/* $NetBSD: if_se.c,v 1.94.8.2 2018/07/26 23:55:30 snj Exp $ */ /* * Copyright (c) 1997 Ian W. Dall * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Ian W. Dall. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for Cabletron EA41x scsi ethernet adaptor. * * Written by Ian Dall Feb 3, 1997 * * Acknowledgement: Thanks are due to Philip L. Budne * who reverse engineered the EA41x. In developing this code, * Phil's userland daemon "etherd", was refered to extensively in lieu * of accurate documentation for the device. * * This is a weird device! It doesn't conform to the scsi spec in much * at all. About the only standard command supported is inquiry. Most * commands are 6 bytes long, but the recv data is only 1 byte. Data * must be received by periodically polling the device with the recv * command. * * This driver is also a bit unusual. It must look like a network * interface and it must also appear to be a scsi device to the scsi * system. Hence there are cases where there are two entry points. eg * sestart is to be called from the scsi subsytem and se_ifstart from * the network interface subsystem. In addition, to facilitate scsi * commands issued by userland programs, there are open, close and * ioctl entry points. This allows a user program to, for example, * display the ea41x stats and download new code into the adaptor --- * functions which can't be performed through the ifconfig interface. * Normal operation does not require any special userland program. */ #include __KERNEL_RCSID(0, "$NetBSD: if_se.c,v 1.94.8.2 2018/07/26 23:55:30 snj Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_atalk.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #ifdef NETATALK #include #endif #define SETIMEOUT 1000 #define SEOUTSTANDING 4 #define SERETRIES 4 #define SE_PREFIX 4 #define ETHER_CRC 4 #define SEMINSIZE 60 /* Make this big enough for an ETHERMTU packet in promiscuous mode. */ #define MAX_SNAP (ETHERMTU + sizeof(struct ether_header) + \ SE_PREFIX + ETHER_CRC) /* 10 full length packets appears to be the max ever returned. 16k is OK */ #define RBUF_LEN (16 * 1024) /* Tuning parameters: * The EA41x only returns a maximum of 10 packets (regardless of size). * We will attempt to adapt to polling fast enough to get RDATA_GOAL packets * per read */ #define RDATA_MAX 10 #define RDATA_GOAL 8 /* se_poll and se_poll0 are the normal polling rate and the minimum * polling rate respectively. se_poll0 should be chosen so that at * maximum ethernet speed, we will read nearly RDATA_MAX packets. se_poll * should be chosen for reasonable maximum latency. * In practice, if we are being saturated with min length packets, we * can't poll fast enough. Polling with zero delay actually * worsens performance. se_poll0 is enforced to be always at least 1 */ #define SE_POLL 40 /* default in milliseconds */ #define SE_POLL0 10 /* default in milliseconds */ int se_poll = 0; /* Delay in ticks set at attach time */ int se_poll0 = 0; int se_max_received = 0; /* Instrumentation */ #define PROTOCMD(p, d) \ ((d) = (p)) #define PROTOCMD_DECL(name) \ static const struct scsi_ctron_ether_generic name #define PROTOCMD_DECL_SPECIAL(name) \ static const struct __CONCAT(scsi_,name) name /* Command initializers for commands using scsi_ctron_ether_generic */ PROTOCMD_DECL(ctron_ether_send) = {CTRON_ETHER_SEND, 0, {0,0}, 0}; PROTOCMD_DECL(ctron_ether_add_proto) = {CTRON_ETHER_ADD_PROTO, 0, {0,0}, 0}; PROTOCMD_DECL(ctron_ether_get_addr) = {CTRON_ETHER_GET_ADDR, 0, {0,0}, 0}; PROTOCMD_DECL(ctron_ether_set_media) = {CTRON_ETHER_SET_MEDIA, 0, {0,0}, 