/* $NetBSD: pktqueue.c,v 1.9 2017/06/01 02:45:14 chs Exp $ */ /*- * Copyright (c) 2014 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Mindaugas Rasiukevicius. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * The packet queue (pktqueue) interface is a lockless IP input queue * which also abstracts and handles network ISR scheduling. It provides * a mechanism to enable receiver-side packet steering (RPS). */ #include __KERNEL_RCSID(0, "$NetBSD: pktqueue.c,v 1.9 2017/06/01 02:45:14 chs Exp $"); #include #include #include #include #include #include #include #include #include #include /* * WARNING: update this if struct pktqueue changes. */ #define PKTQ_CLPAD \ MAX(COHERENCY_UNIT, COHERENCY_UNIT - sizeof(kmutex_t) - sizeof(u_int)) struct pktqueue { /* * The lock used for a barrier mechanism. The barrier counter, * as well as the drop counter, are managed atomically though. * Ensure this group is in a separate cache line. */ kmutex_t pq_lock; volatile u_int pq_barrier; uint8_t _pad[PKTQ_CLPAD]; /* The size of the queue, counters and the interrupt handler. */ u_int pq_maxlen; percpu_t * pq_counters; void * pq_sih; /* Finally, per-CPU queues. */ pcq_t * pq_queue[]; }; /* The counters of the packet queue. */ #define PQCNT_ENQUEUE 0 #define PQCNT_DEQUEUE 1 #define PQCNT_DROP 2 #define PQCNT_NCOUNTERS 3 typedef struct { uint64_t count[PQCNT_NCOUNTERS]; } pktq_counters_t; /* Special marker value used by pktq_barrier() mechanism. */ #define PKTQ_MARKER ((void *)(~0ULL)) /* * The total size of pktqueue_t which depends on the number of CPUs. */ #define PKTQUEUE_STRUCT_LEN(ncpu) \ roundup2(offsetof(pktqueue_t, pq_queue[ncpu]), coherency_unit) pktqueue_t * pktq_create(size_t maxlen, void (*intrh)(void *), void *sc) { const u_int sflags = SOFTINT_NET | SOFTINT_MPSAFE | SOFTINT_RCPU; const size_t len = PKTQUEUE_STRUCT_LEN(ncpu); pktqueue_t *pq; percpu_t *pc; void *sih; pc = percpu_alloc(sizeof(pktq_counters_t)); if ((sih = softint_establish(sflags, intrh, sc)) == NULL) { percpu_free(pc, sizeof(pktq_counters_t)); return NULL; } pq = kmem_zalloc(len, KM_SLEEP); for (u_int i = 0; i < ncpu; i++) { pq->pq_queue[i] = pcq_create(maxlen, KM_SLEEP); } mutex_init(&pq->pq_lock, MUTEX_DEFAULT, IPL_NONE); pq->pq_maxlen = maxlen; pq->pq_counters = pc; pq->pq_sih = sih; return pq; } void pktq_destroy(pktqueue_t *pq) { const size_t len = PKTQUEUE_STRUCT_LEN(ncpu); for (u_int i = 0; i < ncpu; i++) { pcq_t *q = pq->pq_queue[i]; KASSERT(pcq_peek(q) == NULL); pcq_destroy(q); } percpu_free(pq->pq_counters, sizeof(pktq_counters_t)); softint_disestablish(pq->pq_sih); mutex_destroy(&pq->pq_lock); kmem_free(pq, len); } /* * - pktq_inc_counter: increment the counter given an ID. * - pktq_collect_counts: handler to sum up the counts from each CPU. * - pktq_getcount: return the effective count given an ID. */ static inline void pktq_inc_count(pktqueue_t *pq, u_int i) { percpu_t *pc = pq->pq_counters; pktq_counters_t *c; c = percpu_getref(pc); c->count[i]++; percpu_putref(pc); } static void pktq_collect_counts(void *mem, void *arg, struct cpu_info *ci) { const pktq_counters_t *c = mem; pktq_counters_t *sum = arg; for (u_int i = 0; i < PQCNT_NCOUNTERS; i++) { sum->count[i] += c->count[i]; } } uint64_t pktq_get_count(pktqueue_t *pq, pktq_count_t c) { pktq_counters_t sum; if (c != PKTQ_MAXLEN) { memset(&sum, 0, sizeof(sum)); percpu_foreach(pq->pq_counters, pktq_collect_counts, &sum); } switch (c) { case PKTQ_NITEMS: return sum.count[PQCNT_ENQUEUE] - sum.count[PQCNT_DEQUEUE]; case PKTQ_DROPS: return sum.count[PQCNT_DROP]; case PKTQ_MAXLEN: return pq->pq_maxlen; } return 0; } uint32_t pktq_rps_hash(const struct mbuf *m __unused) { /* * XXX: No distribution yet; the softnet_lock contention * XXX: must be eliminated first. */ return 0; } /* * pktq_enqueue: inject the packet into the end of the queue. * * => Must be called from the interrupt or with the preemption disabled. * => Consumes the packet and returns true on success. * => Returns false on failure; caller is responsible to free the packet. */ bool pktq_enqueue(pktqueue_t *pq, struct mbuf *m, const