/* $KAME: sctp_usrreq.c,v 1.50 2005/06/16 20:45:29 jinmei Exp $ */ /* $NetBSD: sctp_usrreq.c,v 1.6.10.1 2019/01/29 07:04:09 msaitoh Exp $ */ /* * Copyright (c) 2001, 2002, 2003, 2004 Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Cisco Systems, Inc. * 4. Neither the name of the project nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY CISCO SYSTEMS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL CISCO SYSTEMS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: sctp_usrreq.c,v 1.6.10.1 2019/01/29 07:04:09 msaitoh Exp $"); #ifdef _KERNEL_OPT #include "opt_inet.h" #include "opt_sctp.h" #endif /* _KERNEL_OPT */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef IPSEC #include #include #endif /* IPSEC */ #include #if defined(HAVE_NRL_INPCB) || defined(__FreeBSD__) #ifndef in6pcb #define in6pcb inpcb #endif #ifndef sotoin6pcb #define sotoin6pcb sotoinpcb #endif #endif #ifdef SCTP_DEBUG extern u_int32_t sctp_debug_on; #endif /* SCTP_DEBUG */ /* * sysctl tunable variables */ int sctp_auto_asconf = SCTP_DEFAULT_AUTO_ASCONF; int sctp_max_burst_default = SCTP_DEF_MAX_BURST; int sctp_peer_chunk_oh = sizeof(struct mbuf); int sctp_strict_init = 1; int sctp_no_csum_on_loopback = 1; unsigned int sctp_max_chunks_on_queue = SCTP_ASOC_MAX_CHUNKS_ON_QUEUE; int sctp_sendspace = (128 * 1024); int sctp_recvspace = 128 * (1024 + #ifdef INET6 sizeof(struct sockaddr_in6) #else sizeof(struct sockaddr_in) #endif ); int sctp_strict_sacks = 0; int sctp_ecn = 1; int sctp_ecn_nonce = 0; unsigned int sctp_delayed_sack_time_default = SCTP_RECV_MSEC; unsigned int sctp_heartbeat_interval_default = SCTP_HB_DEFAULT_MSEC; unsigned int sctp_pmtu_raise_time_default = SCTP_DEF_PMTU_RAISE_SEC; unsigned int sctp_shutdown_guard_time_default = SCTP_DEF_MAX_SHUTDOWN_SEC; unsigned int sctp_secret_lifetime_default = SCTP_DEFAULT_SECRET_LIFE_SEC; unsigned int sctp_rto_max_default = SCTP_RTO_UPPER_BOUND; unsigned int sctp_rto_min_default = SCTP_RTO_LOWER_BOUND; unsigned int sctp_rto_initial_default = SCTP_RTO_INITIAL; unsigned int sctp_init_rto_max_default = SCTP_RTO_UPPER_BOUND; unsigned int sctp_valid_cookie_life_default = SCTP_DEFAULT_COOKIE_LIFE; unsigned int sctp_init_rtx_max_default = SCTP_DEF_MAX_INIT; unsigned int sctp_assoc_rtx_max_default = SCTP_DEF_MAX_SEND; unsigned int sctp_path_rtx_max_default = SCTP_DEF_MAX_SEND/2; unsigned int sctp_nr_outgoing_streams_default = SCTP_OSTREAM_INITIAL; void sctp_init(void) { /* Init the SCTP pcb in sctp_pcb.c */ u_long sb_max_adj; sctp_pcb_init(); if (nmbclusters > SCTP_ASOC_MAX_CHUNKS_ON_QUEUE) sctp_max_chunks_on_queue = nmbclusters; /* * Allow a user to take no more than 1/2 the number of clusters * or the SB_MAX whichever is smaller for the send window. */ sb_max_adj = (u_long)((u_quad_t)(SB_MAX) * MCLBYTES / (MSIZE + MCLBYTES)); sctp_sendspace = min((min(SB_MAX, sb_max_adj)), ((nmbclusters/2) * SCTP_DEFAULT_MAXSEGMENT)); /* * Now for the recv window, should we take the same amount? * or should I do 1/2 the SB_MAX instead in the SB_MAX min above. * For now I will just copy. */ sctp_recvspace = sctp_sendspace; } #ifdef INET6 void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip) { memset(ip6, 0, sizeof(*ip6)); ip6->ip6_vfc = IPV6_VERSION; ip6->ip6_plen = ip->ip_len; ip6->ip6_nxt = ip->ip_p; ip6->ip6_hlim = ip->ip_ttl; ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] = IPV6_ADDR_INT32_SMP; ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr; ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr; } #endif /* INET6 */ static void sctp_split_chunks(struct sctp_association *asoc, struct sctp_stream_out *strm, struct sctp_tmit_chunk *chk) { struct sctp_tmit_chunk *new_chk; /* First we need a chunk */ new_chk = (struct sctp_tmit_chunk *)SCTP_ZONE_GET(sctppcbinfo.ipi_zone_chunk); if (new_chk == NULL) { chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; return; } sctppcbinfo.ipi_count_chunk++; sctppcbinfo.ipi_gencnt_chunk++; /* Copy it all */ *new_chk = *chk; /* split the data */ new_chk->data = m_split(chk->data, (chk->send_size>>1), M_DONTWAIT); if (new_chk->data == NULL) { /* Can't split */ chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, new_chk); sctppcbinfo.ipi_count_chunk--; if ((int)sctppcbinfo.ipi_count_chunk < 0) { panic("Chunk count is negative"); } sctppcbinfo.ipi_gencnt_chunk++; return; } /* Data is now split adjust sizes */ chk->send_size >>= 1; new_chk->send_size >>= 1; chk->book_size >>= 1; new_chk->book_size >>= 1; /* now adjust the marks */ chk->rec.data.rcv_flags |= SCTP_DATA_FIRST_FRAG; chk->rec.data.rcv_flags &= ~SCTP_DATA_LAST_FRAG; new_chk->rec.data.rcv_flags &= ~SCTP_DATA_FIRST_FRAG; new_chk->rec.data.rcv_flags |= SCTP_DATA_LAST_FRAG; /* Increase ref count if dest is set */ if (chk->whoTo) { new_chk->whoTo->ref_count++; } /* now drop it on the end of the list*/ asoc->stream_queue_cnt++; TAILQ_INSERT_AFTER(&strm->outqueue, chk, new_chk, sctp_next); } static void sctp_notify_mbuf(struct sctp_inpcb *inp, struct sctp_tcb *stcb, struct sctp_nets *net, struct ip *ip, struct sctphdr *sh) { struct icmp *icmph; int totsz; uint16_t nxtsz; /* protection */ if ((inp == NULL) || (stcb == NULL) || (net == NULL) || (ip == NULL) || (sh == NULL)) { if (stcb != NULL) { SCTP_TCB_UNLOCK(stcb); } return; } /* First job is to verify the vtag matches what I would send */ if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) { SCTP_TCB_UNLOCK(stcb); return; } icmph = (struct icmp *)((vaddr_t)ip - (sizeof(struct icmp) - sizeof(struct ip))); if (icmph->icmp_type != ICMP_UNREACH) { /* We only care about unreachable */ SCTP_TCB_UNLOCK(stcb); return; } if (icmph->icmp_code != ICMP_UNREACH_NEEDFRAG) { /* not a unreachable message due to frag. */ SCTP_TCB_UNLOCK(stcb); return; } totsz = ip->ip_len; nxtsz = ntohs(icmph->icmp_seq); if (nxtsz == 0) { /* * old type router that does not tell us what the next size * mtu is. Rats we will have to guess (in a educated fashion * of course) */ nxtsz = find_next_best_mtu(totsz); } /* Stop any PMTU timer */ sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, NULL); /* Adjust destination size limit */ if (net->mtu > nxtsz) { net->mtu = nxtsz; } /* now what about the ep? */ if (stcb->asoc.smallest_mtu > nxtsz) { struct sctp_tmit_chunk *chk, *nchk; struct sctp_stream_out *strm; /* Adjust that too */ stcb->asoc.smallest_mtu = nxtsz; /* now off to subtract IP_DF flag if needed */ TAILQ_FOREACH(chk, &stcb->asoc.send_queue, sctp_next) { if ((chk->send_size+IP_HDR_SIZE) > nxtsz) { chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; } } TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) { if ((chk->send_size+IP_HDR_SIZE) > nxtsz) { /* * For this guy we also mark for immediate * resend since we sent to big of chunk */ chk->flags |= CHUNK_FLAGS_FRAGMENT_OK; if (chk->sent != SCTP_DATAGRAM_RESEND) { stcb->asoc.sent_queue_retran_cnt++; } chk->sent = SCTP_DATAGRAM_RESEND; chk->rec.data.doing_fast_retransmit = 0; /* Clear any time so NO RTT is being done */ chk->do_rtt = 0; sctp_total_flight_decrease(stcb, chk); if (net->flight_size >= chk->book_size) { net->flight_size -= chk->book_size; } else { net->flight_size = 0; } } } TAILQ_FOREACH(strm, &stcb->asoc.out_wheel, next_spoke) { chk = TAILQ_FIRST(&strm->outqueue); while (chk) { nchk = TAILQ_NEXT(chk, sctp_next); if ((chk->send_size+SCTP_MED_OVERHEAD) > nxtsz) { sctp_split_chunks(&stcb->asoc, strm, chk); } chk = nchk; } } } sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, NULL); SCTP_TCB_UNLOCK(stcb); } void sctp_notify(struct sctp_inpcb *inp, int errno, struct sctphdr *sh, struct sockaddr *to, struct sctp_tcb *stcb, struct sctp_nets *net) { /* protection */ if ((inp == NULL) || (stcb == NULL) || (net == NULL) || (sh == NULL) || (to == NULL)) { #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("sctp-notify, bad call\n"); } #endif /* SCTP_DEBUG */ return; } /* First job is to verify the vtag matches what I would send */ if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) { return; } /* FIX ME FIX