0}; PROTOCMD_DECL(ctron_ether_set_addr) = {CTRON_ETHER_SET_ADDR, 0, {0,0}, 0}; PROTOCMD_DECL(ctron_ether_set_multi) = {CTRON_ETHER_SET_MULTI, 0, {0,0}, 0}; PROTOCMD_DECL(ctron_ether_remove_multi) = {CTRON_ETHER_REMOVE_MULTI, 0, {0,0}, 0}; /* Command initializers for commands using their own structures */ PROTOCMD_DECL_SPECIAL(ctron_ether_recv) = {CTRON_ETHER_RECV}; PROTOCMD_DECL_SPECIAL(ctron_ether_set_mode) = {CTRON_ETHER_SET_MODE, 0, {0,0}, 0}; struct se_softc { device_t sc_dev; struct ethercom sc_ethercom; /* Ethernet common part */ struct scsipi_periph *sc_periph;/* contains our targ, lun, etc. */ struct callout sc_ifstart_ch; struct callout sc_recv_ch; char *sc_tbuf; char *sc_rbuf; int protos; #define PROTO_IP 0x01 #define PROTO_ARP 0x02 #define PROTO_REVARP 0x04 #define PROTO_AT 0x08 #define PROTO_AARP 0x10 int sc_debug; int sc_flags; #define SE_NEED_RECV 0x1 int sc_last_timeout; int sc_enabled; }; static int sematch(device_t, cfdata_t, void *); static void seattach(device_t, device_t, void *); static void se_ifstart(struct ifnet *); static void sestart(struct scsipi_periph *); static void sedone(struct scsipi_xfer *, int); static int se_ioctl(struct ifnet *, u_long, void *); static void sewatchdog(struct ifnet *); #if 0 static inline u_int16_t ether_cmp(void *, void *); #endif static void se_recv(void *); static struct mbuf *se_get(struct se_softc *, char *, int); static int se_read(struct se_softc *, char *, int); static int se_reset(struct se_softc *); static int se_add_proto(struct se_softc *, int); static int se_get_addr(struct se_softc *, u_int8_t *); static int se_set_media(struct se_softc *, int); static int se_init(struct se_softc *); static int se_set_multi(struct se_softc *, u_int8_t *); static int se_remove_multi(struct se_softc *, u_int8_t *); #if 0 static int sc_set_all_multi(struct se_softc *, int); #endif static void se_stop(struct se_softc *); static inline int se_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *scsipi_cmd, int cmdlen, u_char *data_addr, int datalen, int retries, int timeout, struct buf *bp, int flags); static void se_delayed_ifstart(void *); static int se_set_mode(struct se_softc *, int, int); int se_enable(struct se_softc *); void se_disable(struct se_softc *); CFATTACH_DECL_NEW(se, sizeof(struct se_softc), sematch, seattach, NULL, NULL); extern struct cfdriver se_cd; dev_type_open(seopen); dev_type_close(seclose); dev_type_ioctl(seioctl); const struct cdevsw se_cdevsw = { .d_open = seopen, .d_close = seclose, .d_read = noread, .d_write = nowrite, .d_ioctl = seioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_OTHER }; const struct scsipi_periphsw se_switch = { NULL, /* Use default error handler */ sestart, /* have a queue, served by this */ NULL, /* have no async handler */ sedone, /* deal with stats at interrupt time */ }; const struct scsipi_inquiry_pattern se_patterns[] = { {T_PROCESSOR, T_FIXED, "CABLETRN", "EA412", ""}, {T_PROCESSOR, T_FIXED, "Cabletrn", "EA412", ""}, }; #if 0 /* * Compare two Ether/802 addresses for equality, inlined and * unrolled for speed. * Note: use this like memcmp() */ static inline u_int16_t ether_cmp(void *one, void *two) { u_int16_t *a = (u_int16_t *) one; u_int16_t *b = (u_int16_t *) two; u_int16_t diff; diff = (a[0] - b[0]) | (a[1] - b[1]) | (a[2] - b[2]); return (diff); } #define ETHER_CMP ether_cmp #endif static int sematch(device_t parent, cfdata_t match, void *aux) { struct scsipibus_attach_args *sa = aux; int priority; (void)scsipi_inqmatch(&sa->sa_inqbuf, se_patterns, sizeof(se_patterns) / sizeof(se_patterns[0]), sizeof(se_patterns[0]), &priority); return (priority); } /* * The routine called by the low level scsi routine when it discovers * a device suitable for this driver. */ static void seattach(device_t parent, device_t self, void *aux) { struct se_softc *sc = device_private(self); struct scsipibus_attach_args *sa = aux; struct scsipi_periph *periph = sa->sa_periph; struct ifnet *ifp = &sc->sc_ethercom.ec_if; u_int8_t myaddr[ETHER_ADDR_LEN]; int rv; sc->sc_dev = self; printf("\n"); SC_DEBUG(periph, SCSIPI_DB2, ("seattach: ")); callout_init(&sc->sc_ifstart_ch, 0); callout_init(&sc->sc_recv_ch, 0); /* * Store information needed to contact our base driver */ sc->sc_periph = periph; periph->periph_dev = sc->sc_dev; periph->periph_switch = &se_switch; /* XXX increase openings? */ se_poll = (SE_POLL * hz) / 1000; se_poll = se_poll? se_poll: 1; se_poll0 = (SE_POLL0 * hz) / 1000; se_poll0 = se_poll0? se_poll0: 1; /* * Initialize and attach a buffer */ sc->sc_tbuf = malloc(ETHERMTU + sizeof(struct ether_header), M_DEVBUF, M_NOWAIT); if (sc->sc_tbuf == 0) panic("seattach: can't allocate transmit buffer"); sc->sc_rbuf = malloc(RBUF_LEN, M_DEVBUF, M_NOWAIT);/* A Guess */ if (sc->sc_rbuf == 0) panic("seattach: can't allocate receive buffer"); se_get_addr(sc, myaddr); /* Initialize ifnet structure. */ strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname)); ifp->if_softc = sc; ifp->if_start = se_ifstart; ifp->if_ioctl = se_ioctl; ifp->if_watchdog = sewatchdog; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; IFQ_SET_READY(&ifp->if_snd); /* Attach the interface. */ rv = if_initialize(ifp); if (rv != 0) { free(sc->sc_tbuf, M_DEVBUF); callout_destroy(&sc->sc_ifstart_ch); callout_destroy(&sc->sc_recv_ch); return; /* Error */ } ether_ifattach(ifp, myaddr); if_register(ifp); } static inline int se_scsipi_cmd(struct scsipi_periph *periph, struct scsipi_generic *cmd, int cmdlen, u_char *data_addr, int datalen, int retries, int timeout, struct buf *bp, int flags) { int error; error = scsipi_command(periph, cmd, cmdlen, data_addr, datalen, retries, timeout, bp, flags); return (error); } /* Start routine for calling from scsi sub system */ static void sestart(struct scsipi_periph *periph) { struct se_softc *sc = device_private(periph->periph_dev); struct ifnet *ifp = &sc->sc_ethercom.ec_if; int s = splnet(); se_ifstart(ifp); (void) splx(s); } static void se_delayed_ifstart(void *v) { struct ifnet *ifp = v; struct se_softc *sc = ifp->if_softc; int s; s = splnet(); if (sc->sc_enabled) { ifp->if_flags &= ~IFF_OACTIVE; se_ifstart(ifp); } splx(s); } /* * Start transmission on the interface. * Always called at splnet(). */ static void se_ifstart(struct ifnet *ifp) { struct se_softc *sc = ifp->if_softc; struct scsi_ctron_ether_generic send_cmd; struct mbuf *m, *m0; int len, error; u_char *cp; /* Don't transmit if interface is busy or not running */ if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) return; IFQ_DEQUEUE(&ifp->if_snd, m0); if (m0 == 0) return; /* If BPF is listening on this interface, let it see the * packet before we commit it to the wire. */ bpf_mtap(ifp, m0); /* We need to use m->m_pkthdr.len, so require the header */ if ((m0->m_flags & M_PKTHDR) == 0) panic("ctscstart: no header mbuf"); len = m0->m_pkthdr.len; /* Mark the interface busy. */ ifp->if_flags |= IFF_OACTIVE; /* Chain; copy into linear buffer we allocated at attach time. */ cp = sc->sc_tbuf; for (m = m0; m != NULL; ) { memcpy(cp, mtod(m, u_char *), m->m_len); cp += m->m_len; m = m0 = m_free(m); } if (len < SEMINSIZE) { #ifdef SEDEBUG if (sc->sc_debug) printf("se: packet size %d (%zu) < %d\n", len, cp - (u_char *)sc->sc_tbuf, SEMINSIZE); #endif memset(cp, 0, SEMINSIZE - len); len = SEMINSIZE; } /* Fill out SCSI command. */ PROTOCMD(ctron_ether_send, send_cmd); _lto2b(len, send_cmd.length); /* Send command to device. */ error = se_scsipi_cmd(sc->sc_periph, (void *)&send_cmd, sizeof(send_cmd), sc->sc_tbuf, len, SERETRIES, SETIMEOUT, NULL, XS_CTL_NOSLEEP|XS_CTL_ASYNC|XS_CTL_DATA_OUT); if (error) { aprint_error_dev(sc->sc_dev, "not queued, error %d\n", error); ifp->if_oerrors++; ifp->if_flags &= ~IFF_OACTIVE; } else ifp->if_opackets++; if (sc->sc_flags & SE_NEED_RECV) { sc->sc_flags &= ~SE_NEED_RECV; se_recv((void *) sc); } } /* * Called from the scsibus layer via our scsi device switch. */ static void sedone(struct scsipi_xfer *xs, int error) { struct se_softc *sc = device_private(xs->xs_periph->periph_dev); struct scsipi_generic *cmd = xs->cmd; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int s; s = splnet(); if(IS_SEND(cmd)) { if (xs->error == XS_BUSY) { printf("se: busy, retry txmit\n"); callout_reset(&sc->sc_ifstart_ch, hz, se_delayed_ifstart, ifp); } else { ifp->if_flags &= ~IFF_OACTIVE; /* the generic scsipi_done will call * sestart (through scsipi_free_xs). */ } } else if(IS_RECV(cmd)) { /* RECV complete */ /* pass data up. reschedule a recv */ /* scsipi_free_xs will call start. Harmless. */ if (error) { /* Reschedule after a delay */ callout_reset(&sc->sc_recv_ch, se_poll, se_recv, (void *)sc); } else { int n, ntimeo; n = se_read(sc, xs->data, xs->datalen - xs->resid); if (n > se_max_received) se_max_received = n; if (n == 0) ntimeo = se_poll; else if (n >= RDATA_MAX) ntimeo = se_poll0; else { ntimeo = sc->sc_last_timeout; ntimeo = (ntimeo * RDATA_GOAL)/n; ntimeo = (ntimeo < se_poll0? se_poll0: ntimeo); ntimeo = (ntimeo > se_poll? se_poll: ntimeo); } sc->sc_last_timeout = ntimeo; if (ntimeo == se_poll0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) /* Output is pending. Do next recv * after the next send. */ sc->sc_flags |= SE_NEED_RECV; else { callout_reset(&sc->sc_recv_ch, ntimeo, se_recv, (void *)sc); } } } splx(s); } static void se_recv(void *v) { /* do a recv command */ struct se_softc *sc = (struct se_softc *) v; struct scsi_ctron_ether_recv recv_cmd; int error; if (sc->sc_enabled == 0) return; PROTOCMD(ctron_ether_recv, recv_cmd); error = se_scsipi_cmd(sc->sc_periph, (void *)&recv_cmd, sizeof(recv_cmd), sc->sc_rbuf, RBUF_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_NOSLEEP|XS_CTL_ASYNC|XS_CTL_DATA_IN); if (error) callout_reset(&sc->sc_recv_ch, se_poll, se_recv, (void *)sc); } /* * We copy the data into mbufs. When full cluster sized units are present * we copy into clusters. */ static struct mbuf * se_get(struct se_softc *sc, char *data, int totlen) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct mbuf *m, *m0, *newm; int len; MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == 0) return (0); m_set_rcvif(m0, ifp); m0->m_pkthdr.len = totlen; len = MHLEN; m = m0; while (totlen > 0) { if (totlen >= MINCLSIZE) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) goto bad; len = MCLBYTES; } if (m == m0) { char *newdata = (char *) ALIGN(m->m_data + sizeof(struct ether_header)) - sizeof(struct ether_header); len -= newdata - m->m_data; m->m_data = newdata; } m->m_len = len = min(totlen, len); memcpy(mtod(m, void *), data, len); data += len; totlen -= len; if (totlen > 0) { MGET(newm, M_DONTWAIT, MT_DATA); if (newm == 0) goto bad; len = MLEN; m = m->m_next = newm; } } return (m0); bad: m_freem(m0); return (0); } /* * Pass packets