/* $NetBSD: usb.c,v 1.165.6.6 2020/05/31 10:27:26 martin Exp $ */ /* * Copyright (c) 1998, 2002, 2008, 2012 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Lennart Augustsson (lennart@augustsson.net) at * Carlstedt Research & Technology and Matthew R. Green (mrg@eterna.com.au). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * USB specifications and other documentation can be found at * http://www.usb.org/developers/docs/ and * http://www.usb.org/developers/devclass_docs/ */ #include __KERNEL_RCSID(0, "$NetBSD: usb.c,v 1.165.6.6 2020/05/31 10:27:26 martin Exp $"); #ifdef _KERNEL_OPT #include "opt_usb.h" #include "opt_compat_netbsd.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(USB_DEBUG) #ifndef USBHIST_SIZE #define USBHIST_SIZE 50000 #endif static struct kern_history_ent usbhistbuf[USBHIST_SIZE]; USBHIST_DEFINE(usbhist) = KERNHIST_INITIALIZER(usbhist, usbhistbuf); #endif #define USB_DEV_MINOR 255 #ifdef USB_DEBUG /* * 0 - do usual exploration * 1 - do not use timeout exploration * >1 - do no exploration */ int usb_noexplore = 0; int usbdebug = 0; SYSCTL_SETUP(sysctl_hw_usb_setup, "sysctl hw.usb setup") { int err; const struct sysctlnode *rnode; const struct sysctlnode *cnode; err = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "usb", SYSCTL_DESCR("usb global controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL); if (err) goto fail; /* control debugging printfs */ err = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &usbdebug, sizeof(usbdebug), CTL_CREATE, CTL_EOL); if (err) goto fail; return; fail: aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err); } #else #define usb_noexplore 0 #endif #define DPRINTF(FMT,A,B,C,D) USBHIST_LOG(usbdebug,FMT,A,B,C,D) #define DPRINTFN(N,FMT,A,B,C,D) USBHIST_LOGN(usbdebug,N,FMT,A,B,C,D) struct usb_softc { #if 0 device_t sc_dev; /* base device */ #endif struct usbd_bus *sc_bus; /* USB controller */ struct usbd_port sc_port; /* dummy port for root hub */ struct lwp *sc_event_thread; char sc_dying; bool sc_pmf_registered; }; struct usb_taskq { TAILQ_HEAD(, usb_task) tasks; kmutex_t lock; kcondvar_t cv; struct lwp *task_thread_lwp; const char *name; struct usb_task *current_task; }; static struct usb_taskq usb_taskq[USB_NUM_TASKQS]; dev_type_open(usbopen); dev_type_close(usbclose); dev_type_read(usbread); dev_type_ioctl(usbioctl); dev_type_poll(usbpoll); dev_type_kqfilter(usbkqfilter); const struct cdevsw usb_cdevsw = { .d_open = usbopen, .d_close = usbclose, .d_read = usbread, .d_write = nowrite, .d_ioctl = usbioctl, .d_stop = nostop, .d_tty = notty, .d_poll = usbpoll, .d_mmap = nommap, .d_kqfilter = usbkqfilter, .d_discard = nodiscard, .d_flag = D_OTHER }; Static void usb_discover(struct usb_softc *); Static void usb_create_event_thread(device_t); Static void usb_event_thread(void *); Static void usb_task_thread(void *); /* * Count of USB busses */ int nusbbusses = 0; #define USB_MAX_EVENTS 100 struct usb_event_q { struct usb_event ue; SIMPLEQ_ENTRY(usb_event_q) next; }; Static SIMPLEQ_HEAD(, usb_event_q) usb_events = SIMPLEQ_HEAD_INITIALIZER(usb_events); Static int usb_nevents = 0; Static struct selinfo usb_selevent; Static kmutex_t usb_event_lock; Static kcondvar_t usb_event_cv; /* XXX this is gross and broken */ Static proc_t *usb_async_proc; /* process that wants USB SIGIO */ Static void *usb_async_sih; Static int