ME PROTOPT i.e. no SCTP should ALWAYS be an ABORT */ if ((errno == EHOSTUNREACH) || /* Host is not reachable */ (errno == EHOSTDOWN) || /* Host is down */ (errno == ECONNREFUSED) || /* Host refused the connection, (not an abort?) */ (errno == ENOPROTOOPT) /* SCTP is not present on host */ ) { /* * Hmm reachablity problems we must examine closely. * If its not reachable, we may have lost a network. * Or if there is NO protocol at the other end named SCTP. * well we consider it a OOTB abort. */ if ((errno == EHOSTUNREACH) || (errno == EHOSTDOWN)) { if (net->dest_state & SCTP_ADDR_REACHABLE) { /* Ok that destination is NOT reachable */ net->dest_state &= ~SCTP_ADDR_REACHABLE; net->dest_state |= SCTP_ADDR_NOT_REACHABLE; net->error_count = net->failure_threshold + 1; sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN, stcb, SCTP_FAILED_THRESHOLD, (void *)net); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } else { /* * Here the peer is either playing tricks on us, * including an address that belongs to someone who * does not support SCTP OR was a userland * implementation that shutdown and now is dead. In * either case treat it like a OOTB abort with no TCB */ sctp_abort_notification(stcb, SCTP_PEER_FAULTY); sctp_free_assoc(inp, stcb); /* no need to unlock here, since the TCB is gone */ } } else { /* Send all others to the app */ if (inp->sctp_socket) { inp->sctp_socket->so_error = errno; sctp_sowwakeup(inp, inp->sctp_socket); } if (stcb) { SCTP_TCB_UNLOCK(stcb); } } } void * sctp_ctlinput(int cmd, const struct sockaddr *sa, void *vip) { struct ip *ip = vip; struct sctphdr *sh; int s; if (sa->sa_family != AF_INET || ((const struct sockaddr_in *)sa)->sin_addr.s_addr == INADDR_ANY) { return (NULL); } if (PRC_IS_REDIRECT(cmd)) { ip = 0; } else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) { return (NULL); } if (ip) { struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; struct sockaddr_in to, from; sh = (struct sctphdr *)((vaddr_t)ip + (ip->ip_hl << 2)); memset(&to, 0, sizeof(to)); memset(&from, 0, sizeof(from)); from.sin_family = to.sin_family = AF_INET; from.sin_len = to.sin_len = sizeof(to); from.sin_port = sh->src_port; from.sin_addr = ip->ip_src; to.sin_port = sh->dest_port; to.sin_addr = ip->ip_dst; /* * 'to' holds the dest of the packet that failed to be sent. * 'from' holds our local endpoint address. * Thus we reverse the to and the from in the lookup. */ s = splsoftnet(); stcb = sctp_findassociation_addr_sa((struct sockaddr *)&from, (struct sockaddr *)&to, &inp, &net, 1); if (stcb != NULL && inp && (inp->sctp_socket != NULL)) { if (cmd != PRC_MSGSIZE) { int cm; if (cmd == PRC_HOSTDEAD) { cm = EHOSTUNREACH; } else { cm = inetctlerrmap[cmd]; } sctp_notify(inp, cm, sh, (struct sockaddr *)&to, stcb, net); } else { /* handle possible ICMP size messages */ sctp_notify_mbuf(inp, stcb, net, ip, sh); } } else { #if defined(__FreeBSD__) && __FreeBSD_version < 500000 /* XXX must be fixed for 5.x and higher, leave for 4.x */ if (PRC_IS_REDIRECT(cmd) && inp) { in_rtchange((struct inpcb *)inp, inetctlerrmap[cmd]); } #endif if ((stcb == NULL) && (inp != NULL)) { /* reduce ref-count */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } splx(s); } return (NULL); } static int sctp_abort(struct socket *so) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; /* ??? possible? panic instead? */ sctp_inpcb_free(inp, 1); return 0; } static int sctp_attach(struct socket *so, int proto) { struct sctp_inpcb *inp; #ifdef IPSEC struct inpcb *ip_inp; #endif int error; sosetlock(so); inp = (struct sctp_inpcb *)so->so_pcb; if (inp != 0) { return EINVAL; } error = soreserve(so, sctp_sendspace, sctp_recvspace); if (error) { return error; } error = sctp_inpcb_alloc(so); if (error) { return error; } inp = (struct sctp_inpcb *)so->so_pcb; SCTP_INP_WLOCK(inp); inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUND_V6; /* I'm not v6! */ #ifdef IPSEC ip_inp = &inp->ip_inp.inp; #endif inp->inp_vflag |= INP_IPV4; inp->inp_ip_ttl = ip_defttl; #ifdef IPSEC error = ipsec_init_pcbpolicy(so, &ip_inp->inp_sp); if (error != 0) { sctp_inpcb_free(inp, 1); return error; } #endif /*IPSEC*/ SCTP_INP_WUNLOCK(inp); so->so_send = sctp_sosend; return 0; } static int sctp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l) { struct sctp_inpcb *inp; int error; KASSERT(solocked(so)); #ifdef INET6 if (nam && nam->sa_family != AF_INET) /* must be a v4 address! */ return EINVAL; #endif /* INET6 */ inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; error = sctp_inpcb_bind(so, nam, l); return error; } static int sctp_detach(struct socket *so) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) || (so->so_rcv.sb_cc > 0)) { sctp_inpcb_free(inp, 1); } else { sctp_inpcb_free(inp, 0); } return 0; } static int sctp_recvoob(struct socket *so, struct mbuf *m, int flags) { KASSERT(solocked(so)); return EOPNOTSUPP; } int sctp_send(struct socket *so, struct mbuf *m, struct sockaddr *addr, struct mbuf *control, struct lwp *l) { struct sctp_inpcb *inp; int error; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { if (control) { sctp_m_freem(control); control = NULL; } sctp_m_freem(m); return EINVAL; } /* Got to have an to address if we are NOT a connected socket */ if ((addr == NULL) && ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) || (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE)) ) { goto connected_type; } else if (addr == NULL) { error = EDESTADDRREQ; sctp_m_freem(m); if (control) { sctp_m_freem(control); control = NULL; } return (error); } #ifdef INET6 if (addr->sa_family != AF_INET) { /* must be a v4 address! */ sctp_m_freem(m); if (control) { sctp_m_freem(control); control = NULL; } error = EDESTADDRREQ; return EINVAL; } #endif /* INET6 */ connected_type: /* now what about control */ if (control) { if (inp->control) { printf("huh? control set?\n"); sctp_m_freem(inp->control); inp->control = NULL; } inp->control = control; } /* add it in possibly */ if ((inp->pkt) && (inp->pkt->m_flags & M_PKTHDR)) { struct mbuf *x; int c_len; c_len = 0; /* How big is it */ for (x=m;x;x = x->m_next) { c_len += x->m_len; } inp->pkt->m_pkthdr.len += c_len; } /* Place the data */ if (inp->pkt) { inp->pkt_last->m_next = m; inp->pkt_last = m; } else { inp->pkt_last = inp->pkt = m; } if ((so->so_state & SS_MORETOCOME) == 0) { /* * note with the current version this code will only be used * by OpenBSD-- NetBSD, FreeBSD, and MacOS have methods for * re-defining sosend to use the sctp_sosend. One can * optionally switch back to this code (by changing back the * definitions) but this is not advisable. */ int ret; ret = sctp_output(inp, inp->pkt, addr, inp->control, l, 0); inp->pkt = NULL; inp->control = NULL; return (ret); } else { return (0); } } static int sctp_disconnect(struct socket *so) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == NULL) { return (ENOTCONN); } SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { if (LIST_EMPTY(&inp->sctp_asoc_list)) { /* No connection */ SCTP_INP_RUNLOCK(inp); return (0); } else { int some_on_streamwheel = 0; struct sctp_association *asoc; struct sctp_tcb *stcb; stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); return (EINVAL); } asoc = &stcb->asoc; SCTP_TCB_LOCK(stcb); if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) || (so->so_rcv.sb_cc > 0)) { if (SCTP_GET_STATE(asoc) != SCTP_STATE_COOKIE_WAIT) { /* Left with Data unread */ struct mbuf *err; err = NULL; MGET(err, M_DONTWAIT, MT_DATA); if (err) { /* Fill in the user initiated abort */ struct sctp_paramhdr *ph; ph = mtod(err, struct sctp_paramhdr *); err->m_len = sizeof(struct sctp_paramhdr); ph->param_type = htons(SCTP_CAUSE_USER_INITIATED_ABT); ph->param_length = htons(err->m_len); } sctp_send_abort_tcb(stcb, err); } SCTP_INP_RUNLOCK(inp); sctp_free_assoc(inp, stcb); /* No unlock tcb assoc is gone */ return (0); } if (!TAILQ_EMPTY(&asoc->out_wheel)) { /* Check to see if some data queued */ struct sctp_stream_out *outs; TAILQ_FOREACH(outs, &asoc->out_wheel, next_spoke) { if (!TAILQ_EMPTY(&outs->outqueue)) { some_on_streamwheel = 1; break; } } } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (some_on_streamwheel == 0)) { /* there is nothing queued to send, so done */ if ((SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) && (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_ACK_SENT)) { /* only send SHUTDOWN 1st time thru */ #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_OUTPUT4) { printf("%s:%d sends a shutdown\n", __FILE__, __LINE__ ); } #endif sctp_send_shutdown(stcb, stcb->asoc.primary_destination); sctp_chunk_output(stcb->sctp_ep, stcb, 1); asoc->state = SCTP_STATE_SHUTDOWN_SENT; sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, asoc->primary_destination); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } } else { /* * we still got (or just got) data to send, * so set SHUTDOWN_PENDING */ /* * XXX sockets draft says that MSG_EOF should * be sent with no data. * currently, we will allow user data to be * sent first and move to SHUTDOWN-PENDING */ asoc->state |= SCTP_STATE_SHUTDOWN_PENDING; } SCTP_TCB_UNLOCK(stcb); SCTP_INP_RUNLOCK(inp); return (0); } /* not reached */ } else { /* UDP model does not support this */ SCTP_INP_RUNLOCK(inp); return EOPNOTSUPP; } } int sctp_shutdown(struct socket *so) { struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { return EINVAL; } SCTP_INP_RLOCK(inp); /* For UDP model this is a invalid call */ if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { /* Restore the flags that the soshutdown took away. */ so->so_state &= ~SS_CANTRCVMORE; /* This proc will wakeup for read and do nothing (I hope) */ SCTP_INP_RUNLOCK(inp); return (EOPNOTSUPP); } /* * Ok if we reach here its the TCP model and it is either a SHUT_WR * or SHUT_RDWR. This means we put the shutdown flag against it. */ { int some_on_streamwheel = 0; struct sctp_tcb *stcb; struct sctp_association *asoc; socantsendmore(so); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { /* * Ok we hit the case that the shutdown call was made * after an abort or something. Nothing to do now. */ return (0); } SCTP_TCB_LOCK(stcb); asoc = &stcb->asoc; if (!TAILQ_EMPTY(&asoc->out_wheel)) { /* Check to see if some data queued */ struct sctp_stream_out *outs; TAILQ_FOREACH(outs, &asoc->out_wheel, next_spoke) { if (!TAILQ_EMPTY(&outs->outqueue)) { some_on_streamwheel = 1; break; } } } if (TAILQ_EMPTY(&asoc->send_queue) && TAILQ_EMPTY(&asoc->sent_queue) && (some_on_streamwheel == 0)) { /* there is nothing queued to send, so I'm done... */ if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) { /* only send SHUTDOWN the first time through */ #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_OUTPUT4) { printf("%s:%d sends a shutdown\n", __FILE__, __LINE__ ); } #endif sctp_send_shutdown(stcb, stcb->asoc.primary_destination); sctp_chunk_output(stcb->sctp_ep, stcb, 1); asoc->state = SCTP_STATE_SHUTDOWN_SENT; sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN, stcb->sctp_ep, stcb, asoc->primary_destination); sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD, stcb->sctp_ep, stcb, asoc->primary_destination); } } else { /* * we still got (or just got) data to send, so * set SHUTDOWN_PENDING */ asoc->state |= SCTP_STATE_SHUTDOWN_PENDING; } SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); return 0; } /* * copies a "user" presentable address and removes embedded scope, etc. * returns 0 on success, 1 on error */ static uint32_t sctp_fill_user_address(struct sockaddr_storage *ss, struct sockaddr *sa) { struct sockaddr_in6 lsa6; sctp_recover_scope((struct sockaddr_in6 *)sa, &lsa6); memcpy(ss, sa, sa->sa_len); return (0); } static int sctp_fill_up_addresses(struct sctp_inpcb *inp, struct sctp_tcb *stcb, int limit, struct sockaddr_storage *sas) { struct ifnet *ifn; struct ifaddr *ifa; int loopback_scope, ipv4_local_scope, local_scope, site_scope, actual; int ipv4_addr_legal, ipv6_addr_legal; actual = 0; if (limit <= 0) return (actual); if (stcb) { /* Turn on all the appropriate scope */ loopback_scope = stcb->asoc.loopback_scope; ipv4_local_scope = stcb->asoc.ipv4_local_scope; local_scope = stcb->asoc.local_scope; site_scope = stcb->asoc.site_scope; } else { /* Turn on ALL scope, since we look at the EP */ loopback_scope = ipv4_local_scope = local_scope = site_scope = 1; } ipv4_addr_legal = ipv6_addr_legal = 0; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ipv6_addr_legal = 1; if ( #if defined(__OpenBSD__) (0) /* we always do dual bind */ #elif defined (__NetBSD__) (((struct in6pcb *)inp)->in6p_flags & IN6P_IPV6_V6ONLY) #else (((struct in6pcb *)inp)->inp_flags & IN6P_IPV6_V6ONLY) #endif == 0) { ipv4_addr_legal = 1; } } else { ipv4_addr_legal = 1; } if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { int s = pserialize_read_enter(); IFNET_READER_FOREACH(ifn) { if ((loopback_scope == 0) && (ifn->if_type == IFT_LOOP)) { /* Skip loopback if loopback_scope not set */ continue; } IFADDR_READER_FOREACH(ifa, ifn) { if (stcb) { /* * For the BOUND-ALL case, the list * associated with a TCB is Always * considered a reverse list.. i.e. * it lists addresses that are NOT * part of the association. If this * is one of those we must skip it. */ if (sctp_is_addr_restricted(stcb, ifa->ifa_addr)) { continue; } } if ((ifa->ifa_addr->sa_family == AF_INET) && (ipv4_addr_legal)) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)ifa->ifa_addr; if (sin->sin_addr.s_addr == 0) { /* we skip unspecifed addresses */ continue; } if ((ipv4_local_scope == 0) && (IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) { continue; } if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) { in6_sin_2_v4mapsin6(sin, (struct sockaddr_in6 *)sas); ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((vaddr_t)sas + sizeof(struct sockaddr_in6)); actual += sizeof(struct sockaddr_in6); } else { memcpy(sas, sin, sizeof(*sin)); ((struct sockaddr_in *)sas)->sin_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((vaddr_t)sas + sizeof(*sin)); actual += sizeof(*sin); } if (actual >= limit) { pserialize_read_exit(s); return (actual); } } else if ((ifa->ifa_addr->sa_family == AF_INET6) && (ipv6_addr_legal)) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)ifa->ifa_addr; if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) { /* * we skip unspecified * addresses */ continue; } if ((site_scope == 0) && (IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) { continue; } memcpy(sas, sin6, sizeof(*sin6)); ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((vaddr_t)sas + sizeof(*sin6)); actual += sizeof(*sin6); if (actual >= limit) { pserialize_read_exit(s); return (actual); } } } } pserialize_read_exit(s); } else { struct sctp_laddr *laddr; /* * If we have a TCB and we do NOT support ASCONF (it's * turned off or otherwise) then the list is always the * true list of addresses (the else case below). Otherwise * the list on the association is a list of addresses that * are NOT part of the association. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_DO_ASCONF) { /* The list is a NEGATIVE list */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (stcb) { if (sctp_is_addr_restricted(stcb, laddr->ifa->ifa_addr)) { continue; } } if (sctp_fill_user_address(sas, laddr->ifa->ifa_addr)) continue; ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((vaddr_t)sas + laddr->ifa->ifa_addr->sa_len); actual += laddr->ifa->ifa_addr->sa_len; if (actual >= limit) { return (actual); } } } else { /* The list is a positive list if present */ if (stcb) { /* Must use the specific association list */ LIST_FOREACH(laddr, &stcb->asoc.sctp_local_addr_list, sctp_nxt_addr) { if (sctp_fill_user_address(sas, laddr->ifa->ifa_addr)) continue; ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((vaddr_t)sas + laddr->ifa->ifa_addr->sa_len); actual += laddr->ifa->ifa_addr->sa_len; if (actual >= limit) { return (actual); } } } else { /* No endpoint so use the endpoints individual list */ LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (sctp_fill_user_address(sas, laddr->ifa->ifa_addr)) continue; ((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport; sas = (struct sockaddr_storage *)((vaddr_t)sas + laddr->ifa->ifa_addr->sa_len); actual += laddr->ifa->ifa_addr->sa_len; if (actual >= limit) { return (actual); } } } } } return (actual); } static int sctp_count_max_addresses(struct sctp_inpcb *inp) { int cnt = 0; /* * In both sub-set bound an bound_all cases we return the MAXIMUM * number of addresses that you COULD get. In reality the sub-set * bound may have an exclusion list for a given TCB OR in the * bound-all case a TCB may NOT include the loopback or other * addresses as well. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { struct ifnet *ifn; struct ifaddr *ifa; int s; s = pserialize_read_enter(); IFNET_READER_FOREACH(ifn) { IFADDR_READER_FOREACH(ifa, ifn) { /* Count them if they are the right type */ if (ifa->ifa_addr->sa_family == AF_INET) { if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) cnt += sizeof(struct sockaddr_in6); else cnt += sizeof(struct sockaddr_in); } else if (ifa->ifa_addr->sa_family == AF_INET6) cnt += sizeof(struct sockaddr_in6); } } pserialize_read_exit(s); } else { struct sctp_laddr *laddr; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->ifa_addr->sa_family == AF_INET) { if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) cnt += sizeof(struct sockaddr_in6); else cnt += sizeof(struct sockaddr_in); } else if (laddr->ifa->ifa_addr->sa_family == AF_INET6) cnt += sizeof(struct sockaddr_in6); } } return (cnt); } static int sctp_do_connect_x(struct socket *so, struct sctp_inpcb *inp, struct mbuf *m, struct lwp *l, int delay) { int error = 0; struct sctp_tcb *stcb = NULL; struct sockaddr *sa; int num_v6=0, num_v4=0, *totaddrp, totaddr, i, incr, at; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_PCB1) { printf("Connectx called\n"); } #endif /* SCTP_DEBUG */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ return (EADDRINUSE); } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); SCTP_INP_RUNLOCK(inp); } if (stcb) { return (EALREADY); } SCTP_ASOC_CREATE_LOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { SCTP_ASOC_CREATE_UNLOCK(inp); return (EFAULT); } totaddrp = mtod(m, int *); totaddr = *totaddrp; sa = (struct sockaddr *)(totaddrp + 1); at = incr = 0; /* account and validate addresses */ SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); for (i = 0; i < totaddr; i++) { if (sa->sa_family == AF_INET) { num_v4++; incr = sizeof(struct sockaddr_in); } else if (sa->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)sa; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { /* Must be non-mapped for connectx */ SCTP_ASOC_CREATE_UNLOCK(inp); return EINVAL; } num_v6++; incr = sizeof(struct sockaddr_in6); } else { totaddr = i; break; } stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL); if (stcb != NULL) { /* Already have or am bring up an association */ SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_TCB_UNLOCK(stcb); return (EALREADY); } if ((at + incr) > m->m_len) { totaddr = i; break; } sa = (struct sockaddr *)((vaddr_t)sa + incr); } sa = (struct sockaddr *)(totaddrp + 1); SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); #ifdef INET6 if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) && (num_v6 > 0)) { SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); return (EINVAL); } if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) && (num_v4 > 0)) { struct in6pcb *inp6; inp6 = (struct in6pcb *)inp; if (inp6->in6p_flags & IN6P_IPV6_V6ONLY) { /* * if IPV6_V6ONLY flag, ignore connections * destined to a v4 addr or v4-mapped addr */ SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); return EINVAL; } } #endif /* INET6 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == SCTP_PCB_FLAGS_UNBOUND) { /* Bind a ephemeral port */ SCTP_INP_WUNLOCK(inp); error = sctp_inpcb_bind(so, NULL, l); if (error) { SCTP_ASOC_CREATE_UNLOCK(inp); return (error); } } else { SCTP_INP_WUNLOCK(inp); } /* We are GOOD to go */ stcb = sctp_aloc_assoc(inp, sa, 1, &error, 0); if (stcb == NULL) { /* Gak! no memory */ SCTP_ASOC_CREATE_UNLOCK(inp); return (error); } /* move to second address */ if (sa->sa_family == AF_INET) sa = (struct sockaddr *)((vaddr_t)sa + sizeof(struct sockaddr_in)); else sa = (struct sockaddr *)((vaddr_t)sa + sizeof(struct sockaddr_in6)); for (i = 1; i < totaddr; i++) { if (sa->sa_family == AF_INET) { incr = sizeof(struct sockaddr_in); if (sctp_add_remote_addr(stcb, sa, 0, 8)) { /* assoc gone no un-lock */ sctp_free_assoc(inp, stcb); SCTP_ASOC_CREATE_UNLOCK(inp); return (ENOBUFS); } } else if (sa->sa_family == AF_INET6) { incr = sizeof(struct sockaddr_in6); if (sctp_add_remote_addr(stcb, sa, 0, 8)) { /* assoc gone no un-lock */ sctp_free_assoc(inp, stcb); SCTP_ASOC_CREATE_UNLOCK(inp); return (ENOBUFS); } } sa = (struct sockaddr *)((vaddr_t)sa + incr); } stcb->asoc.state = SCTP_STATE_COOKIE_WAIT; if (delay) { /* doing delayed connection */ stcb->asoc.delayed_connection = 1; sctp_timer_start(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination); } else { SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); sctp_send_initiate(inp, stcb); } SCTP_TCB_UNLOCK(stcb); if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; /* Set the connected flag so we can queue data */ soisconnecting(so); } SCTP_ASOC_CREATE_UNLOCK(inp); return error; } static int sctp_optsget(struct socket *so, struct sockopt *sopt) { struct sctp_inpcb *inp; int error, optval=0; int *ovp; struct sctp_tcb *stcb = NULL; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; error = 0; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) { printf("optsget opt:%x sz:%zu\n", sopt->sopt_name, sopt->sopt_size); } #endif /* SCTP_DEBUG */ switch (sopt->sopt_name) { case SCTP_NODELAY: case SCTP_AUTOCLOSE: case SCTP_AUTO_ASCONF: case SCTP_DISABLE_FRAGMENTS: case SCTP_I_WANT_MAPPED_V4_ADDR: #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) { printf("other stuff\n"); } #endif /* SCTP_DEBUG */ SCTP_INP_RLOCK(inp); switch (sopt->sopt_name) { case SCTP_DISABLE_FRAGMENTS: optval = inp->sctp_flags & SCTP_PCB_FLAGS_NO_FRAGMENT; break; case SCTP_I_WANT_MAPPED_V4_ADDR: optval = inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4; break; case SCTP_AUTO_ASCONF: optval = inp->sctp_flags & SCTP_PCB_FLAGS_AUTO_ASCONF; break; case SCTP_NODELAY: optval = inp->sctp_flags & SCTP_PCB_FLAGS_NODELAY; break; case SCTP_AUTOCLOSE: if ((inp->sctp_flags & SCTP_PCB_FLAGS_AUTOCLOSE) == SCTP_PCB_FLAGS_AUTOCLOSE) optval = inp->sctp_ep.auto_close_time; else optval = 0; break; default: error = ENOPROTOOPT; } /* end switch (sopt->sopt_name) */ if (sopt->sopt_name != SCTP_AUTOCLOSE) { /* make it an "on/off" value */ optval = (optval != 0); } if (sopt->sopt_size < sizeof(int)) { error = EINVAL; } SCTP_INP_RUNLOCK(inp); if (error == 0) { /* return the option value */ ovp = sopt->sopt_data; *ovp = optval; sopt->sopt_size = sizeof(optval); } break; case SCTP_GET_ASOC_ID_LIST: { struct sctp_assoc_ids *ids; int cnt, at; u_int16_t orig; if (sopt->sopt_size < sizeof(struct sctp_assoc_ids)) { error = EINVAL; break; } ids = sopt->sopt_data; cnt = 0; SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { none_out_now: ids->asls_numb_present = 0; ids->asls_more_to_get = 0; SCTP_INP_RUNLOCK(inp); break; } orig = ids->asls_assoc_start; stcb = LIST_FIRST(&inp->sctp_asoc_list); while( orig ) { stcb = LIST_NEXT(stcb , sctp_tcblist); orig--; cnt--; } if ( stcb == NULL) goto none_out_now; at = 0; ids->asls_numb_present = 0; ids->asls_more_to_get = 1; while(at < MAX_ASOC_IDS_RET) { ids->asls_assoc_id[at] = sctp_get_associd(stcb); at++; ids->asls_numb_present++; stcb = LIST_NEXT(stcb , sctp_tcblist); if (stcb == NULL) { ids->asls_more_to_get = 0; break; } } SCTP_INP_RUNLOCK(inp); } break; case SCTP_GET_NONCE_VALUES: { struct sctp_get_nonce_values *gnv; if (sopt->sopt_size < sizeof(struct sctp_get_nonce_values)) { error = EINVAL; break; } gnv = sopt->sopt_data; stcb = sctp_findassociation_ep_asocid(inp, gnv->gn_assoc_id); if (stcb == NULL) { error = ENOTCONN; } else { gnv->gn_peers_tag = stcb->asoc.peer_vtag; gnv->gn_local_tag = stcb->asoc.my_vtag; SCTP_TCB_UNLOCK(stcb); } } break; case SCTP_PEER_PUBLIC_KEY: case SCTP_MY_PUBLIC_KEY: case SCTP_SET_AUTH_CHUNKS: case SCTP_SET_AUTH_SECRET: /* not supported yet and until we refine the draft */ error = EOPNOTSUPP; break; case SCTP_DELAYED_ACK_TIME: { int32_t *tm; if (sopt->sopt_size < sizeof(int32_t)) { error = EINVAL; break; } tm = sopt->sopt_data; *tm = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]); } break; case SCTP_GET_SNDBUF_USE: if (sopt->sopt_size < sizeof(struct sctp_sockstat)) { error = EINVAL; } else { struct sctp_sockstat *ss; struct sctp_association *asoc; ss = sopt->sopt_data; stcb = sctp_findassociation_ep_asocid(inp, ss->ss_assoc_id); if (stcb == NULL) { error = ENOTCONN; } else { asoc = &stcb->asoc; ss->ss_total_sndbuf = (u_int32_t)asoc->total_output_queue_size; ss->ss_total_mbuf_sndbuf = (u_int32_t)asoc->total_output_mbuf_queue_size; ss->ss_total_recv_buf = (u_int32_t)(asoc->size_on_delivery_queue + asoc->size_on_reasm_queue + asoc->size_on_all_streams); SCTP_TCB_UNLOCK(stcb); error = 0; sopt->sopt_size = sizeof(struct sctp_sockstat); } } break; case SCTP_MAXBURST: { u_int8_t *burst; burst = sopt->sopt_data; SCTP_INP_RLOCK(inp); *burst = inp->sctp_ep.max_burst; SCTP_INP_RUNLOCK(inp); sopt->sopt_size = sizeof(u_int8_t); } break; case SCTP_MAXSEG: { u_int32_t *segsize; sctp_assoc_t *assoc_id; int ovh; if (sopt->sopt_size < sizeof(u_int32_t)) { error = EINVAL; break; } if (sopt->sopt_size < sizeof(sctp_assoc_t)) { error = EINVAL; break; } assoc_id = sopt->sopt_data; segsize = sopt->sopt_data; sopt->sopt_size = sizeof(u_int32_t); if (((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) || (inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); *segsize = sctp_get_frag_point(stcb, &stcb->asoc); SCTP_TCB_UNLOCK(stcb); } else { SCTP_INP_RUNLOCK(inp); goto skipit; } } else { stcb = sctp_findassociation_ep_asocid(inp, *assoc_id); if (stcb) { *segsize = sctp_get_frag_point(stcb, &stcb->asoc); SCTP_TCB_UNLOCK(stcb); break; } skipit: /* default is to get the max, if I * can't calculate from an existing association. */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ovh = SCTP_MED_OVERHEAD; } else { ovh = SCTP_MED_V4_OVERHEAD; } *segsize = inp->sctp_frag_point - ovh; } } break; case SCTP_SET_DEBUG_LEVEL: #ifdef SCTP_DEBUG { u_int32_t *level; if (sopt->sopt_size < sizeof(u_int32_t)) { error = EINVAL; break; } level = sopt->sopt_data; error = 0; *level = sctp_debug_on; sopt->sopt_size = sizeof(u_int32_t); printf("Returning DEBUG LEVEL %x is set\n", (u_int)sctp_debug_on); } #else /* SCTP_DEBUG */ error = EOPNOTSUPP; #endif break; case SCTP_GET_STAT_LOG: #ifdef SCTP_STAT_LOGGING error = sctp_fill_stat_log(m); #else /* SCTP_DEBUG */ error = EOPNOTSUPP; #endif break; case SCTP_GET_PEGS: { u_int32_t *pt; if (sopt->sopt_size < sizeof(sctp_pegs)) { error = EINVAL; break; } pt = sopt->sopt_data; memcpy(pt, sctp_pegs, sizeof(sctp_pegs)); sopt->sopt_size = sizeof(sctp_pegs); } break; case SCTP_EVENTS: { struct sctp_event_subscribe *events; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) { printf("get events\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_event_subscribe)) { #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) { printf("sopt->sopt_size is %d not %d\n", (int)sopt->sopt_size, (int)sizeof(struct sctp_event_subscribe)); } #endif /* SCTP_DEBUG */ error = EINVAL; break; } events = sopt->sopt_data; memset(events, 0, sopt->sopt_size); SCTP_INP_RLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVDATAIOEVNT) events->sctp_data_io_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVASSOCEVNT) events->sctp_association_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVPADDREVNT) events->sctp_address_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVSENDFAILEVNT) events->sctp_send_failure_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVPEERERR) events->sctp_peer_error_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT) events->sctp_shutdown_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_PDAPIEVNT) events->sctp_partial_delivery_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_ADAPTIONEVNT) events->sctp_adaption_layer_event = 1; if (inp->sctp_flags & SCTP_PCB_FLAGS_STREAM_RESETEVNT) events->sctp_stream_reset_events = 1; SCTP_INP_RUNLOCK(inp); sopt->sopt_size = sizeof(struct sctp_event_subscribe); } break; case SCTP_ADAPTION_LAYER: if (sopt->sopt_size < sizeof(int)) { error = EINVAL; break; } #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("getadaption ind\n"); } #endif /* SCTP_DEBUG */ SCTP_INP_RLOCK(inp); ovp = sopt->sopt_data; *ovp = inp->sctp_ep.adaption_layer_indicator; SCTP_INP_RUNLOCK(inp); sopt->sopt_size = sizeof(int); break; case SCTP_SET_INITIAL_DBG_SEQ: if (sopt->sopt_size < sizeof(int)) { error = EINVAL; break; } #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("get initial dbg seq\n"); } #endif /* SCTP_DEBUG */ SCTP_INP_RLOCK(inp); ovp = sopt->sopt_data; *ovp = inp->sctp_ep.initial_sequence_debug; SCTP_INP_RUNLOCK(inp); sopt->sopt_size = sizeof(int); break; case SCTP_GET_LOCAL_ADDR_SIZE: if (sopt->sopt_size < sizeof(int)) { error = EINVAL; break; } #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("get local sizes\n"); } #endif /* SCTP_DEBUG */ SCTP_INP_RLOCK(inp); ovp = sopt->sopt_data; *ovp = sctp_count_max_addresses(inp); SCTP_INP_RUNLOCK(inp); sopt->sopt_size = sizeof(int); break; case SCTP_GET_REMOTE_ADDR_SIZE: { sctp_assoc_t *assoc_id; u_int32_t *val, sz; struct sctp_nets *net; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("get remote size\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(sctp_assoc_t)) { #ifdef SCTP_DEBUG printf("sopt->sopt_size:%zu not %zu\n", sopt->sopt_size, sizeof(sctp_assoc_t)); #endif /* SCTP_DEBUG */ error = EINVAL; break; } stcb = NULL; val = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } if (stcb == NULL) { assoc_id = sopt->sopt_data; stcb = sctp_findassociation_ep_asocid(inp, *assoc_id); } if (stcb == NULL) { error = EINVAL; break; } *val = 0; sz = 0; /* Count the sizes */ TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) || (rtcache_getdst(&net->ro)->sa_family == AF_INET6)) { sz += sizeof(struct sockaddr_in6); } else if (rtcache_getdst(&net->ro)->sa_family == AF_INET) { sz += sizeof(struct sockaddr_in); } else { /* huh */ break; } } SCTP_TCB_UNLOCK(stcb); *val = sz; sopt->sopt_size = sizeof(u_int32_t); } break; case SCTP_GET_PEER_ADDRESSES: /* * Get the address information, an array * is passed in to fill up we pack it. */ { int cpsz, left; struct sockaddr_storage *sas; struct sctp_nets *net; struct sctp_getaddresses *saddr; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("get peer addresses\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } left = sopt->sopt_size - sizeof(struct sctp_getaddresses); saddr = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, saddr->sget_assoc_id); if (stcb == NULL) { error = ENOENT; break; } sopt->sopt_size = sizeof(struct sctp_getaddresses); sas = (struct sockaddr_storage *)&saddr->addr[0]; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sa_family_t family; family = rtcache_getdst(&net->ro)->sa_family; if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) || (family == AF_INET6)) { cpsz = sizeof(struct sockaddr_in6); } else if (family == AF_INET) { cpsz = sizeof(struct sockaddr_in); } else { /* huh */ break; } if (left < cpsz) { /* not enough room. */ #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("Out of room\n"); } #endif /* SCTP_DEBUG */ break; } if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) && (family == AF_INET)) { /* Must map the address */ in6_sin_2_v4mapsin6((const struct sockaddr_in *) rtcache_getdst(&net->ro), (struct sockaddr_in6 *)sas); } else { memcpy(sas, rtcache_getdst(&net->ro), cpsz); } ((struct