/* $NetBSD: uaudio.c,v 1.153.2.1 2017/06/10 06:23:01 snj Exp $ */ /* * Copyright (c) 1999, 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology, and Matthew R. Green (mrg@eterna.com.au). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB audio specs: http://www.usb.org/developers/docs/devclass_docs/audio10.pdf * http://www.usb.org/developers/docs/devclass_docs/frmts10.pdf * http://www.usb.org/developers/docs/devclass_docs/termt10.pdf */ #include __KERNEL_RCSID(0, "$NetBSD: uaudio.c,v 1.153.2.1 2017/06/10 06:23:01 snj Exp $"); #ifdef _KERNEL_OPT #include "opt_usb.h" #endif #include #include #include #include #include #include #include #include /* for bootverbose */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define UAUDIO_DEBUG */ /* #define UAUDIO_MULTIPLE_ENDPOINTS */ #ifdef UAUDIO_DEBUG #define DPRINTF(x,y...) do { \ if (uaudiodebug) { \ struct lwp *l = curlwp; \ printf("%s[%d:%d]: "x, __func__, l->l_proc->p_pid, l->l_lid, y); \ } \ } while (0) #define DPRINTFN_CLEAN(n,x...) do { \ if (uaudiodebug > (n)) \ printf(x); \ } while (0) #define DPRINTFN(n,x,y...) do { \ if (uaudiodebug > (n)) { \ struct lwp *l = curlwp; \ printf("%s[%d:%d]: "x, __func__, l->l_proc->p_pid, l->l_lid, y); \ } \ } while (0) int uaudiodebug = 0; #else #define DPRINTF(x,y...) #define DPRINTFN_CLEAN(n,x...) #define DPRINTFN(n,x,y...) #endif #define UAUDIO_NCHANBUFS 6 /* number of outstanding request */ #define UAUDIO_NFRAMES 10 /* ms of sound in each request */ #define MIX_MAX_CHAN 8 struct mixerctl { uint16_t wValue[MIX_MAX_CHAN]; /* using nchan */ uint16_t wIndex; uint8_t nchan; uint8_t type; #define MIX_ON_OFF 1 #define MIX_SIGNED_16 2 #define MIX_UNSIGNED_16 3 #define MIX_SIGNED_8 4 #define MIX_SELECTOR 5 #define MIX_SIZE(n) ((n) == MIX_SIGNED_16 || (n) == MIX_UNSIGNED_16 ? 2 : 1) #define MIX_UNSIGNED(n) ((n) == MIX_UNSIGNED_16) int minval, maxval; u_int delta; u_int mul; uint8_t class; char ctlname[MAX_AUDIO_DEV_LEN]; const char *ctlunit; }; #define MAKE(h,l) (((h) << 8) | (l)) struct as_info { uint8_t alt; uint8_t encoding; uint8_t attributes; /* Copy of bmAttributes of * usb_audio_streaming_endpoint_descriptor */ struct usbd_interface * ifaceh; const usb_interface_descriptor_t *idesc; const usb_endpoint_descriptor_audio_t *edesc; const usb_endpoint_descriptor_audio_t *edesc1; const struct usb_audio_streaming_type1_descriptor *asf1desc; struct audio_format *aformat; int sc_busy; /* currently used */ }; struct chan { void (*intr)(void *); /* DMA completion intr handler */ void *arg; /* arg for intr() */ struct usbd_pipe *pipe; struct usbd_pipe *sync_pipe; u_int sample_size; u_int sample_rate; u_int bytes_per_frame; u_int fraction; /* fraction/1000 is the extra samples/frame */ u_int residue; /* accumulates the fractional samples */ u_char *start; /* upper layer buffer start */ u_char *end; /* upper layer buffer end */ u_char *cur; /* current position in upper layer buffer */ int blksize; /* chunk size to report up */ int transferred; /* transferred bytes not reported up */ int altidx; /* currently used altidx */ int curchanbuf; struct chanbuf { struct chan *chan; struct usbd_xfer *xfer; u_char *buffer; uint16_t sizes[UAUDIO_NFRAMES]; uint16_t offsets[UAUDIO_NFRAMES]; uint16_t size; } chanbufs[UAUDIO_NCHANBUFS]; struct uaudio_softc *sc; /* our softc */ }; /* * The MI USB audio subsystem is now MP-SAFE and expects sc_intr_lock to be * held on entry the callbacks passed to uaudio_trigger_{in,out}put */ struct uaudio_softc { device_t sc_dev; /* base device */ kmutex_t sc_lock; kmutex_t sc_intr_lock; struct usbd_device *sc_udev; /* USB device */ int sc_ac_iface; /* Audio Control interface */ struct usbd_interface * sc_ac_ifaceh; struct chan sc_playchan; /* play channel */ struct chan sc_recchan; /* record channel */ int sc_nullalt; int sc_audio_rev; struct as_info *sc_alts; /* alternate settings */ int sc_nalts; /* # of alternate settings */ int sc_altflags; #define HAS_8 0x01 #define HAS_16 0x02 #define HAS_8U 0x04 #define HAS_ALAW 0x08 #define HAS_MULAW 0x10 #define UA_NOFRAC 0x20 /* don't do sample rate adjustment */ #define HAS_24 0x40 int sc_mode; /* play/record capability */ struct mixerctl *sc_ctls; /* mixer controls */ int sc_nctls; /* # of mixer controls */ device_t sc_audiodev; struct audio_format *sc_formats; int sc_nformats; struct audio_encoding_set *sc_encodings; u_int sc_channel_config; char sc_dying; struct audio_device sc_adev; }; struct terminal_list { int size; uint16_t terminals[1]; }; #define TERMINAL_LIST_SIZE(N) (offsetof(struct terminal_list, terminals) \ + sizeof(uint16_t) * (N)) struct io_terminal { union { const uaudio_cs_descriptor_t *desc; const struct usb_audio_input_terminal *it; const struct usb_audio_output_terminal *ot; const struct usb_audio_mixer_unit *mu; const struct usb_audio_selector_unit *su; const struct usb_audio_feature_unit *fu; const struct usb_audio_processing_unit *pu; const struct usb_audio_extension_unit *eu; } d; int inputs_size; struct terminal_list **inputs; /* list of source input terminals */ struct terminal_list *output; /* list of destination output terminals */ int direct; /* directly connected to an output terminal */ }; #define UAC_OUTPUT 0 #define UAC_INPUT 1 #define UAC_EQUAL 2 #define UAC_RECORD 3 #define UAC_NCLASSES 4 #ifdef UAUDIO_DEBUG Static const char *uac_names[] = { AudioCoutputs, AudioCinputs, AudioCequalization, AudioCrecord, }; #endif #ifdef UAUDIO_DEBUG Static void uaudio_dump_tml (struct terminal_list *tml); #endif Static usbd_status uaudio_identify_ac (struct uaudio_softc *, const usb_config_descriptor_t *); Static usbd_status uaudio_identify_as (struct uaudio_softc *, const usb_config_descriptor_t *); Static usbd_status uaudio_process_as (struct uaudio_softc *, const char *, int *, int, const usb_interface_descriptor_t *); Static void uaudio_add_alt(struct uaudio_softc *, const struct as_info *); Static const usb_interface_descriptor_t *uaudio_find_iface (const char *, int, int *, int); Static void uaudio_mixer_add_ctl(struct uaudio_softc *, struct mixerctl *); Static char *uaudio_id_name (struct uaudio_softc *, const struct io_terminal *, int); #ifdef UAUDIO_DEBUG Static void uaudio_dump_cluster(const struct usb_audio_cluster *); #endif Static struct usb_audio_cluster uaudio_get_cluster (int, const struct io_terminal *); Static void uaudio_add_input (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_output (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_mixer (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_selector (struct uaudio_softc *, const struct io_terminal *, int); #ifdef UAUDIO_DEBUG Static const char *uaudio_get_terminal_name(int); #endif Static int uaudio_determine_class (const struct io_terminal *, struct mixerctl *); Static const char *uaudio_feature_name (const struct io_terminal *, struct mixerctl *); Static void uaudio_add_feature (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_processing_updown (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_processing (struct uaudio_softc *, const struct io_terminal *, int); Static void uaudio_add_extension (struct uaudio_softc *, const struct io_terminal *, int); Static struct terminal_list *uaudio_merge_terminal_list (const struct io_terminal *); Static struct terminal_list *uaudio_io_terminaltype (int, struct io_terminal *, int); Static usbd_status uaudio_identify (struct uaudio_softc *, const usb_config_descriptor_t *); Static int uaudio_signext(int, int); Static int uaudio_value2bsd(struct mixerctl *, int); Static int uaudio_bsd2value(struct mixerctl *, int); Static int uaudio_get(struct uaudio_softc *, int, int, int, int, int); Static int uaudio_ctl_get (struct uaudio_softc *, int, struct mixerctl *, int); Static void uaudio_set (struct uaudio_softc *, int, int, int, int, int, int); Static void uaudio_ctl_set (struct uaudio_softc *, int, struct mixerctl *, int, int); Static usbd_status uaudio_set_speed(struct uaudio_softc *, int, u_int); Static usbd_status uaudio_chan_open(struct uaudio_softc *, struct chan *); Static void uaudio_chan_abort(struct uaudio_softc *, struct chan *); Static void uaudio_chan_close(struct uaudio_softc *, struct chan *); Static usbd_status uaudio_chan_alloc_buffers (struct uaudio_softc *, struct chan *); Static void uaudio_chan_free_buffers(struct uaudio_softc *, struct chan *); Static void uaudio_chan_init (struct chan *, int, const struct audio_params *, int); Static void uaudio_chan_set_param(struct chan *, u_char *, u_char *, int); Static void uaudio_chan_ptransfer(struct chan *); Static void uaudio_chan_pintr (struct usbd_xfer *, void *, usbd_status); Static void uaudio_chan_rtransfer(struct chan *); Static void uaudio_chan_rintr (struct usbd_xfer *, void *, usbd_status); Static int uaudio_open(void *, int); Static void uaudio_close(void *); Static int uaudio_drain(void *); Static int uaudio_query_encoding(void *, struct audio_encoding *); Static int uaudio_set_params (void *, int, int, struct audio_params *, struct audio_params *, stream_filter_list_t *, stream_filter_list_t *); Static int uaudio_round_blocksize(void *, int, int, const audio_params_t *); Static int uaudio_trigger_output (void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); Static int uaudio_trigger_input (void *, void *, void *, int, void (*)(void *), void *, const audio_params_t *); Static int uaudio_halt_in_dma(void *); Static int uaudio_halt_out_dma(void *); Static int uaudio_getdev(void *, struct audio_device *); Static int uaudio_mixer_set_port(void *, mixer_ctrl_t *); Static int uaudio_mixer_get_port(void *, mixer_ctrl_t *); Static int uaudio_query_devinfo(void *, mixer_devinfo_t *); Static int uaudio_get_props(void *); Static void uaudio_get_locks(void *, kmutex_t **, kmutex_t **); Static const struct audio_hw_if uaudio_hw_if = { uaudio_open, uaudio_close, uaudio_drain, uaudio_query_encoding, uaudio_set_params, uaudio_round_blocksize, NULL, NULL, NULL, NULL, NULL, uaudio_halt_out_dma, uaudio_halt_in_dma, NULL, uaudio_getdev, NULL, uaudio_mixer_set_port, uaudio_mixer_get_port, uaudio_query_devinfo, NULL, NULL, NULL, NULL, uaudio_get_props, uaudio_trigger_output, uaudio_trigger_input, NULL, uaudio_get_locks, }; int uaudio_match(device_t, cfdata_t, void *); void uaudio_attach(device_t, device_t, void *); int uaudio_detach(device_t, int); void uaudio_childdet(device_t, device_t); int uaudio_activate(device_t, enum devact); extern struct cfdriver uaudio_cd; CFATTACH_DECL2_NEW(uaudio, sizeof(struct uaudio_softc), uaudio_match, uaudio_attach, uaudio_detach, uaudio_activate, NULL, uaudio_childdet); int uaudio_match(device_t parent, cfdata_t match, void *aux) { struct usbif_attach_arg *uiaa = aux; /* Trigger on the control interface. */ if (uiaa->uiaa_class != UICLASS_AUDIO || uiaa->uiaa_subclass != UISUBCLASS_AUDIOCONTROL || (usbd_get_quirks(uiaa->uiaa_device)->uq_flags & UQ_BAD_AUDIO)) return UMATCH_NONE; return UMATCH_IFACECLASS_IFACESUBCLASS; } void uaudio_attach(device_t parent, device_t self, void *aux) { struct uaudio_softc *sc = device_private(self); struct usbif_attach_arg *uiaa = aux; usb_interface_descriptor_t *id; usb_config_descriptor_t *cdesc; char *devinfop; usbd_status err; int i, j, found; sc->sc_dev = self; sc->sc_udev = uiaa->uiaa_device; mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SOFTUSB); strlcpy(sc->sc_adev.name, "USB audio", sizeof(sc->sc_adev.name)); strlcpy(sc->sc_adev.version, "", sizeof(sc->sc_adev.version)); snprintf(sc->sc_adev.config, sizeof(sc->sc_adev.config), "usb:%08x", sc->sc_udev->ud_cookie.cookie); aprint_naive("\n"); aprint_normal("\n"); devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0); aprint_normal_dev(self, "%s\n", devinfop); usbd_devinfo_free(devinfop); cdesc = usbd_get_config_descriptor(sc->sc_udev); if (cdesc == NULL) { aprint_error_dev(self, "failed to get configuration descriptor\n"); return; } err = uaudio_identify(sc, cdesc); if (err) { aprint_error_dev(self, "audio descriptors make no sense, error=%d\n", err); return; } sc->sc_ac_ifaceh = uiaa->uiaa_iface; /* Pick up the AS interface. */ for (i = 0; i < uiaa->uiaa_nifaces; i++) { if (uiaa->uiaa_ifaces[i] == NULL) continue; id = usbd_get_interface_descriptor(uiaa->uiaa_ifaces[i]); if (id == NULL) continue; found = 0; for (j = 0; j < sc->sc_nalts; j++) { if (id->bInterfaceNumber == sc->sc_alts[j].idesc->bInterfaceNumber) { sc->sc_alts[j].ifaceh = uiaa->uiaa_ifaces[i]; found = 1; } } if (found) uiaa->uiaa_ifaces[i] = NULL; } for (j = 0; j < sc->sc_nalts; j++) { if (sc->sc_alts[j].ifaceh == NULL) { aprint_error_dev(self, "alt %d missing AS interface(s)\n", j); return; } } aprint_normal_dev(self, "audio rev %d.%02x\n", sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff); sc->sc_playchan.sc = sc->sc_recchan.sc = sc; sc->sc_playchan.altidx = -1; sc->sc_recchan.altidx = -1; if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_FRAC) sc->sc_altflags |= UA_NOFRAC; #ifndef UAUDIO_DEBUG if (bootverbose) #endif aprint_normal_dev(self, "%d mixer controls\n", sc->sc_nctls); usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev); DPRINTF("%s", "doing audio_attach_mi\n"); sc->sc_audiodev = audio_attach_mi(&uaudio_hw_if, sc, sc->sc_dev); return; } int uaudio_activate(device_t self, enum devact act) { struct uaudio_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: sc->sc_dying = 1; return 0; default: return EOPNOTSUPP; } } void uaudio_childdet(device_t self, device_t child) { struct uaudio_softc *sc = device_private(self); KASSERT(sc->sc_audiodev == child); sc->sc_audiodev = NULL; } int uaudio_detach(device_t self, int flags) { struct uaudio_softc *sc = device_private(self); int rv; rv = 0; /* Wait for outstanding requests to complete. */ usbd_delay_ms(sc->sc_udev, UAUDIO_NCHANBUFS * UAUDIO_NFRAMES); if (sc->sc_audiodev != NULL) rv = config_detach(sc->sc_audiodev, flags); usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev); if (sc->sc_formats != NULL) kmem_free(sc->sc_formats, sizeof(struct audio_format) * sc->sc_nformats); auconv_delete_encodings(sc->sc_encodings); mutex_destroy(&sc->sc_lock); mutex_destroy(&sc->sc_intr_lock); return rv; } Static int uaudio_query_encoding(void *addr, struct audio_encoding *fp) { struct uaudio_softc *sc; int flags; sc = addr; flags = sc->sc_altflags; if (sc->sc_dying) return EIO; if (sc->sc_nalts == 0 || flags == 0) return ENXIO; return auconv_query_encoding(sc->sc_encodings, fp); } Static const usb_interface_descriptor_t * uaudio_find_iface(const char *tbuf, int size, int *offsp, int subtype) { const usb_interface_descriptor_t *d; while (*offsp < size) { d = (const void *)(tbuf + *offsp); *offsp += d->bLength; if (d->bDescriptorType == UDESC_INTERFACE && d->bInterfaceClass == UICLASS_AUDIO && d->bInterfaceSubClass == subtype) return d; } return NULL; } Static void uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct mixerctl *mc) { int res; size_t len; struct mixerctl *nmc; if (mc->class < UAC_NCLASSES) { DPRINTF("adding %s.%s\n", uac_names[mc->class], mc->ctlname); } else { DPRINTF("adding %s\n", mc->ctlname); } len = sizeof(*mc) * (sc->sc_nctls + 1); nmc = kmem_alloc(len, KM_SLEEP); /* Copy old data, if there was any */ if (sc->sc_nctls != 0) { memcpy(nmc, sc->sc_ctls, sizeof(*mc) * (sc->sc_nctls)); kmem_free(sc->sc_ctls, sizeof(*mc) * sc->sc_nctls); } sc->sc_ctls = nmc; mc->delta = 0; if (mc->type == MIX_ON_OFF) { mc->minval = 0; mc->maxval = 1; } else if (mc->type == MIX_SELECTOR) { ; } else { /* Determine min and max values. */ mc->minval = uaudio_signext(mc->type, uaudio_get(sc, GET_MIN, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); mc->maxval = 1 + uaudio_signext(mc->type, uaudio_get(sc, GET_MAX, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type))); mc->mul = mc->maxval - mc->minval; if (mc->mul == 0) mc->mul = 1; res = uaudio_get(sc, GET_RES, UT_READ_CLASS_INTERFACE, mc->wValue[0], mc->wIndex, MIX_SIZE(mc->type)); if (res > 0) mc->delta = (res * 255 + mc->mul/2) / mc->mul; } sc->sc_ctls[sc->sc_nctls++] = *mc; #ifdef UAUDIO_DEBUG if (uaudiodebug > 2) { int i; DPRINTFN_CLEAN(2, "wValue=%04x", mc->wValue[0]); for (i = 1; i < mc->nchan; i++) DPRINTFN_CLEAN(2, ",%04x", mc->wValue[i]); DPRINTFN_CLEAN(2, " wIndex=%04x type=%d name='%s' unit='%s' " "min=%d max=%d\n", mc->wIndex, mc->type, mc->ctlname, mc->ctlunit, mc->minval, mc->maxval); } #endif } Static char * uaudio_id_name(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { static char tbuf[32]; snprintf(tbuf, sizeof(tbuf), "i%d", id); return tbuf; } #ifdef UAUDIO_DEBUG Static void uaudio_dump_cluster(const struct usb_audio_cluster *cl) { static const char *channel_names[16] = { "LEFT", "RIGHT", "CENTER", "LFE", "LEFT_SURROUND", "RIGHT_SURROUND", "LEFT_CENTER", "RIGHT_CENTER", "SURROUND", "LEFT_SIDE", "RIGHT_SIDE", "TOP", "RESERVED12", "RESERVED13", "RESERVED14", "RESERVED15", }; int cc, i, first; cc = UGETW(cl->wChannelConfig); printf("cluster: bNrChannels=%u wChannelConfig=0x%.4x", cl->bNrChannels, cc); first = TRUE; for (i = 0; cc != 0; i++) { if (cc & 1) { printf("%c%s", first ? '<' : ',', channel_names[i]); first = FALSE; } cc = cc >> 1; } printf("> iChannelNames=%u", cl->iChannelNames); } #endif Static struct usb_audio_cluster uaudio_get_cluster(int id, const struct io_terminal *iot) { struct usb_audio_cluster r; const uaudio_cs_descriptor_t *dp; int i; for (i = 0; i < 25; i++) { /* avoid infinite loops */ dp = iot[id].d.desc; if (dp == 0) goto bad; switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: r.bNrChannels = iot[id].d.it->bNrChannels; USETW(r.wChannelConfig, UGETW(iot[id].d.it->wChannelConfig)); r.iChannelNames = iot[id].d.it->iChannelNames; return r; case UDESCSUB_AC_OUTPUT: id = iot[id].d.ot->bSourceId; break; case UDESCSUB_AC_MIXER: r = *(const struct usb_audio_cluster *) &iot[id].d.mu->baSourceId[iot[id].d.mu->bNrInPins]; return r; case UDESCSUB_AC_SELECTOR: /* XXX This is not really right */ id = iot[id].d.su->baSourceId[0]; break; case UDESCSUB_AC_FEATURE: id = iot[id].d.fu->bSourceId; break; case UDESCSUB_AC_PROCESSING: r = *(const struct usb_audio_cluster *) &iot[id].d.pu->baSourceId[iot[id].d.pu->bNrInPins]; return r; case UDESCSUB_AC_EXTENSION: r = *(const struct usb_audio_cluster *) &iot[id].d.eu->baSourceId[iot[id].d.eu->bNrInPins]; return r; default: goto bad; } } bad: aprint_error("uaudio_get_cluster: bad data\n"); memset(&r, 0, sizeof(r)); return r; } Static void uaudio_add_input(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_input_terminal *d; d = iot[id].d.it; #ifdef UAUDIO_DEBUG DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d " "iChannelNames=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bNrChannels, UGETW(d->wChannelConfig), d->iChannelNames, d->iTerminal); #endif /* If USB input terminal, record wChannelConfig */ if ((UGETW(d->wTerminalType) & 0xff00) != 0x0100) return; sc->sc_channel_config = UGETW(d->wChannelConfig); } Static void uaudio_add_output(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { #ifdef UAUDIO_DEBUG const struct usb_audio_output_terminal *d; d = iot[id].d.ot; DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x " "bAssocTerminal=%d bSourceId=%d iTerminal=%d\n", d->bTerminalId, UGETW(d->wTerminalType), d->bAssocTerminal, d->bSourceId, d->iTerminal); #endif } Static void uaudio_add_mixer(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_mixer_unit *d; const struct usb_audio_mixer_unit_1 *d1; int c, chs, ichs, ochs, i, o, bno, p, mo, mc, k; const uByte *bm; struct mixerctl mix; d = iot[id].d.mu; DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins); /* Compute the number of input channels */ ichs = 0; for (i = 0; i < d->bNrInPins; i++) ichs += uaudio_get_cluster(d->baSourceId[i], iot).bNrChannels; /* and the number of output channels */ d1 = (const struct usb_audio_mixer_unit_1 *)&d->baSourceId[d->bNrInPins]; ochs = d1->bNrChannels; DPRINTFN(2,"ichs=%d ochs=%d\n", ichs, ochs); bm = d1->bmControls; mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; #define _BIT(bno) ((bm[bno / 8] >> (7 - bno % 8)) & 1) for (p = i = 0; i < d->bNrInPins; i++) { chs = uaudio_get_cluster(d->baSourceId[i], iot).bNrChannels; mc = 0; for (c = 0; c < chs; c++) { mo = 0; for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (_BIT(bno)) mo++; } if (mo == 1) mc++; } if (mc == chs && chs <= MIX_MAX_CHAN) { k = 0; for (c = 0; c < chs; c++) for (o = 0; o < ochs; o++) { bno = (p + c) * ochs + o; if (_BIT(bno)) mix.wValue[k++] = MAKE(p+c+1, o+1); } snprintf(mix.ctlname, sizeof(mix.ctlname), "mix%d-%s", d->bUnitId, uaudio_id_name(sc, iot, d->baSourceId[i])); mix.nchan = chs; uaudio_mixer_add_ctl(sc, &mix); } else { /* XXX */ } #undef _BIT p += chs; } } Static void uaudio_add_selector(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_selector_unit *d; struct mixerctl mix; int i, wp; d = iot[id].d.su; DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins); mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.wValue[0] = MAKE(0, 0); uaudio_determine_class(&iot[id], &mix); mix.nchan = 1; mix.type = MIX_SELECTOR; mix.ctlunit = ""; mix.minval = 1; mix.maxval = d->bNrInPins; mix.mul = mix.maxval - mix.minval; wp = snprintf(mix.ctlname, MAX_AUDIO_DEV_LEN, "sel%d-", d->bUnitId); for (i = 1; i <= d->bNrInPins; i++) { wp += snprintf(mix.ctlname + wp, MAX_AUDIO_DEV_LEN - wp, "i%d", d->baSourceId[i - 1]); if (wp > MAX_AUDIO_DEV_LEN - 1) break; } uaudio_mixer_add_ctl(sc, &mix); } #ifdef UAUDIO_DEBUG Static const char * uaudio_get_terminal_name(int terminal_type) { static char tbuf[100]; switch (terminal_type) { /* USB terminal types */ case UAT_UNDEFINED: return "UAT_UNDEFINED"; case UAT_STREAM: return "UAT_STREAM"; case UAT_VENDOR: return "UAT_VENDOR"; /* input terminal types */ case UATI_UNDEFINED: return "UATI_UNDEFINED"; case UATI_MICROPHONE: return "UATI_MICROPHONE"; case UATI_DESKMICROPHONE: return "UATI_DESKMICROPHONE"; case UATI_PERSONALMICROPHONE: return "UATI_PERSONALMICROPHONE"; case UATI_OMNIMICROPHONE: return "UATI_OMNIMICROPHONE"; case UATI_MICROPHONEARRAY: return "UATI_MICROPHONEARRAY"; case UATI_PROCMICROPHONEARR: return "UATI_PROCMICROPHONEARR"; /* output terminal types */ case UATO_UNDEFINED: return "UATO_UNDEFINED"; case UATO_SPEAKER: return "UATO_SPEAKER"; case UATO_HEADPHONES: return "UATO_HEADPHONES"; case UATO_DISPLAYAUDIO: return "UATO_DISPLAYAUDIO"; case UATO_DESKTOPSPEAKER: return "UATO_DESKTOPSPEAKER"; case UATO_ROOMSPEAKER: return "UATO_ROOMSPEAKER"; case UATO_COMMSPEAKER: return "UATO_COMMSPEAKER"; case UATO_SUBWOOFER: return "UATO_SUBWOOFER"; /* bidir terminal types */ case UATB_UNDEFINED: return "UATB_UNDEFINED"; case UATB_HANDSET: return "UATB_HANDSET"; case UATB_HEADSET: return "UATB_HEADSET"; case UATB_SPEAKERPHONE: return "UATB_SPEAKERPHONE"; case UATB_SPEAKERPHONEESUP: return "UATB_SPEAKERPHONEESUP"; case UATB_SPEAKERPHONEECANC: return "UATB_SPEAKERPHONEECANC"; /* telephony terminal types */ case UATT_UNDEFINED: return "UATT_UNDEFINED"; case UATT_PHONELINE: return "UATT_PHONELINE"; case UATT_TELEPHONE: return "UATT_TELEPHONE"; case UATT_DOWNLINEPHONE: return "UATT_DOWNLINEPHONE"; /* external terminal types */ case UATE_UNDEFINED: return "UATE_UNDEFINED"; case UATE_ANALOGCONN: return "UATE_ANALOGCONN"; case UATE_LINECONN: return "UATE_LINECONN"; case UATE_LEGACYCONN: return "UATE_LEGACYCONN"; case UATE_DIGITALAUIFC: return "UATE_DIGITALAUIFC"; case UATE_SPDIF: return "UATE_SPDIF"; case UATE_1394DA: return "UATE_1394DA"; case UATE_1394DV: return "UATE_1394DV"; /* embedded function terminal types */ case UATF_UNDEFINED: return "UATF_UNDEFINED"; case UATF_CALIBNOISE: return "UATF_CALIBNOISE"; case UATF_EQUNOISE: return "UATF_EQUNOISE"; case UATF_CDPLAYER: return "UATF_CDPLAYER"; case UATF_DAT: return "UATF_DAT"; case UATF_DCC: return "UATF_DCC"; case UATF_MINIDISK: return "UATF_MINIDISK"; case UATF_ANALOGTAPE: return "UATF_ANALOGTAPE"; case UATF_PHONOGRAPH: return "UATF_PHONOGRAPH"; case UATF_VCRAUDIO: return "UATF_VCRAUDIO"; case UATF_VIDEODISCAUDIO: return "UATF_VIDEODISCAUDIO"; case UATF_DVDAUDIO: return "UATF_DVDAUDIO"; case UATF_TVTUNERAUDIO: return "UATF_TVTUNERAUDIO"; case UATF_SATELLITE: return "UATF_SATELLITE"; case UATF_CABLETUNER: return "UATF_CABLETUNER"; case UATF_DSS: return "UATF_DSS"; case UATF_RADIORECV: return "UATF_RADIORECV"; case UATF_RADIOXMIT: return "UATF_RADIOXMIT"; case UATF_MULTITRACK: return "UATF_MULTITRACK"; case UATF_SYNTHESIZER: return "UATF_SYNTHESIZER"; default: snprintf(tbuf, sizeof(tbuf), "unknown type (0x%.4x)", terminal_type); return tbuf; } } #endif Static int uaudio_determine_class(const struct io_terminal *iot, struct mixerctl *mix) { int terminal_type; if (iot == NULL || iot->output == NULL) { mix->class = UAC_OUTPUT; return 0; } terminal_type = 0; if (iot->output->size == 1) terminal_type = iot->output->terminals[0]; /* * If the only output terminal is USB, * the class is UAC_RECORD. */ if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) { mix->class = UAC_RECORD; if (iot->inputs_size == 1 && iot->inputs[0] != NULL && iot->inputs[0]->size == 1) return iot->inputs[0]->terminals[0]; else return 0; } /* * If the ultimate destination of the unit is just one output * terminal and the unit is connected to the output terminal * directly, the class is UAC_OUTPUT. */ if (terminal_type != 0 && iot->direct) { mix->class = UAC_OUTPUT; return terminal_type; } /* * If the unit is connected to just one input terminal, * the class is UAC_INPUT. */ if (iot->inputs_size == 1 && iot->inputs[0] != NULL && iot->inputs[0]->size == 1) { mix->class = UAC_INPUT; return iot->inputs[0]->terminals[0]; } /* * Otherwise, the class is UAC_OUTPUT. */ mix->class = UAC_OUTPUT; return terminal_type; } Static const char * uaudio_feature_name(const struct io_terminal *iot, struct mixerctl *mix) { int terminal_type; terminal_type = uaudio_determine_class(iot, mix); if (mix->class == UAC_RECORD && terminal_type == 0) return AudioNmixerout; DPRINTF("terminal_type=%s\n", uaudio_get_terminal_name(terminal_type)); switch (terminal_type) { case UAT_STREAM: return AudioNdac; case UATI_MICROPHONE: case UATI_DESKMICROPHONE: case UATI_PERSONALMICROPHONE: case UATI_OMNIMICROPHONE: case UATI_MICROPHONEARRAY: case UATI_PROCMICROPHONEARR: return AudioNmicrophone; case UATO_SPEAKER: case UATO_DESKTOPSPEAKER: case UATO_ROOMSPEAKER: case UATO_COMMSPEAKER: return AudioNspeaker; case UATO_HEADPHONES: return AudioNheadphone; case UATO_SUBWOOFER: return AudioNlfe; /* telephony terminal types */ case UATT_UNDEFINED: case UATT_PHONELINE: case UATT_TELEPHONE: case UATT_DOWNLINEPHONE: return "phone"; case UATE_ANALOGCONN: case UATE_LINECONN: case UATE_LEGACYCONN: return AudioNline; case UATE_DIGITALAUIFC: case UATE_SPDIF: case UATE_1394DA: case UATE_1394DV: return AudioNaux; case UATF_CDPLAYER: return AudioNcd; case UATF_SYNTHESIZER: return AudioNfmsynth; case UATF_VIDEODISCAUDIO: case UATF_DVDAUDIO: case UATF_TVTUNERAUDIO: return AudioNvideo; case UAT_UNDEFINED: case UAT_VENDOR: case UATI_UNDEFINED: /* output terminal types */ case UATO_UNDEFINED: case UATO_DISPLAYAUDIO: /* bidir terminal types */ case UATB_UNDEFINED: case UATB_HANDSET: case UATB_HEADSET: case UATB_SPEAKERPHONE: case UATB_SPEAKERPHONEESUP: case UATB_SPEAKERPHONEECANC: /* external terminal types */ case UATE_UNDEFINED: /* embedded function terminal types */ case UATF_UNDEFINED: case UATF_CALIBNOISE: case UATF_EQUNOISE: case UATF_DAT: case UATF_DCC: case UATF_MINIDISK: case UATF_ANALOGTAPE: case UATF_PHONOGRAPH: case UATF_VCRAUDIO: case UATF_SATELLITE: case UATF_CABLETUNER: case UATF_DSS: case UATF_RADIORECV: case UATF_RADIOXMIT: case UATF_MULTITRACK: case 0xffff: default: DPRINTF("'master' for 0x%.4x\n", terminal_type); return AudioNmaster; } return AudioNmaster; } Static void uaudio_add_feature(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_feature_unit *d; const uByte *ctls; int ctlsize; int nchan; u_int fumask, mmask, cmask; struct mixerctl mix; int chan, ctl, i, unit; const char *mixername; #define GET(i) (ctls[(i)*ctlsize] | \ (ctlsize > 1 ? ctls[(i)*ctlsize+1] << 8 : 0)) d = iot[id].d.fu; ctls = d->bmaControls; ctlsize = d->bControlSize; if (ctlsize == 0) { DPRINTF("ignoring feature %d with controlSize of zero\n", id); return; } nchan = (d->bLength - 7) / ctlsize; mmask = GET(0); /* Figure out what we can control */ for (cmask = 0, chan = 1; chan < nchan; chan++) { DPRINTFN(9,"chan=%d mask=%x\n", chan, GET(chan)); cmask |= GET(chan); } DPRINTFN(1,"bUnitId=%d, " "%d