usb_dev_open = 0; Static struct usb_event *usb_alloc_event(void); Static void usb_free_event(struct usb_event *); Static void usb_add_event(int, struct usb_event *); Static int usb_get_next_event(struct usb_event *); Static void usb_async_intr(void *); Static void usb_soft_intr(void *); #ifdef COMPAT_30 Static void usb_copy_old_devinfo(struct usb_device_info_old *, const struct usb_device_info *); #endif Static const char *usbrev_str[] = USBREV_STR; static int usb_match(device_t, cfdata_t, void *); static void usb_attach(device_t, device_t, void *); static int usb_detach(device_t, int); static int usb_activate(device_t, enum devact); static void usb_childdet(device_t, device_t); static int usb_once_init(void); static void usb_doattach(device_t); extern struct cfdriver usb_cd; CFATTACH_DECL3_NEW(usb, sizeof(struct usb_softc), usb_match, usb_attach, usb_detach, usb_activate, NULL, usb_childdet, DVF_DETACH_SHUTDOWN); static const char *taskq_names[] = USB_TASKQ_NAMES; int usb_match(device_t parent, cfdata_t match, void *aux) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); return UMATCH_GENERIC; } void usb_attach(device_t parent, device_t self, void *aux) { static ONCE_DECL(init_control); struct usb_softc *sc = device_private(self); int usbrev; sc->sc_bus = aux; usbrev = sc->sc_bus->ub_revision; cv_init(&sc->sc_bus->ub_needsexplore_cv, "usbevt"); sc->sc_pmf_registered = false; aprint_naive("\n"); aprint_normal(": USB revision %s", usbrev_str[usbrev]); switch (usbrev) { case USBREV_1_0: case USBREV_1_1: case USBREV_2_0: case USBREV_3_0: case USBREV_3_1: break; default: aprint_error(", not supported\n"); sc->sc_dying = 1; return; } aprint_normal("\n"); /* XXX we should have our own level */ sc->sc_bus->ub_soft = softint_establish(SOFTINT_USB | SOFTINT_MPSAFE, usb_soft_intr, sc->sc_bus); if (sc->sc_bus->ub_soft == NULL) { aprint_error("%s: can't register softintr\n", device_xname(self)); sc->sc_dying = 1; return; } sc->sc_bus->ub_methods->ubm_getlock(sc->sc_bus, &sc->sc_bus->ub_lock); KASSERT(sc->sc_bus->ub_lock != NULL); RUN_ONCE(&init_control, usb_once_init); config_interrupts(self, usb_doattach); } static int usb_once_init(void) { struct usb_taskq *taskq; int i; USBHIST_LINK_STATIC(usbhist); selinit(&usb_selevent); mutex_init(&usb_event_lock, MUTEX_DEFAULT, IPL_NONE); cv_init(&usb_event_cv, "usbrea"); for (i = 0; i < USB_NUM_TASKQS; i++) { taskq = &usb_taskq[i]; TAILQ_INIT(&taskq->tasks); /* * Since USB task methods usb_{add,rem}_task are callable * from any context, we have to make this lock a spinlock. */ mutex_init(&taskq->lock, MUTEX_DEFAULT, IPL_USB); cv_init(&taskq->cv, "usbtsk"); taskq->name = taskq_names[i]; taskq->current_task = NULL; if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, usb_task_thread, taskq, &taskq->task_thread_lwp, "%s", taskq->name)) { printf("unable to create task thread: %s\n", taskq->name); panic("usb_create_event_thread task"); } /* * XXX we should make sure these threads are alive before * end up using them in usb_doattach(). */ } KASSERT(usb_async_sih == NULL); usb_async_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE, usb_async_intr, NULL); return 0; } static void usb_doattach(device_t self) { struct usb_softc *sc = device_private(self); struct usbd_device *dev; usbd_status err; int speed; struct usb_event *ue; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); /* Protected by KERNEL_LOCK */ nusbbusses++; sc->sc_bus->ub_usbctl = self; sc->sc_port.up_power = USB_MAX_POWER; switch (sc->sc_bus->ub_revision) { case USBREV_1_0: case USBREV_1_1: speed = USB_SPEED_FULL; break; case USBREV_2_0: speed = USB_SPEED_HIGH; break; case USBREV_3_0: speed = USB_SPEED_SUPER; break; case USBREV_3_1: speed = USB_SPEED_SUPER_PLUS; break; default: panic("usb_doattach"); } ue = usb_alloc_event(); ue->u.ue_ctrlr.ue_bus = device_unit(self); usb_add_event(USB_EVENT_CTRLR_ATTACH, ue); err = usbd_new_device(self, sc->sc_bus, 0, speed, 0, &sc->sc_port); if (!err) { dev = sc->sc_port.up_dev; if (dev->ud_hub == NULL) { sc->sc_dying = 1; aprint_error("%s: root device is not a hub\n", device_xname(self)); return; } sc->sc_bus->ub_roothub = dev; usb_create_event_thread(self); } else { aprint_error("%s: root hub problem, error=%s\n", device_xname(self), usbd_errstr(err)); sc->sc_dying = 1; } /* * Drop this reference after the first set of attachments in the * event thread. */ config_pending_incr(self); if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "couldn't establish power handler\n"); else sc->sc_pmf_registered = true; return; } void usb_create_event_thread(device_t self) { struct usb_softc *sc = device_private(self); if (kthread_create(PRI_NONE, KTHREAD_MPSAFE, NULL, usb_event_thread, sc, &sc->sc_event_thread, "%s", device_xname(self))) { printf("%s: unable to create event thread for\n", device_xname(self)); panic("usb_create_event_thread"); } } /* * Add a task to be performed by the task thread. This function can be * called from any context and the task will be executed in a process * context ASAP. */ void usb_add_task(struct usbd_device *dev, struct usb_task *task, int queue) { struct usb_taskq *taskq; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); KASSERT(0 <= queue); KASSERT(queue < USB_NUM_TASKQS); taskq = &usb_taskq[queue]; mutex_enter(&taskq->lock); if (atomic_cas_uint(&task->queue, USB_NUM_TASKQS, queue) == USB_NUM_TASKQS) { DPRINTFN(2, "task=%#jx", (uintptr_t)task, 0, 0, 0); TAILQ_INSERT_TAIL(&taskq->tasks, task, next); cv_signal(&taskq->cv); } else { DPRINTFN(2, "task=%#jx on q", (uintptr_t)task, 0, 0, 0); } mutex_exit(&taskq->lock); } /* * usb_rem_task(dev, task) * * If task is queued to run, remove it from the queue. * * Caller is _not_ guaranteed that the task is not running when * this is done. * * Never sleeps. */ void usb_rem_task(struct usbd_device *dev, struct usb_task *task) { unsigned queue; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); while ((queue = task->queue) != USB_NUM_TASKQS) { struct usb_taskq *taskq = &usb_taskq[queue]; mutex_enter(&taskq->lock); if (__predict_true(task->queue == queue)) { TAILQ_REMOVE(&taskq->tasks, task, next); task->queue = USB_NUM_TASKQS; mutex_exit(&taskq->lock); break; } mutex_exit(&taskq->lock); } } /* * usb_rem_task_wait(dev, task, queue, interlock) * * If task is scheduled to run, remove it from the queue. If it * may have already begun to run, drop interlock if not null, wait * for it to complete, and reacquire interlock if not null. * Return true if it successfully removed the task from the queue, * false if not. * * Caller MUST guarantee that task will not be scheduled on a * _different_ queue, at least until after this returns. * * If caller guarantees that task will not