to higher levels. */ static int se_read(struct se_softc *sc, char *data, int datalen) { struct mbuf *m; struct ifnet *ifp = &sc->sc_ethercom.ec_if; int n; n = 0; while (datalen >= 2) { int len = _2btol(data); data += 2; datalen -= 2; if (len == 0) break; #ifdef SEDEBUG if (sc->sc_debug) { printf("se_read: datalen = %d, packetlen = %d, proto = 0x%04x\n", datalen, len, ntohs(((struct ether_header *)data)->ether_type)); } #endif if (len <= sizeof(struct ether_header) || len > MAX_SNAP) { #ifdef SEDEBUG printf("%s: invalid packet size %d; dropping\n", device_xname(sc->sc_dev), len); #endif ifp->if_ierrors++; goto next_packet; } /* Don't need crc. Must keep ether header for BPF */ m = se_get(sc, data, len - ETHER_CRC); if (m == 0) { #ifdef SEDEBUG if (sc->sc_debug) printf("se_read: se_get returned null\n"); #endif ifp->if_ierrors++; goto next_packet; } if ((ifp->if_flags & IFF_PROMISC) != 0) { m_adj(m, SE_PREFIX); } /* Pass the packet up. */ if_input(ifp, m); next_packet: data += len; datalen -= len; n++; } return (n); } static void sewatchdog(struct ifnet *ifp) { struct se_softc *sc = ifp->if_softc; log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev)); ++ifp->if_oerrors; se_reset(sc); } static int se_reset(struct se_softc *sc) { int error; int s = splnet(); #if 0 /* Maybe we don't *really* want to reset the entire bus * because the ctron isn't working. We would like to send a * "BUS DEVICE RESET" message, but don't think the ctron * understands it. */ error = se_scsipi_cmd(sc->sc_periph, 0, 0, 0, 0, SERETRIES, 2000, NULL, XS_CTL_RESET); #endif error = se_init(sc); splx(s); return (error); } static int se_add_proto(struct se_softc *sc, int proto) { int error; struct scsi_ctron_ether_generic add_proto_cmd; u_int8_t data[2]; _lto2b(proto, data); #ifdef SEDEBUG if (sc->sc_debug) printf("se: adding proto 0x%02x%02x\n", data[0], data[1]); #endif PROTOCMD(ctron_ether_add_proto, add_proto_cmd); _lto2b(sizeof(data), add_proto_cmd.length); error = se_scsipi_cmd(sc->sc_periph, (void *)&add_proto_cmd, sizeof(add_proto_cmd), data, sizeof(data), SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); return (error); } static int se_get_addr(struct se_softc *sc, u_int8_t *myaddr) { int error; struct scsi_ctron_ether_generic get_addr_cmd; PROTOCMD(ctron_ether_get_addr, get_addr_cmd); _lto2b(ETHER_ADDR_LEN, get_addr_cmd.length); error = se_scsipi_cmd(sc->sc_periph, (void *)&get_addr_cmd, sizeof(get_addr_cmd), myaddr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_IN); printf("%s: ethernet address %s\n", device_xname(sc->sc_dev), ether_sprintf(myaddr)); return (error); } static int se_set_media(struct se_softc *sc, int type) { int error; struct scsi_ctron_ether_generic set_media_cmd; PROTOCMD(ctron_ether_set_media, set_media_cmd); set_media_cmd.byte3 = type; error = se_scsipi_cmd(sc->sc_periph, (void *)&set_media_cmd, sizeof(set_media_cmd), 0, 0, SERETRIES, SETIMEOUT, NULL, 0); return (error); } static int se_set_mode(struct se_softc *sc, int len, int mode) { int error; struct scsi_ctron_ether_set_mode set_mode_cmd; PROTOCMD(ctron_ether_set_mode, set_mode_cmd); set_mode_cmd.mode = mode; _lto2b(len, set_mode_cmd.length); error = se_scsipi_cmd(sc->sc_periph, (void *)&set_mode_cmd, sizeof(set_mode_cmd), 0, 0, SERETRIES, SETIMEOUT, NULL, 0); return (error); } static int se_init(struct se_softc *sc) { struct ifnet *ifp = &sc->sc_ethercom.ec_if; struct scsi_ctron_ether_generic set_addr_cmd; uint8_t enaddr[ETHER_ADDR_LEN]; int error; if (ifp->if_flags & IFF_PROMISC) { error = se_set_mode(sc, MAX_SNAP, 1); } else error = se_set_mode(sc, ETHERMTU + sizeof(struct ether_header), 0); if (error != 0) return (error); PROTOCMD(ctron_ether_set_addr, set_addr_cmd); _lto2b(ETHER_ADDR_LEN, set_addr_cmd.length); memcpy(enaddr, CLLADDR(ifp->if_sadl), sizeof(enaddr)); error = se_scsipi_cmd(sc->sc_periph, (void *)&set_addr_cmd, sizeof(set_addr_cmd), enaddr, ETHER_ADDR_LEN, SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); if (error != 0) return (error); if ((sc->protos & PROTO_IP) && (error = se_add_proto(sc, ETHERTYPE_IP)) != 0) return (error); if ((sc->protos & PROTO_ARP) && (error = se_add_proto(sc, ETHERTYPE_ARP)) != 0) return (error); if ((sc->protos & PROTO_REVARP) && (error = se_add_proto(sc, ETHERTYPE_REVARP)) != 0) return (error); #ifdef NETATALK if ((sc->protos & PROTO_AT) && (error = se_add_proto(sc, ETHERTYPE_ATALK)) != 0) return (error); if ((sc->protos & PROTO_AARP) && (error = se_add_proto(sc, ETHERTYPE_AARP)) != 0) return (error); #endif if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == IFF_UP) { ifp->if_flags |= IFF_RUNNING; se_recv(sc); ifp->if_flags &= ~IFF_OACTIVE; se_ifstart(ifp); } return (error); } static int se_set_multi(struct se_softc *sc, u_int8_t *addr) { struct scsi_ctron_ether_generic set_multi_cmd; int error; if (sc->sc_debug) printf("%s: set_set_multi: %s\n", device_xname(sc->sc_dev), ether_sprintf(addr)); PROTOCMD(ctron_ether_set_multi, set_multi_cmd); _lto2b(sizeof(addr), set_multi_cmd.length); /* XXX sizeof(addr) is the size of the pointer. Surely it * is too small? --dyoung */ error = se_scsipi_cmd(sc->sc_periph, (void *)&set_multi_cmd, sizeof(set_multi_cmd), addr, sizeof(addr), SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); return (error); } static int se_remove_multi(struct se_softc *sc, u_int8_t *addr) { struct scsi_ctron_ether_generic remove_multi_cmd; int error; if (sc->sc_debug) printf("%s: se_remove_multi: %s\n", device_xname(sc->sc_dev), ether_sprintf(addr)); PROTOCMD(ctron_ether_remove_multi, remove_multi_cmd); _lto2b(sizeof(addr), remove_multi_cmd.length); /* XXX sizeof(addr) is the size of the pointer. Surely it * is too small? --dyoung */ error = se_scsipi_cmd(sc->sc_periph, (void *)&remove_multi_cmd, sizeof(remove_multi_cmd), addr, sizeof(addr), SERETRIES, SETIMEOUT, NULL, XS_CTL_DATA_OUT); return (error); } #if 0 /* not used --thorpej */ static int sc_set_all_multi(struct se_softc *sc, int set) { int error = 0; u_int8_t *addr; struct ethercom *ac = &sc->sc_ethercom; struct ether_multi *enm; struct ether_multistep step; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (ETHER_CMP(enm->enm_addrlo, enm->enm_addrhi)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) */ /* We have no way of adding a range to this device. * stepping through all addresses in the range is * typically not possible. The only real alternative * is to go into promicuous mode and filter by hand. */ return (ENODEV); } addr = enm->enm_addrlo; if ((error = set ? se_set_multi(sc, addr) : se_remove_multi(sc, addr)) != 0) return (error); ETHER_NEXT_MULTI(step, enm); } return (error); } #endif /* not used */ static void se_stop(struct se_softc *sc) { /* Don't schedule any reads */ callout_stop(&sc->sc_recv_ch); /* How can we abort any scsi cmds in progress? */ } /* * Process an ioctl request. */ static int se_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct se_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; struct sockaddr *sa; int s, error = 0; s = splnet(); switch (cmd) { case SIOCINITIFADDR: if ((error = se_enable(sc)) != 0) break; ifp->if_flags |= IFF_UP; if ((error = se_set_media(sc, CMEDIA_AUTOSENSE)) != 