channels, mmask=0x%04x, cmask=0x%04x\n", d->bUnitId, nchan, mmask, cmask); if (nchan > MIX_MAX_CHAN) nchan = MIX_MAX_CHAN; unit = d->bUnitId; mix.wIndex = MAKE(unit, sc->sc_ac_iface); for (ctl = MUTE_CONTROL; ctl < LOUDNESS_CONTROL; ctl++) { fumask = FU_MASK(ctl); DPRINTFN(4,"ctl=%d fumask=0x%04x\n", ctl, fumask); if (mmask & fumask) { mix.nchan = 1; mix.wValue[0] = MAKE(ctl, 0); } else if (cmask & fumask) { mix.nchan = nchan - 1; for (i = 1; i < nchan; i++) { if (GET(i) & fumask) mix.wValue[i-1] = MAKE(ctl, i); else mix.wValue[i-1] = -1; } } else { continue; } #undef GET mixername = uaudio_feature_name(&iot[id], &mix); switch (ctl) { case MUTE_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNmute); break; case VOLUME_CONTROL: mix.type = MIX_SIGNED_16; mix.ctlunit = AudioNvolume; strlcpy(mix.ctlname, mixername, sizeof(mix.ctlname)); break; case BASS_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNbass; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNbass); break; case MID_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNmid; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNmid); break; case TREBLE_CONTROL: mix.type = MIX_SIGNED_8; mix.ctlunit = AudioNtreble; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNtreble); break; case GRAPHIC_EQUALIZER_CONTROL: continue; /* XXX don't add anything */ break; case AGC_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNagc); break; case DELAY_CONTROL: mix.type = MIX_UNSIGNED_16; mix.ctlunit = "4 ms"; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNdelay); break; case BASS_BOOST_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNbassboost); break; case LOUDNESS_CONTROL: mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "%s.%s", mixername, AudioNloudness); break; } uaudio_mixer_add_ctl(sc, &mix); } } Static void uaudio_add_processing_updown(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_processing_unit *d; const struct usb_audio_processing_unit_1 *d1; const struct usb_audio_processing_unit_updown *ud; struct mixerctl mix; int i; d = iot[id].d.pu; d1 = (const struct usb_audio_processing_unit_1 *) &d->baSourceId[d->bNrInPins]; ud = (const struct usb_audio_processing_unit_updown *) &d1->bmControls[d1->bControlSize]; DPRINTFN(2,"bUnitId=%d bNrModes=%d\n", d->bUnitId, ud->bNrModes); if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) { DPRINTF("%s", "no mode select\n"); return; } mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UD_MODE_SELECT_CONTROL, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; /* XXX */ mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d-mode", d->bUnitId); for (i = 0; i < ud->bNrModes; i++) { DPRINTFN(2,"i=%d bm=0x%x\n", i, UGETW(ud->waModes[i])); /* XXX */ } uaudio_mixer_add_ctl(sc, &mix); } Static void uaudio_add_processing(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_processing_unit *d; const struct usb_audio_processing_unit_1 *d1; int ptype; struct mixerctl mix; d = iot[id].d.pu; d1 = (const struct usb_audio_processing_unit_1 *) &d->baSourceId[d->bNrInPins]; ptype = UGETW(d->wProcessType); DPRINTFN(2,"wProcessType=%d bUnitId=%d " "bNrInPins=%d\n", ptype, d->bUnitId, d->bNrInPins); if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(XX_ENABLE_CONTROL, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d.%d-enable", d->bUnitId, ptype); uaudio_mixer_add_ctl(sc, &mix); } switch(ptype) { case UPDOWNMIX_PROCESS: uaudio_add_processing_updown(sc, iot, id); break; case DOLBY_PROLOGIC_PROCESS: case P3D_STEREO_EXTENDER_PROCESS: case REVERBATION_PROCESS: case CHORUS_PROCESS: case DYN_RANGE_COMP_PROCESS: default: #ifdef UAUDIO_DEBUG aprint_debug( "uaudio_add_processing: unit %d, type=%d not impl.\n", d->bUnitId, ptype); #endif break; } } Static void uaudio_add_extension(struct uaudio_softc *sc, const struct io_terminal *iot, int id) { const struct usb_audio_extension_unit *d; const struct usb_audio_extension_unit_1 *d1; struct mixerctl mix; d = iot[id].d.eu; d1 = (const struct usb_audio_extension_unit_1 *) &d->baSourceId[d->bNrInPins]; DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n", d->bUnitId, d->bNrInPins); if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_XU) return; if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) { mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface); mix.nchan = 1; mix.wValue[0] = MAKE(UA_EXT_ENABLE, 0); uaudio_determine_class(&iot[id], &mix); mix.type = MIX_ON_OFF; mix.ctlunit = ""; snprintf(mix.ctlname, sizeof(mix.ctlname), "ext%d-enable", d->bUnitId); uaudio_mixer_add_ctl(sc, &mix); } } Static struct terminal_list* uaudio_merge_terminal_list(const struct io_terminal *iot) { struct terminal_list *tml; uint16_t *ptm; int i, len; len = 0; if (iot->inputs == NULL) return NULL; for (i = 0; i < iot->inputs_size; i++) { if (iot->inputs[i] != NULL) len += iot->inputs[i]->size; } tml = malloc(TERMINAL_LIST_SIZE(len), M_TEMP, M_NOWAIT); if (tml == NULL) { aprint_error("uaudio_merge_terminal_list: no memory\n"); return NULL; } tml->size = 0; ptm = tml->terminals; for (i = 0; i < iot->inputs_size; i++) { if (iot->inputs[i] == NULL) continue; if (iot->inputs[i]->size > len) break; memcpy(ptm, iot->inputs[i]->terminals, iot->inputs[i]->size * sizeof(uint16_t)); tml->size += iot->inputs[i]->size; ptm += iot->inputs[i]->size; len -= iot->inputs[i]->size; } return tml; } Static struct terminal_list * uaudio_io_terminaltype(int outtype, struct io_terminal *iot, int id) { struct terminal_list *tml; struct io_terminal *it; int src_id, i; it = &iot[id]; if (it->output != NULL) { /* already has outtype? */ for (i = 0; i < it->output->size; i++) if (it->output->terminals[i] == outtype) return uaudio_merge_terminal_list(it); tml = malloc(TERMINAL_LIST_SIZE(it->output->size + 1), M_TEMP, M_NOWAIT); if (tml == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return uaudio_merge_terminal_list(it); } memcpy(tml, it->output, TERMINAL_LIST_SIZE(it->output->size)); tml->terminals[it->output->size] = outtype; tml->size++; free(it->output, M_TEMP); it->output = tml; if (it->inputs != NULL) { for (i = 0; i < it->inputs_size; i++) if (it->inputs[i] != NULL) free(it->inputs[i], M_TEMP); free(it->inputs, M_TEMP); } it->inputs_size = 0; it->inputs = NULL; } else { /* end `iot[id] != NULL' */ it->inputs_size = 0; it->inputs = NULL; it->output = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); if (it->output == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return NULL; } it->output->terminals[0] = outtype; it->output->size = 1; it->direct = FALSE; } switch (it->d.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return NULL; } tml = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT); if (tml == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); free(it->inputs, M_TEMP); it->inputs = NULL; return NULL; } it->inputs[0] = tml; tml->terminals[0] = UGETW(it->d.it->wTerminalType); tml->size = 1; it->inputs_size = 1; return uaudio_merge_terminal_list(it); case UDESCSUB_AC_FEATURE: src_id = it->d.fu->bSourceId; it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return uaudio_io_terminaltype(outtype, iot, src_id); } it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size = 1; return uaudio_merge_terminal_list(it); case UDESCSUB_AC_OUTPUT: it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT); if (it->inputs == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return NULL; } src_id = it->d.ot->bSourceId; it->inputs[0] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size = 1; iot[src_id].direct = TRUE; return NULL; case UDESCSUB_AC_MIXER: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.mu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.mu->bNrInPins; i++) { src_id = it->d.mu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_SELECTOR: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.su->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.su->bNrInPins; i++) { src_id = it->d.su->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_PROCESSING: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.pu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.pu->bNrInPins; i++) { src_id = it->d.pu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_EXTENSION: it->inputs_size = 0; it->inputs = malloc(sizeof(struct terminal_list *) * it->d.eu->bNrInPins, M_TEMP, M_NOWAIT); if (it->inputs == NULL) { aprint_error("uaudio_io_terminaltype: no memory\n"); return NULL; } for (i = 0; i < it->d.eu->bNrInPins; i++) { src_id = it->d.eu->baSourceId[i]; it->inputs[i] = uaudio_io_terminaltype(outtype, iot, src_id); it->inputs_size++; } return uaudio_merge_terminal_list(it); case UDESCSUB_AC_HEADER: default: return NULL; } } Static usbd_status uaudio_identify(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { usbd_status err; err = uaudio_identify_ac(sc, cdesc); if (err) return err; return uaudio_identify_as(sc, cdesc); } Static void uaudio_add_alt(struct uaudio_softc *sc, const struct as_info *ai) { size_t len; struct as_info *nai; len = sizeof(*ai) * (sc->sc_nalts + 1); nai = kmem_alloc(len, KM_SLEEP); /* Copy old data, if there was any */ if (sc->sc_nalts != 0) { memcpy(nai, sc->sc_alts, sizeof(*ai) * (sc->sc_nalts)); kmem_free(sc->sc_alts, sizeof(*ai) * sc->sc_nalts); } sc->sc_alts = nai; DPRINTFN(2,"adding alt=%d, enc=%d\n", ai->alt, ai->encoding); sc->sc_alts[sc->sc_nalts++] = *ai; } Static usbd_status uaudio_process_as(struct uaudio_softc *sc, const char *tbuf, int *offsp, int size, const