be scheduled on the * same queue before this returns, then caller is guaranteed that * the task is not running at all when this returns. * * May sleep. */ bool usb_rem_task_wait(struct usbd_device *dev, struct usb_task *task, int queue, kmutex_t *interlock) { struct usb_taskq *taskq; int queue1; bool removed; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); ASSERT_SLEEPABLE(); KASSERT(0 <= queue); KASSERT(queue < USB_NUM_TASKQS); taskq = &usb_taskq[queue]; mutex_enter(&taskq->lock); queue1 = task->queue; if (queue1 == USB_NUM_TASKQS) { /* * It is not on the queue. It may be about to run, or * it may have already finished running -- there is no * stopping it now. Wait for it if it is running. */ if (interlock) mutex_exit(interlock); while (taskq->current_task == task) cv_wait(&taskq->cv, &taskq->lock); removed = false; } else { /* * It is still on the queue. We can stop it before the * task thread will run it. */ KASSERTMSG(queue1 == queue, "task %p on q%d expected on q%d", task, queue1, queue); TAILQ_REMOVE(&taskq->tasks, task, next); task->queue = USB_NUM_TASKQS; removed = true; } mutex_exit(&taskq->lock); /* * If there's an interlock, and we dropped it to wait, * reacquire it. */ if (interlock && !removed) mutex_enter(interlock); return removed; } void usb_event_thread(void *arg) { struct usb_softc *sc = arg; struct usbd_bus *bus = sc->sc_bus; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); /* * In case this controller is a companion controller to an * EHCI controller we need to wait until the EHCI controller * has grabbed the port. * XXX It would be nicer to do this with a tsleep(), but I don't * know how to synchronize the creation of the threads so it * will work. */ usb_delay_ms(bus, 500); /* Make sure first discover does something. */ mutex_enter(bus->ub_lock); sc->sc_bus->ub_needsexplore = 1; usb_discover(sc); mutex_exit(bus->ub_lock); /* Drop the config_pending reference from attach. */ config_pending_decr(bus->ub_usbctl); mutex_enter(bus->ub_lock); while (!sc->sc_dying) { #if 0 /* not yet */ while (sc->sc_bus->ub_usepolling) kpause("usbpoll", true, hz, bus->ub_lock); #endif if (usb_noexplore < 2) usb_discover(sc); cv_timedwait(&bus->ub_needsexplore_cv, bus->ub_lock, usb_noexplore ? 0 : hz * 60); DPRINTFN(2, "sc %#jx woke up", (uintptr_t)sc, 0, 0, 0); } sc->sc_event_thread = NULL; /* In case parent is waiting for us to exit. */ cv_signal(&bus->ub_needsexplore_cv); mutex_exit(bus->ub_lock); DPRINTF("sc %#jx exit", (uintptr_t)sc, 0, 0, 0); kthread_exit(0); } void usb_task_thread(void *arg) { struct usb_task *task; struct usb_taskq *taskq; bool mpsafe; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); taskq = arg; DPRINTF("start taskq %#jx", (uintptr_t)taskq, 0, 0, 0); mutex_enter(&taskq->lock); for (;;) { task = TAILQ_FIRST(&taskq->tasks); if (task == NULL) { cv_wait(&taskq->cv, &taskq->lock); task = TAILQ_FIRST(&taskq->tasks); } DPRINTFN(2, "woke up task=%#jx", (uintptr_t)task, 0, 0, 0); if (task != NULL) { mpsafe = ISSET(task->flags, USB_TASKQ_MPSAFE); TAILQ_REMOVE(&taskq->tasks, task, next); task->queue = USB_NUM_TASKQS; taskq->current_task = task; mutex_exit(&taskq->lock); if (!mpsafe) KERNEL_LOCK(1, curlwp); task->fun(task->arg); /* Can't dereference task after this point. */ if (!mpsafe) KERNEL_UNLOCK_ONE(curlwp); mutex_enter(&taskq->lock); KASSERTMSG(taskq->current_task == task, "somebody scribbled on usb taskq %p", taskq); taskq->current_task = NULL; cv_broadcast(&taskq->cv); } } mutex_exit(&taskq->lock); } int usbctlprint(void *aux, const char *pnp) { /* only "usb"es can attach to host controllers */ if (pnp) aprint_normal("usb at %s", pnp); return UNCONF; } int usbopen(dev_t dev, int flag, int mode, struct lwp *l) { int unit = minor(dev); struct usb_softc *sc; if (nusbbusses == 0) return ENXIO; if (unit == USB_DEV_MINOR) { if (usb_dev_open) return EBUSY; usb_dev_open = 1; mutex_enter(proc_lock); usb_async_proc = 0; mutex_exit(proc_lock); return 0; } sc = device_lookup_private(&usb_cd, unit); if (!sc) return ENXIO; if (sc->sc_dying) return EIO; return 0; } int usbread(dev_t dev, struct uio *uio, int flag) { struct usb_event *ue; #ifdef COMPAT_30 struct usb_event_old *ueo = NULL; /* XXXGCC */ int useold = 0; #endif int error, n; if (minor(dev) != USB_DEV_MINOR) return ENXIO; switch (uio->uio_resid) { #ifdef COMPAT_30 case sizeof(struct usb_event_old): ueo = kmem_zalloc(sizeof(struct usb_event_old), KM_SLEEP); useold = 1; /* FALLTHRU */ #endif case sizeof(struct usb_event): ue = usb_alloc_event(); break; default: return EINVAL; } error = 0; mutex_enter(&usb_event_lock); for (;;) { n = usb_get_next_event(ue); if (n != 0) break; if (flag & IO_NDELAY) { error = EWOULDBLOCK; break; } error = cv_wait_sig(&usb_event_cv, &usb_event_lock); if (error) break; } mutex_exit(&usb_event_lock); if (!error) { #ifdef COMPAT_30 if (useold) { /* copy fields to old struct */ ueo->ue_type = ue->ue_type; memcpy(&ueo->ue_time, &ue->ue_time, sizeof(struct timespec)); switch (ue->ue_type) { case USB_EVENT_DEVICE_ATTACH: case USB_EVENT_DEVICE_DETACH: usb_copy_old_devinfo(&ueo->u.ue_device, &ue->u.ue_device); break; case USB_EVENT_CTRLR_ATTACH: case USB_EVENT_CTRLR_DETACH: ueo->u.ue_ctrlr.ue_bus=ue->u.ue_ctrlr.ue_bus; break; case USB_EVENT_DRIVER_ATTACH: case USB_EVENT_DRIVER_DETACH: ueo->u.ue_driver.ue_cookie=ue->u.ue_driver.ue_cookie; memcpy(ueo->u.ue_driver.ue_devname, ue->u.ue_driver.ue_devname, sizeof(ue->u.ue_driver.ue_devname)); break; default: ; } error = uiomove((void *)ueo, sizeof(*ueo), uio); } else #endif error = uiomove((void *)ue, sizeof(*ue), uio); } usb_free_event(ue); #ifdef COMPAT_30 if (useold) kmem_free(ueo, sizeof(struct usb_event_old)); #endif return error; } int usbclose(dev_t dev, int flag, int mode, struct lwp *l) { int unit = minor(dev); if (unit == USB_DEV_MINOR) { mutex_enter(proc_lock); usb_async_proc = 0; mutex_exit(proc_lock); usb_dev_open = 0; } return 0; } int usbioctl(dev_t devt, u_long cmd, void *data, int flag, struct lwp *l) { struct usb_softc *sc; int unit = minor(devt); USBHIST_FUNC(); USBHIST_CALLED(usbdebug); if (unit == USB_DEV_MINOR) { switch (cmd) { case FIONBIO: /* All handled in the upper FS layer. */ return 0; case FIOASYNC: mutex_enter(proc_lock); if (*(int *)data) usb_async_proc = l->l_proc; else usb_async_proc = 0; mutex_exit(proc_lock); return 0; default: return EINVAL; } } sc = device_lookup_private(&usb_cd, unit); if (sc->sc_dying) return EIO; int error = 0; DPRINTF("cmd %#jx", cmd, 0, 0, 0); switch (cmd) { #ifdef USB_DEBUG case USB_SETDEBUG: if (!(flag & FWRITE)) return EBADF; usbdebug = ((*(int *)data) & 0x000000ff); break; #endif /* USB_DEBUG */ case USB_REQUEST: { struct usb_ctl_request *ur = (void *)data; int len = UGETW(ur->ucr_request.wLength); struct iovec iov; struct uio uio; void *ptr = 0; int addr = ur->ucr_addr; usbd_status err; if (!