0) break; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: sc->protos |= (PROTO_IP | PROTO_ARP | PROTO_REVARP); if ((error = se_init(sc)) != 0) break; arp_ifinit(ifp, ifa); break; #endif #ifdef NETATALK case AF_APPLETALK: sc->protos |= (PROTO_AT | PROTO_AARP); if ((error = se_init(sc)) != 0) break; break; #endif default: error = se_init(sc); break; } break; case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; /* XXX re-use ether_ioctl() */ switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) { case IFF_RUNNING: /* * If interface is marked down and it is running, then * stop it. */ se_stop(sc); ifp->if_flags &= ~IFF_RUNNING; se_disable(sc); break; case IFF_UP: /* * If interface is marked up and it is stopped, then * start it. */ if ((error = se_enable(sc)) != 0) break; error = se_init(sc); break; default: /* * Reset the interface to pick up changes in any other * flags that affect hardware registers. */ if (sc->sc_enabled) error = se_init(sc); break; } #ifdef SEDEBUG if (ifp->if_flags & IFF_DEBUG) sc->sc_debug = 1; else sc->sc_debug = 0; #endif break; case SIOCADDMULTI: case SIOCDELMULTI: sa = sockaddr_dup(ifreq_getaddr(cmd, ifr), M_NOWAIT); if (sa == NULL) { error = ENOBUFS; break; } if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) { error = (cmd == SIOCADDMULTI) ? se_set_multi(sc, sa->sa_data) : se_remove_multi(sc, sa->sa_data); } else error = 0; } sockaddr_free(sa); break; default: error = ether_ioctl(ifp, cmd, data); break; } splx(s); return (error); } /* * Enable the network interface. */ int se_enable(struct se_softc *sc) { struct scsipi_periph *periph = sc->sc_periph; struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter; int error = 0; if (sc->sc_enabled == 0 && (error = scsipi_adapter_addref(adapt)) == 0) sc->sc_enabled = 1; else aprint_error_dev(sc->sc_dev, "device enable failed\n"); return (error); } /* * Disable the network interface. */ void se_disable(struct se_softc *sc) { struct scsipi_periph *periph = sc->sc_periph; struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter; if (sc->sc_enabled != 0) { scsipi_adapter_delref(adapt); sc->sc_enabled = 0; } } #define SEUNIT(z) (minor(z)) /* * open the device. */ int seopen(dev_t dev, int flag, int fmt, struct lwp *l) { int unit, error; struct se_softc *sc; struct scsipi_periph *periph; struct scsipi_adapter *adapt; unit = SEUNIT(dev); sc = device_lookup_private(&se_cd, unit); if (sc == NULL) return (ENXIO); periph = sc->sc_periph; adapt = periph->periph_channel->chan_adapter; if ((error = scsipi_adapter_addref(adapt)) != 0) return (error); SC_DEBUG(periph, SCSIPI_DB1, ("scopen: dev=0x%"PRIx64" (unit %d (of %d))\n", dev, unit, se_cd.cd_ndevs)); periph->periph_flags |= PERIPH_OPEN; SC_DEBUG(periph, SCSIPI_DB3, ("open complete\n")); return (0); } /* * close the device.. only called if we are the LAST * occurence of an open device */ int seclose(dev_t dev, int flag, int fmt, struct lwp *l) { struct se_softc *sc = device_lookup_private(&se_cd, SEUNIT(dev)); struct scsipi_periph *periph = sc->sc_periph; struct scsipi_adapter *adapt = periph->periph_channel->chan_adapter; SC_DEBUG(sc->sc_periph, SCSIPI_DB1, ("closing\n")); scsipi_wait_drain(periph); scsipi_adapter_delref(adapt); periph->periph_flags &= ~PERIPH_OPEN; return (0); } /* * Perform special action on behalf of the user * Only does generic scsi ioctls. */ int seioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l) { struct se_softc *sc = device_lookup_private(&se_cd, SEUNIT(dev)); return (scsipi_do_ioctl(sc->sc_periph, dev, cmd, addr, flag, l)); }