tail = NULL; } else { *tail = (*tail)->prev; (*tail)->next = NULL; RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); } data->next = NULL; data->prev = NULL; if (rf_parityLogDebug) printf("[dequeueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector); } if (*head) { RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); } if (!ignoreLocks) rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); return (data); } static void RequeueParityLogData( RF_ParityLogData_t * data, RF_ParityLogData_t ** head, RF_ParityLogData_t ** tail) { RF_Raid_t *raidPtr; /* Insert an in-core parity log (*data) into the tail of a disk queue * (*head, *tail). NON-BLOCKING */ raidPtr = data->common->raidPtr; RF_ASSERT(data); if (rf_parityLogDebug) printf("[requeueing parity log data, region %d, raidAddress %d, numSector %d]\n", data->regionID, (int) data->diskAddress.raidAddress, (int) data->diskAddress.numSector); rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); if (*tail) { /* append to tail of list */ data->prev = *tail; data->next = NULL; (*tail)->next = data; *tail = data; } else { /* inserting into an empty list */ *head = data; *tail = data; (*head)->prev = NULL; (*tail)->next = NULL; } RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } RF_ParityLogData_t * rf_CreateParityLogData( RF_ParityRecordType_t operation, RF_PhysDiskAddr_t * pda, void *bufPtr, RF_Raid_t * raidPtr, int (*wakeFunc) (RF_DagNode_t * node, int status), void *wakeArg, RF_AccTraceEntry_t * tracerec, RF_Etimer_t startTime) { RF_ParityLogData_t *data, *resultHead = NULL, *resultTail = NULL; RF_CommonLogData_t *common; RF_PhysDiskAddr_t *diskAddress; int boundary, offset = 0; /* Return an initialized struct of info to be logged. Build one item * per physical disk address, one item per region. * * NON-BLOCKING */ diskAddress = pda; common = AllocParityLogCommonData(raidPtr); RF_ASSERT(common); common->operation = operation; common->bufPtr = bufPtr; common->raidPtr = raidPtr; common->wakeFunc = wakeFunc; common->wakeArg = wakeArg; common->tracerec = tracerec; common->startTime = startTime; common->cnt = 0; if (rf_parityLogDebug) printf("[entering CreateParityLogData]\n"); while (diskAddress) { common->cnt++; data = AllocParityLogData(raidPtr); RF_ASSERT(data); data->common = common; data->next = NULL; data->prev = NULL; data->regionID = rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector); if (data->regionID == rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector + diskAddress->numSector - 1)) { /* disk address does not cross a region boundary */ data->diskAddress = *diskAddress; data->bufOffset = offset; offset = offset + diskAddress->numSector; EnqueueParityLogData(data, &resultHead, &resultTail); /* adjust disk address */ diskAddress = diskAddress->next; } else { /* disk address crosses a region boundary */ /* find address where region is crossed */ boundary = 0; while (data->regionID == rf_MapRegionIDParityLogging(raidPtr, diskAddress->startSector + boundary)) boundary++; /* enter data before the boundary */ data->diskAddress = *diskAddress; data->diskAddress.numSector = boundary; data->bufOffset = offset; offset += boundary; EnqueueParityLogData(data, &resultHead, &resultTail); /* adjust disk address */ diskAddress->startSector += boundary; diskAddress->numSector -= boundary; } } if (rf_parityLogDebug) printf("[leaving CreateParityLogData]\n"); return (resultHead); } RF_ParityLogData_t * rf_SearchAndDequeueParityLogData( RF_Raid_t * raidPtr, int regionID, RF_ParityLogData_t ** head, RF_ParityLogData_t ** tail, int ignoreLocks) { RF_ParityLogData_t *w; /* Remove and return an in-core parity log from a specified region * (regionID). If a matching log is not found, return NULL. * * NON-BLOCKING. */ /* walk backward through a list, looking for an entry with a matching * region ID */ if (!ignoreLocks) rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); w = (*tail); while (w) { if (w->regionID == regionID) { /* remove an element from the list */ if (w == *tail) { if (*head == *tail) { /* removing only element in the list */ *head = NULL; *tail = NULL; } else { /* removing last item in the list */ *tail = (*tail)->prev; (*tail)->next = NULL; RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); } } else { if (w == *head) { /* removing first item in the list */ *head = (*head)->next; (*head)->prev = NULL; RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); } else { /* removing an item from the middle of * the list */ w->prev->next = w->next; w->next->prev = w->prev; RF_ASSERT((*head)->prev == NULL); RF_ASSERT((*tail)->next == NULL); } } w->prev = NULL; w->next = NULL; if (rf_parityLogDebug) printf("[dequeueing parity log data, region %d, raidAddress %d, numSector %d]\n", w->regionID, (int) w->diskAddress.raidAddress, (int) w->diskAddress.numSector); return (w); } else w = w->prev; } if (!ignoreLocks) rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); return (NULL); } static RF_ParityLogData_t * DequeueMatchingLogData( RF_Raid_t * raidPtr, RF_ParityLogData_t ** head, RF_ParityLogData_t ** tail) { RF_ParityLogData_t *logDataList, *logData; int regionID; /* Remove and return an in-core parity log from the tail of a disk * queue (*head, *tail). Then remove all matching (identical * regionIDs) logData and return as a linked list. * * NON-BLOCKING */ logDataList = DequeueParityLogData(raidPtr, head, tail, RF_TRUE); if (logDataList) { regionID = logDataList->regionID; logData = logDataList; logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, head, tail, RF_TRUE); while (logData->next) { logData = logData->next; logData->next = rf_SearchAndDequeueParityLogData(raidPtr, regionID, head, tail, RF_TRUE); } } return (logDataList); } static RF_ParityLog_t * AcquireParityLog( RF_ParityLogData_t * logData, int finish) { RF_ParityLog_t *log = NULL; RF_Raid_t *raidPtr; /* Grab a log buffer from the pool and return it. If no buffers are * available, return NULL. NON-BLOCKING */ raidPtr = logData->common->raidPtr; rf_lock_mutex2(raidPtr->parityLogPool.mutex); if (raidPtr->parityLogPool.parityLogs) { log = raidPtr->parityLogPool.parityLogs; raidPtr->parityLogPool.parityLogs = raidPtr->parityLogPool.parityLogs->next; log->regionID = logData->regionID; log->numRecords = 0; log->next = NULL; raidPtr->logsInUse++; RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs); } else { /* no logs available, so place ourselves on the queue of work * waiting on log buffers this is done while * parityLogPool.mutex is held, to ensure synchronization with * ReleaseParityLogs. */ if (rf_parityLogDebug) printf("[blocked on log, region %d, finish %d]\n", logData->regionID, finish); if (finish) RequeueParityLogData(logData, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); else EnqueueParityLogData(logData, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); } rf_unlock_mutex2(raidPtr->parityLogPool.mutex); return (log); } void rf_ReleaseParityLogs( RF_Raid_t * raidPtr, RF_ParityLog_t * firstLog) { RF_ParityLogData_t *logDataList; RF_ParityLog_t *log, *lastLog; int cnt; /* Insert a linked list of parity logs (firstLog) to the free list * (parityLogPool.parityLogPool) * * NON-BLOCKING. */ RF_ASSERT(firstLog); /* Before returning logs to global free list, service all requests * which are blocked on logs. Holding mutexes for parityLogPool and * parityLogDiskQueue forces synchronization with AcquireParityLog(). */ rf_lock_mutex2(raidPtr->parityLogPool.mutex); rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); logDataList = DequeueMatchingLogData(raidPtr, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); log = firstLog; if (firstLog) firstLog = firstLog->next; log->numRecords = 0; log->next = NULL; while (logDataList && log) { rf_unlock_mutex2(raidPtr->parityLogPool.mutex); rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_FALSE); if (rf_parityLogDebug) printf("[finishing up buf-blocked log data, region %d]\n", logDataList->regionID); if (log == NULL) { log = firstLog; if (firstLog) { firstLog = firstLog->next; log->numRecords = 0; log->next = NULL; } } rf_lock_mutex2(raidPtr->parityLogPool.mutex); rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); if (log) logDataList = DequeueMatchingLogData(raidPtr, &raidPtr->parityLogDiskQueue.logBlockHead, &raidPtr->parityLogDiskQueue.logBlockTail); } /* return remaining logs to pool */ if (log) { log->next = firstLog; firstLog = log; } if (firstLog) { lastLog = firstLog; raidPtr->logsInUse--; RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs); while (lastLog->next) { lastLog = lastLog->next; raidPtr->logsInUse--; RF_ASSERT(raidPtr->logsInUse >= 0 && raidPtr->logsInUse <= raidPtr->numParityLogs); } lastLog->next = raidPtr->parityLogPool.parityLogs; raidPtr->parityLogPool.parityLogs = firstLog; cnt = 0; log = raidPtr->parityLogPool.parityLogs; while (log) { cnt++; log = log->next; } RF_ASSERT(cnt + raidPtr->logsInUse == raidPtr->numParityLogs); } rf_unlock_mutex2(raidPtr->parityLogPool.mutex); rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } static void ReintLog( RF_Raid_t * raidPtr, int regionID, RF_ParityLog_t * log) { RF_ASSERT(log); /* Insert an in-core parity log (log) into the disk queue of * reintegration work. Set the flag (reintInProgress) for the * specified region (regionID) to indicate that reintegration is in * progress for this region. NON-BLOCKING */ rf_lock_mutex2(raidPtr->regionInfo[regionID].reintMutex); raidPtr->regionInfo[regionID].reintInProgress = RF_TRUE; /* cleared when reint * complete */ if (rf_parityLogDebug) printf("[requesting reintegration of region %d]\n", log->regionID); /* move record to reintegration queue */ rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); log->next = raidPtr->parityLogDiskQueue.reintQueue; raidPtr->parityLogDiskQueue.reintQueue = log; rf_unlock_mutex2(raidPtr->regionInfo[regionID].reintMutex); rf_signal_cond2(raidPtr->parityLogDiskQueue.cond); rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } static void FlushLog( RF_Raid_t * raidPtr, RF_ParityLog_t * log) { /* insert a core log (log) into a list of logs * (parityLogDiskQueue.flushQueue) waiting to be written to disk. * NON-BLOCKING */ RF_ASSERT(log); RF_ASSERT(log->numRecords == raidPtr->numSectorsPerLog); RF_ASSERT(log->next == NULL); /* move log to flush queue */ rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); log->next = raidPtr->parityLogDiskQueue.flushQueue; raidPtr->parityLogDiskQueue.flushQueue = log; rf_signal_cond2(raidPtr->parityLogDiskQueue.cond); rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } static int DumpParityLogToDisk( int finish, RF_ParityLogData_t * logData) { int i, diskCount, regionID = logData->regionID; RF_ParityLog_t *log; RF_Raid_t *raidPtr; raidPtr = logData->common->raidPtr; /* Move a core log to disk. If the log disk is full, initiate * reintegration. * * Return (0) if we can enqueue the dump immediately, otherwise return * (1) to indicate we are blocked on reintegration and control of the * thread should be relinquished. * * Caller must hold regionInfo[regionID].mutex * * NON-BLOCKING */ RF_ASSERT(rf_owned_mutex2(raidPtr->regionInfo[regionID].mutex)); if (rf_parityLogDebug) printf("[dumping parity log to disk, region %d]\n", regionID); log = raidPtr->regionInfo[regionID].coreLog; RF_ASSERT(log->numRecords == raidPtr->numSectorsPerLog); RF_ASSERT(log->next == NULL); /* if reintegration is in progress, must queue work */ rf_lock_mutex2(raidPtr->regionInfo[regionID].reintMutex); if (raidPtr->regionInfo[regionID].reintInProgress) { /* Can not proceed since this region is currently being * reintegrated. We can not block, so queue remaining work and * return */ if (rf_parityLogDebug) printf("[region %d waiting on reintegration]\n", regionID); /* XXX not sure about the use of finish - shouldn't this * always be "Enqueue"? */ if (finish) RequeueParityLogData(logData, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail); else EnqueueParityLogData(logData, &raidPtr->parityLogDiskQueue.reintBlockHead, &raidPtr->parityLogDiskQueue.reintBlockTail); rf_unlock_mutex2(raidPtr->regionInfo[regionID].reintMutex); return (1); /* relenquish control of this thread */ } rf_unlock_mutex2(raidPtr->regionInfo[regionID].reintMutex); raidPtr->regionInfo[regionID].coreLog = NULL; if ((raidPtr->regionInfo[regionID].diskCount) < raidPtr->regionInfo[regionID].capacity) /* IMPORTANT!! this loop bound assumes region disk holds an * integral number of core logs */ { /* update disk map for this region */ diskCount = raidPtr->regionInfo[regionID].diskCount; for (i = 0; i < raidPtr->numSectorsPerLog; i++) { raidPtr->regionInfo[regionID].diskMap[i + diskCount].operation = log->records[i].operation; raidPtr->regionInfo[regionID].diskMap[i + diskCount].parityAddr = log->records[i].parityAddr; } log->diskOffset = diskCount; raidPtr->regionInfo[regionID].diskCount += raidPtr->numSectorsPerLog; FlushLog(raidPtr, log); } else { /* no room for log on disk, send it to disk manager and * request reintegration */ RF_ASSERT(raidPtr->regionInfo[regionID].diskCount == raidPtr->regionInfo[regionID].capacity); ReintLog(raidPtr, regionID, log); } if (rf_parityLogDebug) printf("[finished dumping parity log to disk, region %d]\n", regionID); return (0); } int rf_ParityLogAppend( RF_ParityLogData_t * logData, int finish, RF_ParityLog_t ** incomingLog, int clearReintFlag) { int regionID, logItem, itemDone; RF_ParityLogData_t *item; int punt, done = RF_FALSE; RF_ParityLog_t *log; RF_Raid_t *raidPtr; RF_Etimer_t timer; int (*wakeFunc) (RF_DagNode_t * node, int status); void *wakeArg; /* Add parity to the appropriate log, one sector at a time. This * routine is called is called by dag functions ParityLogUpdateFunc * and ParityLogOverwriteFunc and therefore MUST BE NONBLOCKING. * * Parity to be logged is contained in a linked-list (logData). When * this routine returns, every sector in the list will be in one of * three places: 1) entered into the parity log 2) queued, waiting on * reintegration 3) queued, waiting on a core log * * Blocked work is passed to the ParityLoggingDiskManager for completion. * Later, as conditions which required the block are removed, the work * reenters this routine with the "finish" parameter set to "RF_TRUE." * * NON-BLOCKING */ raidPtr = logData->common->raidPtr; /* lock the region for the first item in logData */ RF_ASSERT(logData != NULL); regionID = logData->regionID; rf_lock_mutex2(raidPtr->regionInfo[regionID].mutex); RF_ASSERT(raidPtr->regionInfo[regionID].loggingEnabled); if (clearReintFlag) { /* Enable flushing for this region. Holding both locks * provides a synchronization barrier with DumpParityLogToDisk */ rf_lock_mutex2(raidPtr->regionInfo[regionID].reintMutex); /* XXXmrg need this? */ rf_lock_mutex2(raidPtr->parityLogDiskQueue.mutex); RF_ASSERT(raidPtr->regionInfo[regionID].reintInProgress == RF_TRUE); raidPtr->regionInfo[regionID].diskCount = 0; raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE; rf_unlock_mutex2(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now * enabled */ /* XXXmrg need this? */ rf_unlock_mutex2(raidPtr->parityLogDiskQueue.mutex); } /* process each item in logData */ while (logData) { /* remove an item from logData */ item = logData; logData = logData->next; item->next = NULL; item->prev = NULL; if (rf_parityLogDebug) printf("[appending parity log data, region %d, raidAddress %d, numSector %d]\n", item->regionID, (int) item->diskAddress.raidAddress, (int) item->diskAddress.numSector); /* see if we moved to a new region */ if (regionID != item->regionID) { rf_unlock_mutex2(raidPtr->regionInfo[regionID].mutex); regionID = item->regionID; rf_lock_mutex2(raidPtr->regionInfo[regionID].mutex); RF_ASSERT(raidPtr->regionInfo[regionID].loggingEnabled); } punt = RF_FALSE;/* Set to RF_TRUE if work is blocked. This * can happen in one of two ways: 1) no core * log (AcquireParityLog) 2) waiting on * reintegration (DumpParityLogToDisk) If punt * is RF_TRUE, the dataItem was queued, so * skip to next item. */ /* process item, one sector at a time, until all sectors * processed or we punt */ if (item->diskAddress.numSector > 0) done = RF_FALSE; else RF_ASSERT(0); while (!punt && !done) { /* verify that a core log exists for this region */ if (!raidPtr->regionInfo[regionID].coreLog) { /* Attempt to acquire a parity log. If * acquisition fails, queue remaining work in * data item and