(flag & FWRITE)) { error = EBADF; goto fail; } DPRINTF("USB_REQUEST addr=%jd len=%jd", addr, len, 0, 0); if (len < 0 || len > 32768) { error = EINVAL; goto fail; } if (addr < 0 || addr >= USB_MAX_DEVICES) { error = EINVAL; goto fail; } size_t dindex = usb_addr2dindex(addr); if (sc->sc_bus->ub_devices[dindex] == NULL) { error = EINVAL; goto fail; } if (len != 0) { iov.iov_base = (void *)ur->ucr_data; iov.iov_len = len; uio.uio_iov = &iov; uio.uio_iovcnt = 1; uio.uio_resid = len; uio.uio_offset = 0; uio.uio_rw = ur->ucr_request.bmRequestType & UT_READ ? UIO_READ : UIO_WRITE; uio.uio_vmspace = l->l_proc->p_vmspace; ptr = kmem_alloc(len, KM_SLEEP); if (uio.uio_rw == UIO_WRITE) { error = uiomove(ptr, len, &uio); if (error) goto ret; } } err = usbd_do_request_flags(sc->sc_bus->ub_devices[dindex], &ur->ucr_request, ptr, ur->ucr_flags, &ur->ucr_actlen, USBD_DEFAULT_TIMEOUT); if (err) { error = EIO; goto ret; } if (len > ur->ucr_actlen) len = ur->ucr_actlen; if (len != 0) { if (uio.uio_rw == UIO_READ) { error = uiomove(ptr, len, &uio); if (error) goto ret; } } ret: if (ptr) { len = UGETW(ur->ucr_request.wLength); kmem_free(ptr, len); } break; } case USB_DEVICEINFO: { struct usbd_device *dev; struct usb_device_info *di = (void *)data; int addr = di->udi_addr; if (addr < 0 || addr >= USB_MAX_DEVICES) { error = EINVAL; goto fail; } size_t dindex = usb_addr2dindex(addr); if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) { error = ENXIO; goto fail; } usbd_fill_deviceinfo(dev, di, 1); break; } #ifdef COMPAT_30 case USB_DEVICEINFO_OLD: { struct usbd_device *dev; struct usb_device_info_old *di = (void *)data; int addr = di->udi_addr; if (addr < 1 || addr >= USB_MAX_DEVICES) { error = EINVAL; goto fail; } size_t dindex = usb_addr2dindex(addr); if ((dev = sc->sc_bus->ub_devices[dindex]) == NULL) { error = ENXIO; goto fail; } usbd_fill_deviceinfo_old(dev, di, 1); break; } #endif case USB_DEVICESTATS: *(struct usb_device_stats *)data = sc->sc_bus->ub_stats; break; default: error = EINVAL; } fail: DPRINTF("... done (error = %jd)", error, 0, 0, 0); return error; } int usbpoll(dev_t dev, int events, struct lwp *l) { int revents, mask; if (minor(dev) == USB_DEV_MINOR) { revents = 0; mask = POLLIN | POLLRDNORM; mutex_enter(&usb_event_lock); if (events & mask && usb_nevents > 0) revents |= events & mask; if (revents == 0 && events & mask) selrecord(l, &usb_selevent); mutex_exit(&usb_event_lock); return revents; } else { return 0; } } static void filt_usbrdetach(struct knote *kn) { mutex_enter(&usb_event_lock); SLIST_REMOVE(&usb_selevent.sel_klist, kn, knote, kn_selnext); mutex_exit(&usb_event_lock); } static int filt_usbread(struct knote *kn, long hint) { if (usb_nevents == 0) return 0; kn->kn_data = sizeof(struct usb_event); return 1; } static const struct filterops usbread_filtops = { 1, NULL, filt_usbrdetach, filt_usbread }; int usbkqfilter(dev_t dev, struct knote *kn) { struct klist *klist; switch (kn->kn_filter) { case EVFILT_READ: if (minor(dev) != USB_DEV_MINOR) return 1; klist = &usb_selevent.sel_klist; kn->kn_fop = &usbread_filtops; break; default: return EINVAL; } kn->kn_hook = NULL; mutex_enter(&usb_event_lock); SLIST_INSERT_HEAD(klist, kn, kn_selnext); mutex_exit(&usb_event_lock); return 