u_int hash __unused) { #if defined(_RUMPKERNEL) || defined(_RUMP_NATIVE_ABI) const unsigned cpuid = curcpu()->ci_index; #else const unsigned cpuid = hash % ncpu; #endif KASSERT(kpreempt_disabled()); if (__predict_false(!pcq_put(pq->pq_queue[cpuid], m))) { pktq_inc_count(pq, PQCNT_DROP); return false; } softint_schedule_cpu(pq->pq_sih, cpu_lookup(cpuid)); pktq_inc_count(pq, PQCNT_ENQUEUE); return true; } /* * pktq_dequeue: take a packet from the queue. * * => Must be called with preemption disabled. * => Must ensure there are not concurrent dequeue calls. */ struct mbuf * pktq_dequeue(pktqueue_t *pq) { const struct cpu_info *ci = curcpu(); const unsigned cpuid = cpu_index(ci); struct mbuf *m; m = pcq_get(pq->pq_queue[cpuid]); if (__predict_false(m == PKTQ_MARKER)) { /* Note the marker entry. */ atomic_inc_uint(&pq->pq_barrier); return NULL; } if (__predict_true(m != NULL)) { pktq_inc_count(pq, PQCNT_DEQUEUE); } return m; } /* * pktq_barrier: waits for a grace period when all packets enqueued at * the moment of calling this routine will be processed. This is used * to ensure that e.g. packets referencing some interface were drained. */ void pktq_barrier(pktqueue_t *pq) { u_int pending = 0; mutex_enter(&pq->pq_lock); KASSERT(pq->pq_barrier == 0); for (u_int i = 0; i < ncpu; i++) { pcq_t *q = pq->pq_queue[i]; /* If the queue is empty - nothing to do. */ if (pcq_peek(q) == NULL) { continue; } /* Otherwise, put the marker and entry. */ while (!pcq_put(q, PKTQ_MARKER)) { kpause("pktqsync", false, 1, NULL); } kpreempt_disable(); softint_schedule_cpu(pq->pq_sih, cpu_lookup(i)); kpreempt_enable(); pending++; } /* Wait for each queue to process the markers. */ while (pq->pq_barrier != pending) { kpause("pktqsync", false, 1, NULL); } pq->pq_barrier = 0; mutex_exit(&pq->pq_lock); } /* * pktq_flush: free mbufs in all queues. * * => The caller must ensure there are no concurrent writers or flush calls. */ void pktq_flush(pktqueue_t *pq) { struct mbuf *m; for (u_int i = 0; i < ncpu; i++) { while ((m = pcq_get(pq->pq_queue[i])) != NULL) { pktq_inc_count(pq, PQCNT_DEQUEUE); m_freem(m); } } } /* * pktq_set_maxlen: create per-CPU queues using a new size and replace * the existing queues without losing any packets. */ int pktq_set_maxlen(pktqueue_t *pq, size_t maxlen) { const u_int slotbytes = ncpu * sizeof(pcq_t *); pcq_t **qs; if (!maxlen || maxlen > PCQ_MAXLEN) return EINVAL; if (pq->pq_maxlen == maxlen) return 0; /* First, allocate the new queues and replace them. */ qs = kmem_zalloc(slotbytes, KM_SLEEP); for (u_int i = 0; i < ncpu; i++) { qs[i] = pcq_create(maxlen, KM_SLEEP); } mutex_enter(&pq->pq_lock); for (u_int i = 0; i < ncpu; i++) { /* Swap: store of a word is atomic. */ pcq_t *q = pq->pq_queue[i]; pq->pq_queue[i] = qs[i]; qs[i] = q; } pq->pq_maxlen = maxlen; mutex_exit(&pq->pq_lock); /* * At this point, the new packets are flowing into the new * queues. However, the old queues may have some packets * present which are no longer being processed. We are going * to re-enqueue them. This may change the order of packet * arrival, but it is not considered an issue. * * There may be in-flight interrupts calling pktq_dequeue() * which reference the old queues. Issue a barrier to ensure * that we are going to be the only pcq_get() callers on the * old queues. */ pktq_barrier(pq); for (u_int i = 0; i < ncpu; i++) { struct mbuf *m; while ((m = pcq_get(qs[i])) != NULL) { while (!pcq_put(pq->pq_queue[i], m)) { kpause("pktqrenq", false, 1, NULL); } } pcq_destroy(qs[i]); } /* Well, that was fun. */ kmem_free(qs, slotbytes); return 0; } int sysctl_pktq_maxlen(SYSCTLFN_ARGS, pktqueue_t *pq) { u_int nmaxlen = pktq_get_count(pq, PKTQ_MAXLEN); struct sysctlnode node = *rnode; int error; node.sysctl_data = &nmaxlen; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return error; return pktq_set_maxlen(pq, nmaxlen); } int sysctl_pktq_count(SYSCTLFN_ARGS, pktqueue_t *pq, u_int count_id) { int count = pktq_get_count(pq, count_id); struct sysctlnode node = *rnode; node.sysctl_data = &count; return sysctl_lookup(SYSCTLFN_CALL(&node)); }