move to nextItem. */ if (incomingLog) if (*incomingLog) { RF_ASSERT((*incomingLog)->next == NULL); raidPtr->regionInfo[regionID].coreLog = *incomingLog; raidPtr->regionInfo[regionID].coreLog->regionID = regionID; *incomingLog = NULL; } else raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); else raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); /* Note: AcquireParityLog either returns a log * or enqueues currentItem */ } if (!raidPtr->regionInfo[regionID].coreLog) punt = RF_TRUE; /* failed to find a core log */ else { RF_ASSERT(raidPtr->regionInfo[regionID].coreLog->next == NULL); /* verify that the log has room for new * entries */ /* if log is full, dump it to disk and grab a * new log */ if (raidPtr->regionInfo[regionID].coreLog->numRecords == raidPtr->numSectorsPerLog) { /* log is full, dump it to disk */ if (DumpParityLogToDisk(finish, item)) punt = RF_TRUE; /* dump unsuccessful, * blocked on * reintegration */ else { /* dump was successful */ if (incomingLog) if (*incomingLog) { RF_ASSERT((*incomingLog)->next == NULL); raidPtr->regionInfo[regionID].coreLog = *incomingLog; raidPtr->regionInfo[regionID].coreLog->regionID = regionID; *incomingLog = NULL; } else raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); else raidPtr->regionInfo[regionID].coreLog = AcquireParityLog(item, finish); /* if a core log is not * available, must queue work * and return */ if (!raidPtr->regionInfo[regionID].coreLog) punt = RF_TRUE; /* blocked on log * availability */ } } } /* if we didn't punt on this item, attempt to add a * sector to the core log */ if (!punt) { RF_ASSERT(raidPtr->regionInfo[regionID].coreLog->next == NULL); /* at this point, we have a core log with * enough room for a sector */ /* copy a sector into the log */ log = raidPtr->regionInfo[regionID].coreLog; RF_ASSERT(log->numRecords < raidPtr->numSectorsPerLog); logItem = log->numRecords++; log->records[logItem].parityAddr = item->diskAddress; RF_ASSERT(log->records[logItem].parityAddr.startSector >= raidPtr->regionInfo[regionID].parityStartAddr); RF_ASSERT(log->records[logItem].parityAddr.startSector < raidPtr->regionInfo[regionID].parityStartAddr + raidPtr->regionInfo[regionID].numSectorsParity); log->records[logItem].parityAddr.numSector = 1; log->records[logItem].operation = item->common->operation; memcpy((char *)log->bufPtr + (logItem * (1 << item->common->raidPtr->logBytesPerSector)), ((char *)item->common->bufPtr + (item->bufOffset++ * (1 << item->common->raidPtr->logBytesPerSector))), (1 << item->common->raidPtr->logBytesPerSector)); item->diskAddress.numSector--; item->diskAddress.startSector++; if (item->diskAddress.numSector == 0) done = RF_TRUE; } } if (!punt) { /* Processed this item completely, decrement count of * items to be processed. */ RF_ASSERT(item->diskAddress.numSector == 0); rf_lock_mutex2(item->common->mutex); item->common->cnt--; if (item->common->cnt == 0) itemDone = RF_TRUE; else itemDone = RF_FALSE; rf_unlock_mutex2(item->common->mutex); if (itemDone) { /* Finished processing all log data for this * IO Return structs to free list and invoke * wakeup function. */ timer = item->common->startTime; /* grab initial value of * timer */ RF_ETIMER_STOP(timer); RF_ETIMER_EVAL(timer); item->common->tracerec->plog_us += RF_ETIMER_VAL_US(timer); if (rf_parityLogDebug) printf("[waking process for region %d]\n", item->regionID); wakeFunc = item->common->wakeFunc; wakeArg = item->common->wakeArg; FreeParityLogCommonData(item->common); FreeParityLogData(item); (wakeFunc) (wakeArg, 0); } else FreeParityLogData(item); } } rf_unlock_mutex2(raidPtr->regionInfo[regionID].mutex); if (rf_parityLogDebug) printf("[exiting ParityLogAppend]\n"); return (0); } void rf_EnableParityLogging(RF_Raid_t * raidPtr) { int regionID; for (regionID = 0; regionID < rf_numParityRegions; regionID++) { rf_lock_mutex2(raidPtr->regionInfo[regionID].mutex); raidPtr->regionInfo[regionID].loggingEnabled = RF_TRUE; rf_unlock_mutex2(raidPtr->regionInfo[regionID].mutex); } if (rf_parityLogDebug) printf("[parity logging enabled]\n"); } #endif /* RF_INCLUDE_PARITYLOGGING > 0 */