0; } /* Explore device tree from the root. */ Static void usb_discover(struct usb_softc *sc) { struct usbd_bus *bus = sc->sc_bus; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); KASSERT(mutex_owned(bus->ub_lock)); if (usb_noexplore > 1) return; /* * We need mutual exclusion while traversing the device tree, * but this is guaranteed since this function is only called * from the event thread for the controller. * * Also, we now have bus->ub_lock held, and in combination * with ub_exploring, avoids interferring with polling. */ while (bus->ub_needsexplore && !sc->sc_dying) { bus->ub_needsexplore = 0; mutex_exit(sc->sc_bus->ub_lock); bus->ub_roothub->ud_hub->uh_explore(bus->ub_roothub); mutex_enter(bus->ub_lock); } } void usb_needs_explore(struct usbd_device *dev) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); mutex_enter(dev->ud_bus->ub_lock); dev->ud_bus->ub_needsexplore = 1; cv_signal(&dev->ud_bus->ub_needsexplore_cv); mutex_exit(dev->ud_bus->ub_lock); } void usb_needs_reattach(struct usbd_device *dev) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); mutex_enter(dev->ud_bus->ub_lock); dev->ud_powersrc->up_reattach = 1; dev->ud_bus->ub_needsexplore = 1; cv_signal(&dev->ud_bus->ub_needsexplore_cv); mutex_exit(dev->ud_bus->ub_lock); } /* Called at with usb_event_lock held. */ int usb_get_next_event(struct usb_event *ue) { struct usb_event_q *ueq; KASSERT(mutex_owned(&usb_event_lock)); if (usb_nevents <= 0) return 0; ueq = SIMPLEQ_FIRST(&usb_events); #ifdef DIAGNOSTIC if (ueq == NULL) { printf("usb: usb_nevents got out of sync! %d\n", usb_nevents); usb_nevents = 0; return 0; } #endif if (ue) *ue = ueq->ue; SIMPLEQ_REMOVE_HEAD(&usb_events, next); usb_free_event((struct usb_event *)(void *)ueq); usb_nevents--; return 1; } void usbd_add_dev_event(int type, struct usbd_device *udev) { struct usb_event *ue = usb_alloc_event(); usbd_fill_deviceinfo(udev, &ue->u.ue_device, false); usb_add_event(type, ue); } void usbd_add_drv_event(int type, struct usbd_device *udev, device_t dev) { struct usb_event *ue = usb_alloc_event(); ue->u.ue_driver.ue_cookie = udev->ud_cookie; strncpy(ue->u.ue_driver.ue_devname, device_xname(dev), sizeof(ue->u.ue_driver.ue_devname)); usb_add_event(type, ue); } Static struct usb_event * usb_alloc_event(void) { /* Yes, this is right; we allocate enough so that we can use it later */ return kmem_zalloc(sizeof(struct usb_event_q), KM_SLEEP); } Static void usb_free_event(struct usb_event *uep) { kmem_free(uep, sizeof(struct usb_event_q)); } Static void usb_add_event(int type, struct usb_event *uep) { struct usb_event_q *ueq; struct timeval thetime; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); microtime(&thetime); /* Don't want to wait here with usb_event_lock held */ ueq = (struct usb_event_q *)(void *)uep; ueq->ue = *uep; ueq->ue.ue_type = type; TIMEVAL_TO_TIMESPEC(&thetime, &ueq->ue.ue_time); mutex_enter(&usb_event_lock); if (++usb_nevents >= USB_MAX_EVENTS) { /* Too many queued events, drop an old one. */ DPRINTF("event dropped", 0, 0, 0, 0); (void)usb_get_next_event(0); } SIMPLEQ_INSERT_TAIL(&usb_events, ueq, next); cv_signal(&usb_event_cv); selnotify(&usb_selevent, 0, 0); if (usb_async_proc != NULL) { kpreempt_disable(); softint_schedule(usb_async_sih); kpreempt_enable(); } mutex_exit(&usb_event_lock); } Static void usb_async_intr(void *cookie) { proc_t *proc; mutex_enter(proc_lock); if ((proc = usb_async_proc) != NULL) psignal(proc, SIGIO); mutex_exit(proc_lock); } Static void usb_soft_intr(void *arg) { struct usbd_bus *bus = arg; mutex_enter(bus->ub_lock); bus->ub_methods->ubm_softint(bus); mutex_exit(bus->ub_lock); } void usb_schedsoftintr(struct usbd_bus *bus) { USBHIST_FUNC(); USBHIST_CALLED(usbdebug); DPRINTFN(10, "polling=%jd", bus->ub_usepolling, 0, 0, 0); /* In case the bus never finished setting up. */ if (__predict_false(bus->ub_soft == NULL)) return; if (bus->ub_usepolling) { bus->ub_methods->ubm_softint(bus); } else { kpreempt_disable(); softint_schedule(bus->ub_soft); kpreempt_enable(); } } int usb_activate(device_t self, enum devact act) { struct usb_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: sc->sc_dying = 1; return 0; default: return EOPNOTSUPP; } } void usb_childdet(device_t self, device_t child) { int i; struct usb_softc *sc = device_private(self); struct usbd_device *dev; if ((dev = sc->sc_port.up_dev) == NULL || dev->ud_subdevlen == 0) return; for (i = 0; i < dev->ud_subdevlen; i++) if (dev->ud_subdevs[i] == child) dev->ud_subdevs[i] = NULL; } int usb_detach(device_t self, int flags) { struct usb_softc *sc = device_private(self); struct usb_event *ue; int rc; USBHIST_FUNC(); USBHIST_CALLED(usbdebug); /* Make all devices disconnect. */ if (sc->sc_port.up_dev != NULL && (rc = usb_disconnect_port(&sc->sc_port, self, flags)) != 0) return rc; if (sc->sc_pmf_registered) pmf_device_deregister(self); /* Kill off event thread. */ sc->sc_dying = 1; while (sc->sc_event_thread != NULL) { mutex_enter(sc->sc_bus->ub_lock); cv_signal(&sc->sc_bus->ub_needsexplore_cv); cv_timedwait(&sc->sc_bus->ub_needsexplore_cv, sc->sc_bus->ub_lock, hz * 60); mutex_exit(sc->sc_bus->ub_lock); } DPRINTF("event thread dead", 0, 0, 0, 0); if (sc->sc_bus->ub_soft != NULL) { softint_disestablish(sc->sc_bus->ub_soft); sc->sc_bus->ub_soft = NULL; } ue = usb_alloc_event(); ue->u.ue_ctrlr.ue_bus = device_unit(self); usb_add_event(USB_EVENT_CTRLR_DETACH, ue); cv_destroy(&sc->sc_bus->ub_needsexplore_cv); return 0; } #ifdef COMPAT_30 Static void usb_copy_old_devinfo(struct usb_device_info_old *uo, const struct usb_device_info *ue) { const unsigned char *p; unsigned char *q; int i, n; uo->udi_bus = ue->udi_bus; uo->udi_addr = ue->udi_addr; uo->udi_cookie = ue->udi_cookie; for (i = 0, p = (const unsigned char *)ue->udi_product, q = (unsigned char *)uo->udi_product; *p && i < USB_MAX_STRING_LEN - 1; p++) { if (*p < 0x80) q[i++] = *p; else { q[i++] = '?'; if ((*p & 0xe0) == 0xe0) p++; p++; } } q[i] = 0; for (i = 0, p = ue->udi_vendor, q = uo->udi_vendor; *p && i < USB_MAX_STRING_LEN - 1; p++) { if (* p < 0x80) q[i++] = *p; else { q[i++] = '?'; p++; if ((*p & 0xe0) == 0xe0) p++; } } q[i] = 0; memcpy(uo->udi_release, ue->udi_release, sizeof(uo->udi_release)); uo->udi_productNo = ue->udi_productNo; uo->udi_vendorNo = ue->udi_vendorNo; uo->udi_releaseNo = ue->udi_releaseNo; uo->udi_class = ue->udi_class; uo->udi_subclass = ue->udi_subclass; uo->udi_protocol = ue->udi_protocol; uo->udi_config = ue->udi_config; uo->udi_speed = ue->udi_speed; uo->udi_power = ue->udi_power; uo->udi_nports = ue->udi_nports; for (n=0; nudi_devnames[n], ue->udi_devnames[n], USB_MAX_DEVNAMELEN); memcpy(uo->udi_ports, ue->udi_ports, sizeof(uo->udi_ports)); } #endif