usb_interface_descriptor_t *id) #define offs (*offsp) { const struct usb_audio_streaming_interface_descriptor *asid; const struct usb_audio_streaming_type1_descriptor *asf1d; const usb_endpoint_descriptor_audio_t *ed; const usb_endpoint_descriptor_audio_t *epdesc1; const struct usb_audio_streaming_endpoint_descriptor *sed; int format, chan __unused, prec, enc; int dir, type, sync; struct as_info ai; const char *format_str __unused; asid = (const void *)(tbuf + offs); if (asid->bDescriptorType != UDESC_CS_INTERFACE || asid->bDescriptorSubtype != AS_GENERAL) return USBD_INVAL; DPRINTF("asid: bTerminakLink=%d wFormatTag=%d\n", asid->bTerminalLink, UGETW(asid->wFormatTag)); offs += asid->bLength; if (offs > size) return USBD_INVAL; asf1d = (const void *)(tbuf + offs); if (asf1d->bDescriptorType != UDESC_CS_INTERFACE || asf1d->bDescriptorSubtype != FORMAT_TYPE) return USBD_INVAL; offs += asf1d->bLength; if (offs > size) return USBD_INVAL; if (asf1d->bFormatType != FORMAT_TYPE_I) { aprint_error_dev(sc->sc_dev, "ignored setting with type %d format\n", UGETW(asid->wFormatTag)); return USBD_NORMAL_COMPLETION; } ed = (const void *)(tbuf + offs); if (ed->bDescriptorType != UDESC_ENDPOINT) return USBD_INVAL; DPRINTF("endpoint[0] bLength=%d bDescriptorType=%d " "bEndpointAddress=%d bmAttributes=0x%x wMaxPacketSize=%d " "bInterval=%d bRefresh=%d bSynchAddress=%d\n", ed->bLength, ed->bDescriptorType, ed->bEndpointAddress, ed->bmAttributes, UGETW(ed->wMaxPacketSize), ed->bInterval, ed->bRefresh, ed->bSynchAddress); offs += ed->bLength; if (offs > size) return USBD_INVAL; if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS) return USBD_INVAL; dir = UE_GET_DIR(ed->bEndpointAddress); type = UE_GET_ISO_TYPE(ed->bmAttributes); if ((usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_INP_ASYNC) && dir == UE_DIR_IN && type == UE_ISO_ADAPT) type = UE_ISO_ASYNC; /* We can't handle endpoints that need a sync pipe yet. */ sync = FALSE; if (dir == UE_DIR_IN && type == UE_ISO_ADAPT) { sync = TRUE; #ifndef UAUDIO_MULTIPLE_ENDPOINTS aprint_error_dev(sc->sc_dev, "ignored input endpoint of type adaptive\n"); return USBD_NORMAL_COMPLETION; #endif } if (dir != UE_DIR_IN && type == UE_ISO_ASYNC) { sync = TRUE; #ifndef UAUDIO_MULTIPLE_ENDPOINTS aprint_error_dev(sc->sc_dev, "ignored output endpoint of type async\n"); return USBD_NORMAL_COMPLETION; #endif } sed = (const void *)(tbuf + offs); if (sed->bDescriptorType != UDESC_CS_ENDPOINT || sed->bDescriptorSubtype != AS_GENERAL) return USBD_INVAL; DPRINTF(" streadming_endpoint: offset=%d bLength=%d\n", offs, sed->bLength); offs += sed->bLength; if (offs > size) return USBD_INVAL; #ifdef UAUDIO_MULTIPLE_ENDPOINTS if (sync && id->bNumEndpoints <= 1) { aprint_error_dev(sc->sc_dev, "a sync-pipe endpoint but no other endpoint\n"); return USBD_INVAL; } #endif if (!sync && id->bNumEndpoints > 1) { aprint_error_dev(sc->sc_dev, "non sync-pipe endpoint but multiple endpoints\n"); return USBD_INVAL; } epdesc1 = NULL; if (id->bNumEndpoints > 1) { epdesc1 = (const void*)(tbuf + offs); if (epdesc1->bDescriptorType != UDESC_ENDPOINT) return USBD_INVAL; DPRINTF("endpoint[1] bLength=%d " "bDescriptorType=%d bEndpointAddress=%d " "bmAttributes=0x%x wMaxPacketSize=%d bInterval=%d " "bRefresh=%d bSynchAddress=%d\n", epdesc1->bLength, epdesc1->bDescriptorType, epdesc1->bEndpointAddress, epdesc1->bmAttributes, UGETW(epdesc1->wMaxPacketSize), epdesc1->bInterval, epdesc1->bRefresh, epdesc1->bSynchAddress); offs += epdesc1->bLength; if (offs > size) return USBD_INVAL; if (epdesc1->bSynchAddress != 0) { aprint_error_dev(sc->sc_dev, "invalid endpoint: bSynchAddress=0\n"); return USBD_INVAL; } if (UE_GET_XFERTYPE(epdesc1->bmAttributes) != UE_ISOCHRONOUS) { aprint_error_dev(sc->sc_dev, "invalid endpoint: bmAttributes=0x%x\n", epdesc1->bmAttributes); return USBD_INVAL; } if (epdesc1->bEndpointAddress != ed->bSynchAddress) { aprint_error_dev(sc->sc_dev, "invalid endpoint addresses: " "ep[0]->bSynchAddress=0x%x " "ep[1]->bEndpointAddress=0x%x\n", ed->bSynchAddress, epdesc1->bEndpointAddress); return USBD_INVAL; } /* UE_GET_ADDR(epdesc1->bEndpointAddress), and epdesc1->bRefresh */ } format = UGETW(asid->wFormatTag); chan = asf1d->bNrChannels; prec = asf1d->bBitResolution; if (prec != 8 && prec != 16 && prec != 24) { aprint_error_dev(sc->sc_dev, "ignored setting with precision %d\n", prec); return USBD_NORMAL_COMPLETION; } switch (format) { case UA_FMT_PCM: if (prec == 8) { sc->sc_altflags |= HAS_8; } else if (prec == 16) { sc->sc_altflags |= HAS_16; } else if (prec == 24) { sc->sc_altflags |= HAS_24; } enc = AUDIO_ENCODING_SLINEAR_LE; format_str = "pcm"; break; case UA_FMT_PCM8: enc = AUDIO_ENCODING_ULINEAR_LE; sc->sc_altflags |= HAS_8U; format_str = "pcm8"; break; case UA_FMT_ALAW: enc = AUDIO_ENCODING_ALAW; sc->sc_altflags |= HAS_ALAW; format_str = "alaw"; break; case UA_FMT_MULAW: enc = AUDIO_ENCODING_ULAW; sc->sc_altflags |= HAS_MULAW; format_str = "mulaw"; break; case UA_FMT_IEEE_FLOAT: default: aprint_error_dev(sc->sc_dev, "ignored setting with format %d\n", format); return USBD_NORMAL_COMPLETION; } #ifdef UAUDIO_DEBUG aprint_debug_dev(sc->sc_dev, "%s: %dch, %d/%dbit, %s,", dir == UE_DIR_IN ? "recording" : "playback", chan, prec, asf1d->bSubFrameSize * 8, format_str); if (asf1d->bSamFreqType == UA_SAMP_CONTNUOUS) { aprint_debug(" %d-%dHz\n", UA_SAMP_LO(asf1d), UA_SAMP_HI(asf1d)); } else { int r; aprint_debug(" %d", UA_GETSAMP(asf1d, 0)); for (r = 1; r < asf1d->bSamFreqType; r++) aprint_debug(",%d", UA_GETSAMP(asf1d, r)); aprint_debug("Hz\n"); } #endif ai.alt = id->bAlternateSetting; ai.encoding = enc; ai.attributes = sed->bmAttributes; ai.idesc = id; ai.edesc = ed; ai.edesc1 = epdesc1; ai.asf1desc = asf1d; ai.sc_busy = 0; ai.aformat = NULL; ai.ifaceh = NULL; uaudio_add_alt(sc, &ai); #ifdef UAUDIO_DEBUG if (ai.attributes & UA_SED_FREQ_CONTROL) DPRINTFN(1, "%s", "FREQ_CONTROL\n"); if (ai.attributes & UA_SED_PITCH_CONTROL) DPRINTFN(1, "%s", "PITCH_CONTROL\n"); #endif sc->sc_mode |= (dir == UE_DIR_OUT) ? AUMODE_PLAY : AUMODE_RECORD; return USBD_NORMAL_COMPLETION; } #undef offs Static usbd_status uaudio_identify_as(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { const usb_interface_descriptor_t *id; const char *tbuf; struct audio_format *auf; const struct usb_audio_streaming_type1_descriptor *t1desc; int size, offs; int i, j; size = UGETW(cdesc->wTotalLength); tbuf = (const char *)cdesc; /* Locate the AudioStreaming interface descriptor. */ offs = 0; id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOSTREAM); if (id == NULL) return USBD_INVAL; /* Loop through all the alternate settings. */ while (offs <= size) { DPRINTFN(2, "interface=%d offset=%d\n", id->bInterfaceNumber, offs); switch (id->bNumEndpoints) { case 0: DPRINTFN(2, "AS null alt=%d\n", id->bAlternateSetting); sc->sc_nullalt = id->bAlternateSetting; break; case 1: #ifdef UAUDIO_MULTIPLE_ENDPOINTS case 2: #endif uaudio_process_as(sc, tbuf, &offs, size, id); break; default: aprint_error_dev(sc->sc_dev, "ignored audio interface with %d endpoints\n", id->bNumEndpoints); break; } id = uaudio_find_iface(tbuf, size, &offs,UISUBCLASS_AUDIOSTREAM); if (id == NULL) break; } if (offs > size) return USBD_INVAL; DPRINTF("%d alts available\n", sc->sc_nalts); if (sc->sc_mode == 0) { aprint_error_dev(sc->sc_dev, "no usable endpoint found\n"); return USBD_INVAL; } /* build audio_format array */ sc->sc_formats = kmem_alloc(sizeof(struct audio_format) * sc->sc_nalts, KM_SLEEP); sc->sc_nformats = sc->sc_nalts; for (i = 0; i < sc->sc_nalts; i++) { auf = &sc->sc_formats[i]; t1desc = sc->sc_alts[i].asf1desc; auf->driver_data = NULL; if (UE_GET_DIR(sc->sc_alts[i].edesc->bEndpointAddress) == UE_DIR_OUT) auf->mode = AUMODE_PLAY; else auf->mode = AUMODE_RECORD; auf->encoding = sc->sc_alts[i].encoding; auf->validbits = t1desc->bBitResolution; auf->precision = t1desc->bSubFrameSize * 8; auf->channels = t1desc->bNrChannels; auf->channel_mask = sc->sc_channel_config; auf->frequency_type = t1desc->bSamFreqType; if (t1desc->bSamFreqType == UA_SAMP_CONTNUOUS) { auf->frequency[0] = UA_SAMP_LO(t1desc); auf->frequency[1] = UA_SAMP_HI(t1desc); } else { for (j = 0; j < t1desc->bSamFreqType; j++) { if (j >= AUFMT_MAX_FREQUENCIES) { aprint_error("%s: please increase " "AUFMT_MAX_FREQUENCIES to %d\n", __func__, t1desc->bSamFreqType); auf->frequency_type = AUFMT_MAX_FREQUENCIES; break; } auf->frequency[j] = UA_GETSAMP(t1desc, j); } } sc->sc_alts[i].aformat = auf; } if (0 != auconv_create_encodings(sc->sc_formats, sc->sc_nformats, &sc->sc_encodings)) { kmem_free(sc->sc_formats, sizeof(struct audio_format) * sc->sc_nformats); sc->sc_formats = NULL; return ENOMEM; } return USBD_NORMAL_COMPLETION; } #ifdef UAUDIO_DEBUG Static void uaudio_dump_tml(struct terminal_list *tml) { if (tml == NULL) { printf("NULL"); } else { int i; for (i = 0; i < tml->size; i++) printf("%s ", uaudio_get_terminal_name (tml->terminals[i])); } printf("\n"); } #endif Static usbd_status uaudio_identify_ac(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc) { struct io_terminal* iot; const usb_interface_descriptor_t *id; const struct usb_audio_control_descriptor *acdp; const uaudio_cs_descriptor_t *dp; const struct usb_audio_output_terminal *pot; struct terminal_list *tml; const char *tbuf, *ibuf, *ibufend; int size, offs, ndps, i, j; size = UGETW(cdesc->wTotalLength); tbuf = (const char *)cdesc; /* Locate the AudioControl interface descriptor. */ offs = 0; id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOCONTROL); if (id == NULL) return USBD_INVAL; if (offs + sizeof(*acdp) > size) return USBD_INVAL; sc->sc_ac_iface = id->bInterfaceNumber; DPRINTFN(2,"AC interface is %d\n", sc->sc_ac_iface); /* A class-specific AC interface header should follow. */ ibuf = tbuf + offs; ibufend = tbuf + size; acdp = (const struct usb_audio_control_descriptor *)ibuf; if (acdp->bDescriptorType != UDESC_CS_INTERFACE || acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER) return USBD_INVAL; if (!(usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_BAD_ADC) && UGETW(acdp->bcdADC) != UAUDIO_VERSION) return USBD_INVAL; sc->sc_audio_rev = UGETW(acdp->bcdADC); DPRINTFN(2, "found AC header, vers=%03x\n", sc->sc_audio_rev); sc->sc_nullalt = -1; /* Scan through all the AC specific descriptors */ dp = (const uaudio_cs_descriptor_t *)ibuf; ndps = 0; iot = malloc(sizeof(struct io_terminal) * 256, M_TEMP, M_NOWAIT | M_ZERO); if (iot == NULL) { aprint_error("%s: no memory\n", __func__); return USBD_NOMEM; } for (;;) { ibuf += dp->bLength; if (ibuf >= ibufend) break; dp = (const uaudio_cs_descriptor_t *)ibuf; if (ibuf + dp->bLength > ibufend) { free(iot, M_TEMP); return USBD_INVAL; } if (dp->bDescriptorType != UDESC_CS_INTERFACE) break; i = ((const struct usb_audio_input_terminal *)dp)->bTerminalId; iot[i].d.desc = dp; if (i > ndps) ndps = i; } ndps++; /* construct io_terminal */ for (i = 0; i < ndps; i++) { dp = iot[i].d.desc; if (dp == NULL) continue; if (dp->bDescriptorSubtype != UDESCSUB_AC_OUTPUT) continue; pot = iot[i].d.ot; tml = uaudio_io_terminaltype(UGETW(pot->wTerminalType), iot, i); if (tml != NULL) free(tml, M_TEMP); } #ifdef UAUDIO_DEBUG for (i = 0; i < 256; i++) { struct usb_audio_cluster cluster; if (iot[i].d.desc == NULL) continue; printf("id %d:\t", i); switch (iot[i].d.desc->bDescriptorSubtype) { case UDESCSUB_AC_INPUT: printf("AC_INPUT type=%s\n", uaudio_get_terminal_name (UGETW(iot[i].d.it->wTerminalType))); printf("\t"); cluster = uaudio_get_cluster(i, iot); uaudio_dump_cluster(&cluster); printf("\n"); break; case UDESCSUB_AC_OUTPUT: printf("AC_OUTPUT type=%s ", uaudio_get_terminal_name (UGETW(iot[i].d.ot->wTerminalType))); printf("src=%d\n", iot[i].d.ot->bSourceId); break; case UDESCSUB_AC_MIXER: printf("AC_MIXER src="); for (j = 0; j < iot[i].d.mu->bNrInPins; j++) printf("%d ", iot[i].d.mu->baSourceId[j]); printf("\n\t"); cluster = uaudio_get_cluster(i, iot); uaudio_dump_cluster(&cluster); printf("\n"); break; case UDESCSUB_AC_SELECTOR: printf("AC_SELECTOR src="); for (j = 0; j < iot[i].d.su->bNrInPins; j++) printf("%d ", iot[i].d.su->baSourceId[j]); printf("\n"); break; case UDESCSUB_AC_FEATURE: printf("AC_FEATURE src=%d\n", iot[i].d.fu->bSourceId); break; case UDESCSUB_AC_PROCESSING: printf("AC_PROCESSING src="); for (j = 0; j < iot[i].d.pu->bNrInPins; j++) printf("%d ", iot[i].d.pu->baSourceId[j]); printf("\n\t"); cluster = uaudio_get_cluster(i, iot); uaudio_dump_cluster(&cluster); printf("\n"); break; case UDESCSUB_AC_EXTENSION: printf("AC_EXTENSION src="); for (j = 0; j < iot[i].d.eu->bNrInPins; j++) printf("%d ", iot[i].d.eu->baSourceId[j]); printf("\n\t"); cluster = uaudio_get_cluster(i, iot); uaudio_dump_cluster(&cluster); printf("\n"); break; default: printf("unknown audio control (subtype=%d)\n", iot[i].d.desc->bDescriptorSubtype); } for (j = 0; j < iot[i].inputs_size; j++) { printf("\tinput%d: ", j); uaudio_dump_tml(iot[i].inputs[j]); } printf("\toutput: "); uaudio_dump_tml(iot[i].output); } #endif for (i = 0; i < ndps; i++) { dp = iot[i].d.desc; if (dp == NULL) continue; DPRINTF("id=%d subtype=%d\n", i, dp->bDescriptorSubtype); switch (dp->bDescriptorSubtype) { case UDESCSUB_AC_HEADER: aprint_error("uaudio_identify_ac: unexpected AC header\n"); break; case UDESCSUB_AC_INPUT: uaudio_add_input(sc, iot, i); break; case UDESCSUB_AC_OUTPUT: uaudio_add_output(sc, iot, i); break; case UDESCSUB_AC_MIXER: uaudio_add_mixer(sc, iot, i); break; case UDESCSUB_AC_SELECTOR: uaudio_add_selector(sc, iot, i); break; case UDESCSUB_AC_FEATURE: uaudio_add_feature(sc, iot, i); break; case UDESCSUB_AC_PROCESSING: uaudio_add_processing(sc, iot, i); break; case UDESCSUB_AC_EXTENSION: uaudio_add_extension(sc, iot, i); break; default: aprint_error( "uaudio_identify_ac: bad AC desc subtype=0x%02x\n", dp->bDescriptorSubtype); break; } } /* delete io_terminal */ for (i = 0; i < 256; i++) { if (iot[i].d.desc == NULL) continue; if (iot[i].inputs != NULL) { for (j = 0; j < iot[i].inputs_size; j++) { if (iot[i].inputs[j] != NULL) free(iot[i].inputs[j], M_TEMP); } free(iot[i].inputs, M_TEMP); } if (iot[i].output != NULL) free(iot[i].output, M_TEMP); iot[i].d.desc = NULL; } free(iot, M_TEMP); return USBD_NORMAL_COMPLETION; } Static int uaudio_query_devinfo(void *addr, mixer_devinfo_t *mi) { struct uaudio_softc *sc; struct mixerctl *mc; int n, nctls, i; DPRINTFN(7, "index=%d\n", mi->index); sc = addr; if (sc->sc_dying) return EIO; n = mi->index; nctls = sc->sc_nctls; switch (n) { case UAC_OUTPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_OUTPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCoutputs, sizeof(mi->label.name)); return 0; case UAC_INPUT: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_INPUT; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCinputs, sizeof(mi->label.name)); return 0; case UAC_EQUAL: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_EQUAL; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCequalization, sizeof(mi->label.name)); return 0; case UAC_RECORD: mi->type = AUDIO_MIXER_CLASS; mi->mixer_class = UAC_RECORD; mi->next = mi->prev = AUDIO_MIXER_LAST; strlcpy(mi->label.name, AudioCrecord, sizeof(mi->label.name)); return 0; default: break; } n -= UAC_NCLASSES; if (n < 0 || n >= nctls) return ENXIO; mc = &sc->sc_ctls[n]; strlcpy(mi->label.name, mc->ctlname, sizeof(mi->label.name)); mi->mixer_class = mc->class; mi->next = mi->prev = AUDIO_MIXER_LAST; /* XXX */ switch (mc->type) { case MIX_ON_OFF: mi->type = AUDIO_MIXER_ENUM; mi->un.e.num_mem = 2; strlcpy(mi->un.e.member[0].label.name, AudioNoff, sizeof(mi->un.e.member[0].label.name)); mi->un.e.member[0].ord = 0; strlcpy(mi->un.e.member[1].label.name, AudioNon, sizeof(mi->un.e.member[1].label.name)); mi->un.e.member[1].ord = 1; break; case MIX_SELECTOR: mi->type = AUDIO_MIXER_ENUM; mi->un.e.num_mem = mc->maxval - mc->minval + 1; for (i = 0; i <= mc->maxval - mc->minval; i++) { snprintf(mi->un.e.member[i].label.name, sizeof(mi->un.e.member[i].label.name), "%d", i + mc->minval); mi->un.e.member[i].ord = i + mc->minval; } break; default: mi->type = AUDIO_MIXER_VALUE; strncpy(mi->un.v.units.name, mc->ctlunit, MAX_AUDIO_DEV_LEN); mi->un.v.num_channels = mc->nchan; mi->un.v.delta = mc->delta; break; } return 0; } Static int uaudio_open(void *addr, int flags) { struct uaudio_softc *sc; sc = addr; DPRINTF("sc=%p\n", sc); if (sc->sc_dying) return EIO; if ((flags & FWRITE) && !(sc->sc_mode & AUMODE_PLAY)) return EACCES; if ((flags & FREAD) && !(sc->sc_mode & AUMODE_RECORD)) return EACCES; return 0; } /* * Close function is called at splaudio(). */ Static void uaudio_close(void *addr) { } Static int uaudio_drain(void *addr) { struct uaudio_softc *sc = addr; KASSERT(mutex_owned(&sc->sc_intr_lock)); kpause("uaudiodr", false, mstohz(UAUDIO_NCHANBUFS * UAUDIO_NFRAMES), &sc->sc_intr_lock); return 0; } Static int uaudio_halt_out_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF("%s", "enter\n"); mutex_exit(&sc->sc_intr_lock); if (sc->sc_playchan.pipe != NULL) { uaudio_chan_abort(sc, &sc->sc_playchan); uaudio_chan_free_buffers(sc, &sc->sc_playchan); uaudio_chan_close(sc, &sc->sc_playchan); sc->sc_playchan.intr = NULL; } mutex_enter(&sc->sc_intr_lock); return 0; } Static int uaudio_halt_in_dma(void *addr) { struct uaudio_softc *sc = addr; DPRINTF("%s", "enter\n"); mutex_exit(&sc->sc_intr_lock); if (sc->sc_recchan.pipe != NULL) { uaudio_chan_abort(sc, &sc->sc_recchan); uaudio_chan_free_buffers(sc, &sc->sc_recchan); uaudio_chan_close(sc, &sc->sc_recchan); sc->sc_recchan.intr = NULL; } mutex_enter(&sc->sc_intr_lock); return 0; } Static int uaudio_getdev(void *addr, struct audio_device *retp) { struct uaudio_softc *sc; DPRINTF("%s", "\n"); sc = addr; if (sc->sc_dying) return EIO; *retp = sc->sc_adev; return 0; } /* * Make sure the block size is large enough to hold all outstanding transfers. */ Static int uaudio_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param) { struct uaudio_softc *sc; int b; sc = addr; DPRINTF("blk=%d mode=%s\n", blk, mode == AUMODE_PLAY ? "AUMODE_PLAY" : "AUMODE_RECORD"); /* chan.bytes_per_frame can be 0. */ if (mode == AUMODE_PLAY || sc->sc_recchan.bytes_per_frame <= 0) { b = param->sample_rate * UAUDIO_NFRAMES * UAUDIO_NCHANBUFS; /* * This does not make accurate value in the case * of b % USB_FRAMES_PER_SECOND != 0 */ b /= USB_FRAMES_PER_SECOND; b *= param->precision / 8 * param->channels; } else { /* * use wMaxPacketSize in bytes_per_frame. * See uaudio_set_params() and uaudio_chan_init() */ b = sc->sc_recchan.bytes_per_frame * UAUDIO_NFRAMES * UAUDIO_NCHANBUFS; } if (b <= 0) b = 1; blk = blk <= b ? b : blk / b * b; #ifdef DIAGNOSTIC if (blk <= 0) { aprint_debug("uaudio_round_blocksize: blk=%d\n", blk); blk = 512; } #endif DPRINTF("resultant blk=%d\n", blk); return blk; } Static int uaudio_get_props(void *addr) { return AUDIO_PROP_FULLDUPLEX | AUDIO_PROP_INDEPENDENT; } Static void uaudio_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) { struct uaudio_softc *sc; sc = addr; *intr = &sc->sc_intr_lock; *thread = &sc->sc_lock; } Static int uaudio_get(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len) { usb_device_request_t req; uint8_t data[4]; usbd_status err; int val; if (wValue == -1) return 0; req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); DPRINTFN(2,"type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d\n", type, which, wValue, wIndex, len); err = usbd_do_request(sc->sc_udev, &req, data); if (err) { DPRINTF("err=%s\n", usbd_errstr(err)); return -1; } switch (len) { case 1: val = data[0]; break; case 2: val = data[0] | (data[1] << 8); break; default: DPRINTF("bad length=%d\n", len); return -1; } DPRINTFN(2,"val=%d\n", val); return val; } Static void uaudio_set(struct uaudio_softc *sc, int which, int type, int wValue, int wIndex, int len, int val) { usb_device_request_t req; uint8_t data[4]; int err __unused; if (wValue == -1) return; req.bmRequestType = type; req.bRequest = which; USETW(req.wValue, wValue); USETW(req.wIndex, wIndex); USETW(req.wLength, len); switch (len) { case 1: data[0] = val; break; case 2: data[0] = val; data[1] = val >> 8; break; default: return; } DPRINTFN(2,"type=0x%02x req=0x%02x wValue=0x%04x " "wIndex=0x%04x len=%d, val=%d\n", type, which, wValue, wIndex, len, val & 0xffff); err = usbd_do_request(sc->sc_udev, &req, data); #ifdef UAUDIO_DEBUG if (err) DPRINTF("err=%d\n", err); #endif } Static int uaudio_signext(int type, int val) { if (!MIX_UNSIGNED(type)) { if (MIX_SIZE(type) == 2) val = (int16_t)val; else val = (int8_t)val; } return val; } Static int uaudio_value2bsd(struct mixerctl *mc, int val) { DPRINTFN(5, "type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval); if (mc->type == MIX_ON_OFF) { val = (val != 0); } else if (mc->type == MIX_SELECTOR) { if (val < mc->minval || val > mc->maxval) val = mc->minval; } else val = ((uaudio_signext(mc->type, val) - mc->minval) * 255 + mc->mul/2) / mc->mul; DPRINTFN_CLEAN(5, "val'=%d\n", val); return val; } int uaudio_bsd2value(struct mixerctl *mc, int val) { DPRINTFN(5,"type=%03x val=%d min=%d max=%d ", mc->type, val, mc->minval, mc->maxval); if (mc->type == MIX_ON_OFF) { val = (val != 0); } else if (mc->type == MIX_SELECTOR) { if (val < mc->minval || val > mc->maxval) val = mc->minval; } else val = (val + mc->delta/2) * mc->mul / 255 + mc->minval; DPRINTFN_CLEAN(5, "val'=%d\n", val); return val; } Static int uaudio_ctl_get(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan) { int val; DPRINTFN(5,"which=%d chan=%d\n", which, chan); mutex_exit(&sc->sc_lock); val = uaudio_get(sc, which, UT_READ_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type)); mutex_enter(&sc->sc_lock); return uaudio_value2bsd(mc, val); } Static void uaudio_ctl_set(struct uaudio_softc *sc, int which, struct mixerctl *mc, int chan, int val) { val = uaudio_bsd2value(mc, val); mutex_exit(&sc->sc_lock); uaudio_set(sc, which, UT_WRITE_CLASS_INTERFACE, mc->wValue[chan], mc->wIndex, MIX_SIZE(mc->type), val); mutex_enter(&sc->sc_lock); } Static int uaudio_mixer_get_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN], val; DPRINTFN(2, "index=%d\n", cp->dev); sc = addr; if (sc->sc_dying) return EIO; n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return ENXIO; mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); } else if (mc->type == MIX_SELECTOR) { if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; cp->un.ord = uaudio_ctl_get(sc, GET_CUR, mc, 0); } else { if (cp->type != AUDIO_MIXER_VALUE) return EINVAL; if (cp->un.value.num_channels != 1 && cp->un.value.num_channels != mc->nchan) return EINVAL; for (i = 0; i < mc->nchan; i++) vals[i] = uaudio_ctl_get(sc, GET_CUR, mc, i); if (cp->un.value.num_channels == 1 && mc->nchan != 1) { for (val = 0, i = 0; i < mc->nchan; i++) val += vals[i]; vals[0] = val / mc->nchan; } for (i = 0; i < cp->un.value.num_channels; i++) cp->un.value.level[i] = vals[i]; } return 0; } Static int uaudio_mixer_set_port(void *addr, mixer_ctrl_t *cp) { struct uaudio_softc *sc; struct mixerctl *mc; int i, n, vals[MIX_MAX_CHAN]; DPRINTFN(2, "index = %d\n", cp->dev); sc = addr; if (sc->sc_dying) return EIO; n = cp->dev - UAC_NCLASSES; if (n < 0 || n >= sc->sc_nctls) return ENXIO; mc = &sc->sc_ctls[n]; if (mc->type == MIX_ON_OFF) { if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); } else if (mc->type == MIX_SELECTOR) { if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; uaudio_ctl_set(sc, SET_CUR, mc, 0, cp->un.ord); } else { if (cp->type != AUDIO_MIXER_VALUE) return EINVAL; if (cp->un.value.num_channels == 1) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[0]; else if (cp->un.value.num_channels == mc->nchan) for (i = 0; i < mc->nchan; i++) vals[i] = cp->un.value.level[i]; else return EINVAL; for (i = 0; i < mc->nchan; i++) uaudio_ctl_set(sc, SET_CUR, mc, i, vals[i]); } return 0; } Static int uaudio_trigger_input(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, const audio_params_t *param) { struct uaudio_softc *sc; struct chan *ch; usbd_status err; int i; sc = addr; if (sc->sc_dying) return EIO; DPRINTFN(3, "sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize); ch = &sc->sc_recchan; uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3, "sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction); mutex_exit(&sc->sc_intr_lock); mutex_exit(&sc->sc_lock); err = uaudio_chan_open(sc, ch); if (err) { mutex_enter(&sc->sc_lock); mutex_enter(&sc->sc_intr_lock); return EIO; } err = uaudio_chan_alloc_buffers(sc, ch); if (err) { uaudio_chan_close(sc, ch); mutex_enter(&sc->sc_lock); mutex_enter(&sc->sc_intr_lock); return EIO; } ch->intr = intr; ch->arg = arg; /* * Start as half as many channels for recording as for playback. * This stops playback from stuttering in full-duplex operation. */ for (i = 0; i < UAUDIO_NCHANBUFS / 2; i++) { uaudio_chan_rtransfer(ch); } mutex_enter(&sc->sc_lock); mutex_enter(&sc->sc_intr_lock); return 0; } Static int uaudio_trigger_output(void *addr, void *start, void *end, int blksize, void (*intr)(void *), void *arg, const audio_params_t *param) { struct uaudio_softc *sc; struct chan *ch; usbd_status err; int i; sc = addr; if (sc->sc_dying) return EIO; DPRINTFN(3, "sc=%p start=%p end=%p " "blksize=%d\n", sc, start, end, blksize); ch = &sc->sc_playchan; uaudio_chan_set_param(ch, start, end, blksize); DPRINTFN(3, "sample_size=%d bytes/frame=%d " "fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame, ch->fraction); mutex_exit(&sc->sc_intr_lock); mutex_exit(&sc->sc_lock); err = uaudio_chan_open(sc, ch); if (err) { mutex_enter(&sc->sc_lock); mutex_enter(&sc->sc_intr_lock); return EIO; } err = uaudio_chan_alloc_buffers(sc, ch); if (err) { uaudio_chan_close(sc, ch); mutex_enter(&sc->sc_lock); mutex_enter(&sc->sc_intr_lock); return EIO; } ch->intr = intr; ch->arg = arg; for (i = 0; i < UAUDIO_NCHANBUFS; i++) uaudio_chan_ptransfer(ch); mutex_enter(&sc->sc_lock); mutex_enter(&sc->sc_intr_lock); return 0; } /* Set up a pipe for a channel. */ Static usbd_status uaudio_chan_open(struct uaudio_softc *sc, struct chan *ch) { struct as_info *as; usb_device_descriptor_t *ddesc; int endpt; usbd_status err; as = &sc->sc_alts[ch->altidx]; endpt = as->edesc->bEndpointAddress; DPRINTF("endpt=0x%02x, speed=%d, alt=%d\n", endpt, ch->sample_rate, as->alt); /* Set alternate interface corresponding to the mode. */ err = usbd_set_interface(as->ifaceh, as->alt); if (err) return err; /* * Roland SD-90 freezes by a SAMPLING_FREQ_CONTROL request. */ ddesc = usbd_get_device_descriptor(sc->sc_udev); if ((UGETW(ddesc->idVendor) != USB_VENDOR_ROLAND) && (UGETW(ddesc->idProduct) != USB_PRODUCT_ROLAND_SD90)) { err = uaudio_set_speed(sc, endpt, ch->sample_rate); if (err) { DPRINTF("set_speed failed err=%s\n", usbd_errstr(err)); } } DPRINTF("create pipe to 0x%02x\n", endpt); err = usbd_open_pipe(as->ifaceh, endpt, USBD_MPSAFE, &ch->pipe); if (err) return err; if (as->edesc1 != NULL) { endpt = as->edesc1->bEndpointAddress; DPRINTF("create sync-pipe to 0x%02x\n", endpt); err = usbd_open_pipe(as->ifaceh, endpt, USBD_MPSAFE, &ch->sync_pipe); } return err; } Static void uaudio_chan_abort(struct uaudio_softc *sc, struct chan *ch) { struct usbd_pipe *pipe; struct as_info *as; as = &sc->sc_alts[ch->altidx]; as->sc_busy = 0; AUFMT_VALIDATE(as->aformat); if (sc->sc_nullalt >= 0) { DPRINTF("set null alt=%d\n", sc->sc_nullalt); usbd_set_interface(as->ifaceh, sc->sc_nullalt); } pipe = ch->pipe; if (pipe) { usbd_abort_pipe(pipe); } pipe = ch->sync_pipe; if (pipe) { usbd_abort_pipe(pipe); } } Static void uaudio_chan_close(struct uaudio_softc *sc, struct chan *ch) { struct usbd_pipe *pipe; pipe = atomic_swap_ptr(&ch->pipe, NULL); if (pipe) { usbd_close_pipe(pipe); } pipe = atomic_swap_ptr(&ch->sync_pipe, NULL); if (pipe) { usbd_close_pipe(pipe); } } Static usbd_status uaudio_chan_alloc_buffers(struct uaudio_softc *sc, struct chan *ch) { int i, size; size = (ch->bytes_per_frame + ch->sample_size) * UAUDIO_NFRAMES; for (i = 0; i < UAUDIO_NCHANBUFS; i++) { struct usbd_xfer *xfer; int err = usbd_create_xfer(ch->pipe, size, 0, UAUDIO_NFRAMES, &xfer); if (err) goto bad; ch->chanbufs[i].xfer = xfer; ch->chanbufs[i].buffer = usbd_get_buffer(xfer); ch->chanbufs[i].chan = ch; } return USBD_NORMAL_COMPLETION; bad: while (--i >= 0) /* implicit buffer free */ usbd_destroy_xfer(ch->chanbufs[i].xfer); return USBD_NOMEM; } Static void uaudio_chan_free_buffers(struct uaudio_softc *sc, struct chan *ch) { int i; for (i = 0; i < UAUDIO_NCHANBUFS; i++) usbd_destroy_xfer(ch->chanbufs[i].xfer); } Static void uaudio_chan_ptransfer(struct chan *ch) { struct chanbuf *cb; int i, n, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < UAUDIO_NFRAMES; i++) { size = ch->bytes_per_frame; residue += ch->fraction; if (residue >= USB_FRAMES_PER_SECOND) { if ((ch->sc->sc_altflags & UA_NOFRAC) == 0) size += ch->sample_size; residue -= USB_FRAMES_PER_SECOND; } cb->sizes[i] = size; total += size; } ch->residue = residue; cb->size = total; /* * Transfer data from upper layer buffer to channel buffer, taking * care of wrapping the upper layer buffer. */ n = min(total, ch->end - ch->cur); memcpy(cb->buffer, ch->cur, n); ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; if (total > n) { total -= n; memcpy(cb->buffer + n, ch->cur, total); ch->cur += total; } #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF("buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue); for (i = 0; i < UAUDIO_NFRAMES; i++) { DPRINTF(" [%d] length %d\n", i, cb->sizes[i]); } } #endif //DPRINTFN(5, "ptransfer xfer=%p\n", cb->xfer); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, cb, cb->sizes, UAUDIO_NFRAMES, 0, uaudio_chan_pintr); (void)usbd_transfer(cb->xfer); } Static void uaudio_chan_pintr(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct chanbuf *cb; struct chan *ch; uint32_t count; cb = priv; ch = cb->chan; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5, "count=%d, transferred=%d\n", count, ch->transferred); #ifdef DIAGNOSTIC if (count != cb->size) { aprint_error("uaudio_chan_pintr: count(%d) != size(%d)\n", count, cb->size); } #endif mutex_enter(&ch->sc->sc_intr_lock); ch->transferred += cb->size; /* Call back to upper layer */ while (ch->transferred >= ch->blksize) { ch->transferred -= ch->blksize; DPRINTFN(5, "call %p(%p)\n", ch->intr, ch->arg); ch->intr(ch->arg); } mutex_exit(&ch->sc->sc_intr_lock); /* start next transfer */ uaudio_chan_ptransfer(ch); } Static void uaudio_chan_rtransfer(struct chan *ch) { struct chanbuf *cb; int i, size, residue, total; if (ch->sc->sc_dying) return; /* Pick the next channel buffer. */ cb = &ch->chanbufs[ch->curchanbuf]; if (++ch->curchanbuf >= UAUDIO_NCHANBUFS) ch->curchanbuf = 0; /* Compute the size of each frame in the next transfer. */ residue = ch->residue; total = 0; for (i = 0; i < UAUDIO_NFRAMES; i++) { size = ch->bytes_per_frame; cb->sizes[i] = size; cb->offsets[i] = total; total += size; } ch->residue = residue; cb->size = total; #ifdef UAUDIO_DEBUG if (uaudiodebug > 8) { DPRINTF("buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue); for (i = 0; i < UAUDIO_NFRAMES; i++) { DPRINTF(" [%d] length %d\n", i, cb->sizes[i]); } } #endif DPRINTFN(5, "transfer xfer=%p\n", cb->xfer); /* Fill the request */ usbd_setup_isoc_xfer(cb->xfer, cb, cb->sizes, UAUDIO_NFRAMES, 0, uaudio_chan_rintr); (void)usbd_transfer(cb->xfer); } Static void uaudio_chan_rintr(struct usbd_xfer *xfer, void *priv, usbd_status status) { struct chanbuf *cb; struct chan *ch; uint32_t count; int i, n, frsize; cb = priv; ch = cb->chan; /* Return if we are aborting. */ if (status == USBD_CANCELLED) return; usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL); DPRINTFN(5, "count=%d, transferred=%d\n", count, ch->transferred); /* count < cb->size is normal for asynchronous source */ #ifdef DIAGNOSTIC if (count > cb->size) { aprint_error("uaudio_chan_rintr: count(%d) > size(%d)\n", count, cb->size); } #endif /* * Transfer data from channel buffer to upper layer buffer, taking * care of wrapping the upper layer buffer. */ for (i = 0; i < UAUDIO_NFRAMES; i++) { frsize = cb->sizes[i]; n = min(frsize, ch->end - ch->cur); memcpy(ch->cur, cb->buffer + cb->offsets[i], n); ch->cur += n; if (ch->cur >= ch->end) ch->cur = ch->start; if (frsize > n) { memcpy(ch->cur, cb->buffer + cb->offsets[i] + n, frsize - n); ch->cur += frsize - n; } } /* Call back to upper layer */ mutex_enter(&ch->sc->sc_intr_lock); ch->transferred += count; while (ch->transferred >= ch->blksize) { ch->transferred -= ch->blksize; DPRINTFN(5, "call %p(%p)\n", ch->intr, ch->arg); ch->intr(ch->arg); } mutex_exit(&ch->sc->sc_intr_lock); /* start next transfer */ uaudio_chan_rtransfer(ch); } Static void uaudio_chan_init(struct chan *ch, int altidx, const struct audio_params *param, int maxpktsize) { int samples_per_frame, sample_size; ch->altidx = altidx; sample_size = param->precision * param->channels / 8; samples_per_frame = param->sample_rate / USB_FRAMES_PER_SECOND; ch->sample_size = sample_size; ch->sample_rate = param->sample_rate; if (maxpktsize == 0) { ch->fraction = param->sample_rate % USB_FRAMES_PER_SECOND; ch->bytes_per_frame = samples_per_frame * sample_size; } else { ch->fraction = 0; ch->bytes_per_frame = maxpktsize; } ch->residue = 0; } Static void uaudio_chan_set_param(struct chan *ch, u_char *start, u_char *end, int blksize) { ch->start = start; ch->end = end; ch->cur = start; ch->blksize = blksize; ch->transferred = 0; ch->curchanbuf = 0; } Static int uaudio_set_params(void *addr, int setmode, int usemode, struct audio_params *play, struct audio_params *rec, stream_filter_list_t *pfil, stream_filter_list_t *rfil) { struct uaudio_softc *sc; int paltidx, raltidx; struct audio_params *p; stream_filter_list_t *fil; int mode, i; sc = addr; paltidx = -1; raltidx = -1; if (sc->sc_dying) return EIO; if (((usemode & AUMODE_PLAY) && sc->sc_playchan.pipe != NULL) || ((usemode & AUMODE_RECORD) && sc->sc_recchan.pipe != NULL)) return EBUSY; if ((usemode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) { sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 0; AUFMT_VALIDATE(sc->sc_alts[sc->sc_playchan.altidx].aformat); } if ((usemode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) { sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 0; AUFMT_VALIDATE(sc->sc_alts[sc->sc_recchan.altidx].aformat); } /* Some uaudio devices are unidirectional. Don't try to find a matching mode for the unsupported direction. */ setmode &= sc->sc_mode; for (mode = AUMODE_RECORD; mode != -1; mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { if ((setmode & mode) == 0) continue; if (mode == AUMODE_PLAY) { p = play; fil = pfil; } else { p = rec; fil = rfil; } i = auconv_set_converter(sc->sc_formats, sc->sc_nformats, mode, p, TRUE, fil); if (i < 0) return EINVAL; if (mode == AUMODE_PLAY) paltidx = i; else raltidx = i; } if ((setmode & AUMODE_PLAY)) { p = pfil->req_size > 0 ? &pfil->filters[0].param : play; /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_playchan, paltidx, p, 0); } if ((setmode & AUMODE_RECORD)) { p = rfil->req_size > 0 ? &rfil->filters[0].param : rec; /* XXX abort transfer if currently happening? */ uaudio_chan_init(&sc->sc_recchan, raltidx, p, UGETW(sc->sc_alts[raltidx].edesc->wMaxPacketSize)); } if ((usemode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) { sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 1; AUFMT_INVALIDATE(sc->sc_alts[sc->sc_playchan.altidx].aformat); } if ((usemode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) { sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 1; AUFMT_INVALIDATE(sc->sc_alts[sc->sc_recchan.altidx].aformat); } DPRINTF("use altidx=p%d/r%d, altno=p%d/r%d\n", sc->sc_playchan.altidx, sc->sc_recchan.altidx, (sc->sc_playchan.altidx >= 0) ?sc->sc_alts[sc->sc_playchan.altidx].idesc->bAlternateSetting : -1, (sc->sc_recchan.altidx >= 0) ? sc->sc_alts[sc->sc_recchan.altidx].idesc->bAlternateSetting : -1); return 0; } Static usbd_status uaudio_set_speed(struct uaudio_softc *sc, int endpt, u_int speed) { usb_device_request_t req; usbd_status err; uint8_t data[3]; DPRINTFN(5, "endpt=%d speed=%u\n", endpt, speed); req.bmRequestType = UT_WRITE_CLASS_ENDPOINT; req.bRequest = SET_CUR; USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0); USETW(req.wIndex, endpt); USETW(req.wLength, 3); data[0] = speed; data[1] = speed >> 8; data[2] = speed >> 16; err = usbd_do_request(sc->sc_udev, &req, data); return err; } #ifdef _MODULE MODULE(MODULE_CLASS_DRIVER, uaudio, NULL); static const struct cfiattrdata audiobuscf_iattrdata = { "audiobus", 0, { { NULL, NULL, 0 }, } }; static const struct cfiattrdata * const uaudio_attrs[] = { &audiobuscf_iattrdata, NULL }; CFDRIVER_DECL(uaudio, DV_DULL, uaudio_attrs); extern struct cfattach uaudio_ca; static int uaudioloc[6/*USBIFIFCF_NLOCS*/] = { -1/*USBIFIFCF_PORT_DEFAULT*/, -1/*USBIFIFCF_CONFIGURATION_DEFAULT*/, -1/*USBIFIFCF_INTERFACE_DEFAULT*/, -1/*USBIFIFCF_VENDOR_DEFAULT*/, -1/*USBIFIFCF_PRODUCT_DEFAULT*/, -1/*USBIFIFCF_RELEASE_DEFAULT*/}; static struct cfparent uhubparent = { "usbifif", NULL, DVUNIT_ANY }; static struct cfdata uaudio_cfdata[] = { { .cf_name = "uaudio", .cf_atname = "uaudio", .cf_unit = 0, .cf_fstate = FSTATE_STAR, .cf_loc = uaudioloc, .cf_flags = 0, .cf_pspec = &uhubparent, }, { NULL } }; static int uaudio_modcmd(modcmd_t cmd, void *arg) { int err; switch (cmd) { case MODULE_CMD_INIT: err = config_cfdriver_attach(&uaudio_cd); if (err) { return err; } err = config_cfattach_attach("uaudio", &uaudio_ca); if (err) { config_cfdriver_detach(&uaudio_cd); return err; } err = config_cfdata_attach(uaudio_cfdata, 1); if (err) { config_cfattach_detach("uaudio", &uaudio_ca); config_cfdriver_detach(&uaudio_cd); return err; } return 0; case MODULE_CMD_FINI: err = config_cfdata_detach(uaudio_cfdata); if (err) return err; config_cfattach_detach("uaudio", &uaudio_ca); config_cfdriver_detach(&uaudio_cd); return 0; default: return ENOTTY; } } #endif