sockaddr_in *)sas)->sin_port = stcb->rport; sas = (struct sockaddr_storage *)((vaddr_t)sas + cpsz); left -= cpsz; sopt->sopt_size += cpsz; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) { printf("left now:%d mlen:%zu\n", left, sopt->sopt_size); } #endif /* SCTP_DEBUG */ } SCTP_TCB_UNLOCK(stcb); } #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("All done\n"); } #endif /* SCTP_DEBUG */ break; case SCTP_GET_LOCAL_ADDRESSES: { int limit, actual; struct sockaddr_storage *sas; struct sctp_getaddresses *saddr; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("get local addresses\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } saddr = sopt->sopt_data; if (saddr->sget_assoc_id) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, saddr->sget_assoc_id); } else { stcb = NULL; } /* * assure that the TCP model does not need a assoc id * once connected. */ if ( (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) && (stcb == NULL) ) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } sas = (struct sockaddr_storage *)&saddr->addr[0]; limit = sopt->sopt_size - sizeof(sctp_assoc_t); actual = sctp_fill_up_addresses(inp, stcb, limit, sas); SCTP_TCB_UNLOCK(stcb); sopt->sopt_size = sizeof(struct sockaddr_storage) + actual; } break; case SCTP_PEER_ADDR_PARAMS: { struct sctp_paddrparams *paddrp; struct sctp_nets *net; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("Getting peer_addr_params\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_paddrparams)) { #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) { printf("Hmm m->m_len:%zu is to small\n", sopt->sopt_size); } #endif /* SCTP_DEBUG */ error = EINVAL; break; } paddrp = sopt->sopt_data; net = NULL; if (paddrp->spp_assoc_id) { #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("In spp_assoc_id find type\n"); } #endif /* SCTP_DEBUG */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RLOCK(inp); } else { stcb = sctp_findassociation_ep_asocid(inp, paddrp->spp_assoc_id); } if (stcb == NULL) { error = ENOENT; break; } } if ( (stcb == NULL) && ((((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET) || (((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET6))) { /* Lookup via address */ #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("Ok we need to lookup a param\n"); } #endif /* SCTP_DEBUG */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddrp->spp_address, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } if (stcb == NULL) { error = ENOENT; break; } } else { /* Effects the Endpoint */ #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("User wants EP level info\n"); } #endif /* SCTP_DEBUG */ stcb = NULL; } if (stcb) { /* Applys to the specific association */ #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("In TCB side\n"); } #endif /* SCTP_DEBUG */ if (net) { paddrp->spp_pathmaxrxt = net->failure_threshold; } else { /* No destination so return default value */ paddrp->spp_pathmaxrxt = stcb->asoc.def_net_failure; } paddrp->spp_hbinterval = stcb->asoc.heart_beat_delay; paddrp->spp_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); } else { /* Use endpoint defaults */ SCTP_INP_RLOCK(inp); #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("In EP levle info\n"); } #endif /* SCTP_DEBUG */ paddrp->spp_pathmaxrxt = inp->sctp_ep.def_net_failure; paddrp->spp_hbinterval = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT]; paddrp->spp_assoc_id = (sctp_assoc_t)0; SCTP_INP_RUNLOCK(inp); } sopt->sopt_size = sizeof(struct sctp_paddrparams); } break; case SCTP_GET_PEER_ADDR_INFO: { struct sctp_paddrinfo *paddri; struct sctp_nets *net; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("GetPEER ADDR_INFO\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_paddrinfo)) { error = EINVAL; break; } paddri = sopt->sopt_data; net = NULL; if ((((struct sockaddr *)&paddri->spinfo_address)->sa_family == AF_INET) || (((struct sockaddr *)&paddri->spinfo_address)->sa_family == AF_INET6)) { /* Lookup via address */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddri->spinfo_address); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddri->spinfo_address, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } } else { stcb = NULL; } if ((stcb == NULL) || (net == NULL)) { error = ENOENT; break; } sopt->sopt_size = sizeof(struct sctp_paddrinfo); paddri->spinfo_state = net->dest_state & (SCTP_REACHABLE_MASK|SCTP_ADDR_NOHB); paddri->spinfo_cwnd = net->cwnd; paddri->spinfo_srtt = ((net->lastsa >> 2) + net->lastsv) >> 1; paddri->spinfo_rto = net->RTO; paddri->spinfo_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); } break; case SCTP_PCB_STATUS: { struct sctp_pcbinfo *spcb; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("PCB status\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_pcbinfo)) { error = EINVAL; break; } spcb = sopt->sopt_data; sctp_fill_pcbinfo(spcb); sopt->sopt_size = sizeof(struct sctp_pcbinfo); } break; case SCTP_STATUS: { struct sctp_nets *net; struct sctp_status *sstat; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("SCTP status\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_status)) { error = EINVAL; break; } sstat = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, sstat->sstat_assoc_id); if (stcb == NULL) { error = EINVAL; break; } /* * I think passing the state is fine since * sctp_constants.h will be available to the user * land. */ sstat->sstat_state = stcb->asoc.state; sstat->sstat_rwnd = stcb->asoc.peers_rwnd; sstat->sstat_unackdata = stcb->asoc.sent_queue_cnt; /* * We can't include chunks that have been passed * to the socket layer. Only things in queue. */ sstat->sstat_penddata = (stcb->asoc.cnt_on_delivery_queue + stcb->asoc.cnt_on_reasm_queue + stcb->asoc.cnt_on_all_streams); sstat->sstat_instrms = stcb->asoc.streamincnt; sstat->sstat_outstrms = stcb->asoc.streamoutcnt; sstat->sstat_fragmentation_point = sctp_get_frag_point(stcb, &stcb->asoc); memcpy(&sstat->sstat_primary.spinfo_address, rtcache_getdst(&stcb->asoc.primary_destination->ro), (rtcache_getdst(&stcb->asoc.primary_destination->ro))->sa_len); net = stcb->asoc.primary_destination; ((struct sockaddr_in *)&sstat->sstat_primary.spinfo_address)->sin_port = stcb->rport; /* * Again the user can get info from sctp_constants.h * for what the state of the network is. */ sstat->sstat_primary.spinfo_state = net->dest_state & SCTP_REACHABLE_MASK; sstat->sstat_primary.spinfo_cwnd = net->cwnd; sstat->sstat_primary.spinfo_srtt = net->lastsa; sstat->sstat_primary.spinfo_rto = net->RTO; sstat->sstat_primary.spinfo_mtu = net->mtu; sstat->sstat_primary.spinfo_assoc_id = sctp_get_associd(stcb); SCTP_TCB_UNLOCK(stcb); sopt->sopt_size = sizeof(*sstat); } break; case SCTP_RTOINFO: { struct sctp_rtoinfo *srto; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("RTO Info\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_rtoinfo)) { error = EINVAL; break; } srto = sopt->sopt_data; if (srto->srto_assoc_id == 0) { /* Endpoint only please */ SCTP_INP_RLOCK(inp); srto->srto_initial = inp->sctp_ep.initial_rto; srto->srto_max = inp->sctp_ep.sctp_maxrto; srto->srto_min = inp->sctp_ep.sctp_minrto; SCTP_INP_RUNLOCK(inp); break; } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, srto->srto_assoc_id); if (stcb == NULL) { error = EINVAL; break; } srto->srto_initial = stcb->asoc.initial_rto; srto->srto_max = stcb->asoc.maxrto; srto->srto_min = stcb->asoc.minrto; SCTP_TCB_UNLOCK(stcb); sopt->sopt_size = sizeof(*srto); } break; case SCTP_ASSOCINFO: { struct sctp_assocparams *sasoc; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("Associnfo\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_assocparams)) { error = EINVAL; break; } sasoc = sopt->sopt_data; stcb = NULL; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } if ((sasoc->sasoc_assoc_id) && (stcb == NULL)) { stcb = sctp_findassociation_ep_asocid(inp, sasoc->sasoc_assoc_id); if (stcb == NULL) { error = ENOENT; break; } } else { stcb = NULL; } if (stcb) { sasoc->sasoc_asocmaxrxt = stcb->asoc.max_send_times; sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets; sasoc->sasoc_peer_rwnd = stcb->asoc.peers_rwnd; sasoc->sasoc_local_rwnd = stcb->asoc.my_rwnd; sasoc->sasoc_cookie_life = stcb->asoc.cookie_life; SCTP_TCB_UNLOCK(stcb); } else { SCTP_INP_RLOCK(inp); sasoc->sasoc_asocmaxrxt = inp->sctp_ep.max_send_times; sasoc->sasoc_number_peer_destinations = 0; sasoc->sasoc_peer_rwnd = 0; sasoc->sasoc_local_rwnd = sbspace(&inp->sctp_socket->so_rcv); sasoc->sasoc_cookie_life = inp->sctp_ep.def_cookie_life; SCTP_INP_RUNLOCK(inp); } sopt->sopt_size = sizeof(*sasoc); } break; case SCTP_DEFAULT_SEND_PARAM: { struct sctp_sndrcvinfo *s_info; if (sopt->sopt_size != sizeof(struct sctp_sndrcvinfo)) { error = EINVAL; break; } s_info = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, s_info->sinfo_assoc_id); if (stcb == NULL) { error = ENOENT; break; } /* Copy it out */ *s_info = stcb->asoc.def_send; SCTP_TCB_UNLOCK(stcb); sopt->sopt_size = sizeof(*s_info); } case SCTP_INITMSG: { struct sctp_initmsg *sinit; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("initmsg\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_initmsg)) { error = EINVAL; break; } sinit = sopt->sopt_data; SCTP_INP_RLOCK(inp); sinit->sinit_num_ostreams = inp->sctp_ep.pre_open_stream_count; sinit->sinit_max_instreams = inp->sctp_ep.max_open_streams_intome; sinit->sinit_max_attempts = inp->sctp_ep.max_init_times; sinit->sinit_max_init_timeo = inp->sctp_ep.initial_init_rto_max; SCTP_INP_RUNLOCK(inp); sopt->sopt_size = sizeof(*sinit); } break; case SCTP_PRIMARY_ADDR: /* we allow a "get" operation on this */ { struct sctp_setprim *ssp; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("setprimary\n"); } #endif /* SCTP_DEBUG */ if (sopt->sopt_size < sizeof(struct sctp_setprim)) { error = EINVAL; break; } ssp = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else { stcb = sctp_findassociation_ep_asocid(inp, ssp->ssp_assoc_id); if (stcb == NULL) { /* one last shot, try it by the address in */ struct sctp_nets *net; SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&ssp->ssp_addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } if (stcb == NULL) { error = EINVAL; break; } } /* simply copy out the sockaddr_storage... */ memcpy(&ssp->ssp_addr, rtcache_getdst(&stcb->asoc.primary_destination->ro), (rtcache_getdst(&stcb->asoc.primary_destination->ro))->sa_len); SCTP_TCB_UNLOCK(stcb); sopt->sopt_size = sizeof(*ssp); } break; default: error = ENOPROTOOPT; sopt->sopt_size = 0; break; } /* end switch (sopt->sopt_name) */ return (error); } static int sctp_optsset(struct socket *so, struct sockopt *sopt) { int error, *mopt, set_opt; struct sctp_tcb *stcb = NULL; struct sctp_inpcb *inp; if (sopt->sopt_data == NULL) { #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ1) { printf("optsset:MP is NULL EINVAL\n"); } #endif /* SCTP_DEBUG */ return (EINVAL); } inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) return EINVAL; error = 0; switch (sopt->sopt_name) { case SCTP_NODELAY: case SCTP_AUTOCLOSE: case SCTP_AUTO_ASCONF: case SCTP_DISABLE_FRAGMENTS: case SCTP_I_WANT_MAPPED_V4_ADDR: /* copy in the option value */ if (sopt->sopt_size < sizeof(int)) { error = EINVAL; break; } mopt = sopt->sopt_data; set_opt = 0; if (error) break; switch (sopt->sopt_name) { case SCTP_DISABLE_FRAGMENTS: set_opt = SCTP_PCB_FLAGS_NO_FRAGMENT; break; case SCTP_AUTO_ASCONF: set_opt = SCTP_PCB_FLAGS_AUTO_ASCONF; break; case SCTP_I_WANT_MAPPED_V4_ADDR: if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { set_opt = SCTP_PCB_FLAGS_NEEDS_MAPPED_V4; } else { return (EINVAL); } break; case SCTP_NODELAY: set_opt = SCTP_PCB_FLAGS_NODELAY; break; case SCTP_AUTOCLOSE: set_opt = SCTP_PCB_FLAGS_AUTOCLOSE; /* * The value is in ticks. * Note this does not effect old associations, only * new ones. */ inp->sctp_ep.auto_close_time = (*mopt * hz); break; } SCTP_INP_WLOCK(inp); if (*mopt != 0) { inp->sctp_flags |= set_opt; } else { inp->sctp_flags &= ~set_opt; } SCTP_INP_WUNLOCK(inp); break; case SCTP_MY_PUBLIC_KEY: /* set my public key */ case SCTP_SET_AUTH_CHUNKS: /* set the authenticated chunks required */ case SCTP_SET_AUTH_SECRET: /* set the actual secret for the endpoint */ /* not supported yet and until we refine the draft */ error = EOPNOTSUPP; break; case SCTP_CLR_STAT_LOG: #ifdef SCTP_STAT_LOGGING sctp_clr_stat_log(); #else error = EOPNOTSUPP; #endif break; case SCTP_DELAYED_ACK_TIME: { int32_t *tm; if (sopt->sopt_size < sizeof(int32_t)) { error = EINVAL; break; } tm = sopt->sopt_data; if ((*tm < 10) || (*tm > 500)) { /* can't be smaller than 10ms */ /* MUST NOT be larger than 500ms */ error = EINVAL; break; } inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(*tm); } break; case SCTP_RESET_STREAMS: { struct sctp_stream_reset *strrst; uint8_t two_way, not_peer; if (sopt->sopt_size < sizeof(struct sctp_stream_reset)) { error = EINVAL; break; } strrst = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, strrst->strrst_assoc_id); if (stcb == NULL) { error = ENOENT; break; } if (stcb->asoc.peer_supports_strreset == 0) { /* Peer does not support it, * we return protocol not supported since * this is true for this feature and this * peer, not the socket request in general. */ error = EPROTONOSUPPORT; SCTP_TCB_UNLOCK(stcb); break; } /* Having re-thought this code I added as I write the I-D there * is NO need for it. The peer, if we are requesting a stream-reset * will send a request to us but will itself do what we do, take * and copy off the "reset information" we send and queue TSN's * larger than the send-next in our response message. Thus they * will handle it. */ /* if (stcb->asoc.sending_seq != (stcb->asoc.last_acked_seq + 1)) {*/ /* Must have all sending data ack'd before we * start this procedure. This is a bit restrictive * and we SHOULD work on changing this so ONLY the * streams being RESET get held up. So, a reset-all * would require this.. but a reset specific just * needs to be sure that the ones being reset have * nothing on the send_queue. For now we will * skip this more detailed method and do a course * way.. i.e. nothing pending ... for future FIX ME! */ /* error = EBUSY;*/ /* break;*/ /* }*/ if (stcb->asoc.stream_reset_outstanding) { error = EALREADY; SCTP_TCB_UNLOCK(stcb); break; } if (strrst->strrst_flags == SCTP_RESET_LOCAL_RECV) { two_way = 0; not_peer = 0; } else if (strrst->strrst_flags == SCTP_RESET_LOCAL_SEND) { two_way = 1; not_peer = 1; } else if (strrst->strrst_flags == SCTP_RESET_BOTH) { two_way = 1; not_peer = 0; } else { error = EINVAL; SCTP_TCB_UNLOCK(stcb); break; } sctp_send_str_reset_req(stcb, strrst->strrst_num_streams, strrst->strrst_list, two_way, not_peer); sctp_chunk_output(inp, stcb, 12); SCTP_TCB_UNLOCK(stcb); } break; case SCTP_RESET_PEGS: memset(sctp_pegs, 0, sizeof(sctp_pegs)); error = 0; break; case SCTP_CONNECT_X: if (sopt->sopt_size < (sizeof(int) + sizeof(struct sockaddr_in))) { error = EINVAL; break; } error = sctp_do_connect_x(so, inp, sopt->sopt_data, curlwp, 0); break; case SCTP_CONNECT_X_DELAYED: if (sopt->sopt_size < (sizeof(int) + sizeof(struct sockaddr_in))) { error = EINVAL; break; } error = sctp_do_connect_x(so, inp, sopt->sopt_data, curlwp, 1); break; case SCTP_CONNECT_X_COMPLETE: { struct sockaddr *sa; struct sctp_nets *net; if (sopt->sopt_size < sizeof(struct sockaddr_in)) { error = EINVAL; break; } sa = sopt->sopt_data; /* find tcb */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, sa); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, sa, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } if (stcb == NULL) { error = ENOENT; break; } if (stcb->asoc.delayed_connection == 1) { stcb->asoc.delayed_connection = 0; SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination); sctp_send_initiate(inp, stcb); } else { /* already expired or did not use delayed connectx */ error = EALREADY; } SCTP_TCB_UNLOCK(stcb); } break; case SCTP_MAXBURST: { u_int8_t *burst; SCTP_INP_WLOCK(inp); burst = sopt->sopt_data; if (*burst) { inp->sctp_ep.max_burst = *burst; } SCTP_INP_WUNLOCK(inp); } break; case SCTP_MAXSEG: { u_int32_t *segsize; int ovh; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) { ovh = SCTP_MED_OVERHEAD; } else { ovh = SCTP_MED_V4_OVERHEAD; } segsize = sopt->sopt_data; if (*segsize < 1) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); inp->sctp_frag_point = (*segsize+ovh); if (inp->sctp_frag_point < MHLEN) { inp->sctp_frag_point = MHLEN; } SCTP_INP_WUNLOCK(inp); } break; case SCTP_SET_DEBUG_LEVEL: #ifdef SCTP_DEBUG { u_int32_t *level; if (sopt->sopt_size < sizeof(u_int32_t)) { error = EINVAL; break; } level = sopt->sopt_data; error = 0; sctp_debug_on = (*level & (SCTP_DEBUG_ALL | SCTP_DEBUG_NOISY)); printf("SETTING DEBUG LEVEL to %x\n", (u_int)sctp_debug_on); } #else error = EOPNOTSUPP; #endif /* SCTP_DEBUG */ break; case SCTP_EVENTS: { struct sctp_event_subscribe *events; if (sopt->sopt_size < sizeof(struct sctp_event_subscribe)) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); events = sopt->sopt_data; if (events->sctp_data_io_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_RECVDATAIOEVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVDATAIOEVNT; } if (events->sctp_association_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_RECVASSOCEVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVASSOCEVNT; } if (events->sctp_address_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_RECVPADDREVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVPADDREVNT; } if (events->sctp_send_failure_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_RECVSENDFAILEVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVSENDFAILEVNT; } if (events->sctp_peer_error_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_RECVPEERERR; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVPEERERR; } if (events->sctp_shutdown_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT; } if (events->sctp_partial_delivery_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_PDAPIEVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_PDAPIEVNT; } if (events->sctp_adaption_layer_event) { inp->sctp_flags |= SCTP_PCB_FLAGS_ADAPTIONEVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_ADAPTIONEVNT; } if (events->sctp_stream_reset_events) { inp->sctp_flags |= SCTP_PCB_FLAGS_STREAM_RESETEVNT; } else { inp->sctp_flags &= ~SCTP_PCB_FLAGS_STREAM_RESETEVNT; } SCTP_INP_WUNLOCK(inp); } break; case SCTP_ADAPTION_LAYER: { struct sctp_setadaption *adap_bits; if (sopt->sopt_size < sizeof(struct sctp_setadaption)) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); adap_bits = sopt->sopt_data; inp->sctp_ep.adaption_layer_indicator = adap_bits->ssb_adaption_ind; SCTP_INP_WUNLOCK(inp); } break; case SCTP_SET_INITIAL_DBG_SEQ: { u_int32_t *vvv; if (sopt->sopt_size < sizeof(u_int32_t)) { error = EINVAL; break; } SCTP_INP_WLOCK(inp); vvv = sopt->sopt_data; inp->sctp_ep.initial_sequence_debug = *vvv; SCTP_INP_WUNLOCK(inp); } break; case SCTP_DEFAULT_SEND_PARAM: { struct sctp_sndrcvinfo *s_info; if (sopt->sopt_size != sizeof(struct sctp_sndrcvinfo)) { error = EINVAL; break; } s_info = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, s_info->sinfo_assoc_id); if (stcb == NULL) { error = ENOENT; break; } /* Validate things */ if (s_info->sinfo_stream > stcb->asoc.streamoutcnt) { SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } /* Mask off the flags that are allowed */ s_info->sinfo_flags = (s_info->sinfo_flags & (MSG_UNORDERED | MSG_ADDR_OVER | MSG_PR_SCTP_TTL | MSG_PR_SCTP_BUF)); /* Copy it in */ stcb->asoc.def_send = *s_info; SCTP_TCB_UNLOCK(stcb); } break; case SCTP_PEER_ADDR_PARAMS: { struct sctp_paddrparams *paddrp; struct sctp_nets *net; if (sopt->sopt_size < sizeof(struct sctp_paddrparams)) { error = EINVAL; break; } paddrp = sopt->sopt_data; net = NULL; if (paddrp->spp_assoc_id) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, paddrp->spp_assoc_id); if (stcb == NULL) { error = ENOENT; break; } } if ((stcb == NULL) && ((((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET) || (((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET6))) { /* Lookup via address */ if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address); } SCTP_INP_RUNLOCK(inp); } else { SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&paddrp->spp_address, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } } else { /* Effects the Endpoint */ stcb = NULL; } if (stcb) { /* Applies to the specific association */ if (paddrp->spp_pathmaxrxt) { if (net) { if (paddrp->spp_pathmaxrxt) net->failure_threshold = paddrp->spp_pathmaxrxt; } else { if (paddrp->spp_pathmaxrxt) stcb->asoc.def_net_failure = paddrp->spp_pathmaxrxt; } } if ((paddrp->spp_hbinterval != 0) && (paddrp->spp_hbinterval != 0xffffffff)) { /* Just a set */ int old; if (net) { net->dest_state &= ~SCTP_ADDR_NOHB; } else { old = stcb->asoc.heart_beat_delay; stcb->asoc.heart_beat_delay = paddrp->spp_hbinterval; if (old == 0) { /* Turn back on the timer */ sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); } } } else if (paddrp->spp_hbinterval == 0xffffffff) { /* on demand HB */ sctp_send_hb(stcb, 1, net); } else { if (net == NULL) { /* off on association */ if (stcb->asoc.heart_beat_delay) { int cnt_of_unconf = 0; struct sctp_nets *lnet; TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) { if (lnet->dest_state & SCTP_ADDR_UNCONFIRMED) { cnt_of_unconf++; } } /* stop the timer ONLY if we have no unconfirmed addresses */ if (cnt_of_unconf == 0) sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net); } stcb->asoc.heart_beat_delay = 0; } else { net->dest_state |= SCTP_ADDR_NOHB; } } SCTP_TCB_UNLOCK(stcb); } else { /* Use endpoint defaults */ SCTP_INP_WLOCK(inp); if (paddrp->spp_pathmaxrxt) inp->sctp_ep.def_net_failure = paddrp->spp_pathmaxrxt; if (paddrp->spp_hbinterval != SCTP_ISSUE_HB) inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = paddrp->spp_hbinterval; SCTP_INP_WUNLOCK(inp); } } break; case SCTP_RTOINFO: { struct sctp_rtoinfo *srto; if (sopt->sopt_size < sizeof(struct sctp_rtoinfo)) { error = EINVAL; break; } srto = sopt->sopt_data; if (srto->srto_assoc_id == 0) { SCTP_INP_WLOCK(inp); /* If we have a null asoc, its default for the endpoint */ if (srto->srto_initial > 10) inp->sctp_ep.initial_rto = srto->srto_initial; if (srto->srto_max > 10) inp->sctp_ep.sctp_maxrto = srto->srto_max; if (srto->srto_min > 10) inp->sctp_ep.sctp_minrto = srto->srto_min; SCTP_INP_WUNLOCK(inp); break; } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, srto->srto_assoc_id); if (stcb == NULL) { error = EINVAL; break; } /* Set in ms we hope :-) */ if (srto->srto_initial > 10) stcb->asoc.initial_rto = srto->srto_initial; if (srto->srto_max > 10) stcb->asoc.maxrto = srto->srto_max; if (srto->srto_min > 10) stcb->asoc.minrto = srto->srto_min; SCTP_TCB_UNLOCK(stcb); } break; case SCTP_ASSOCINFO: { struct sctp_assocparams *sasoc; if (sopt->sopt_size < sizeof(struct sctp_assocparams)) { error = EINVAL; break; } sasoc = sopt->sopt_data; if (sasoc->sasoc_assoc_id) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, sasoc->sasoc_assoc_id); if (stcb == NULL) { error = ENOENT; break; } } else { stcb = NULL; } if (stcb) { if (sasoc->sasoc_asocmaxrxt) stcb->asoc.max_send_times = sasoc->sasoc_asocmaxrxt; sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets; sasoc->sasoc_peer_rwnd = 0; sasoc->sasoc_local_rwnd = 0; if (stcb->asoc.cookie_life) stcb->asoc.cookie_life = sasoc->sasoc_cookie_life; SCTP_TCB_UNLOCK(stcb); } else { SCTP_INP_WLOCK(inp); if (sasoc->sasoc_asocmaxrxt) inp->sctp_ep.max_send_times = sasoc->sasoc_asocmaxrxt; sasoc->sasoc_number_peer_destinations = 0; sasoc->sasoc_peer_rwnd = 0; sasoc->sasoc_local_rwnd = 0; if (sasoc->sasoc_cookie_life) inp->sctp_ep.def_cookie_life = sasoc->sasoc_cookie_life; SCTP_INP_WUNLOCK(inp); } } break; case SCTP_INITMSG: { struct sctp_initmsg *sinit; if (sopt->sopt_size < sizeof(struct sctp_initmsg)) { error = EINVAL; break; } sinit = sopt->sopt_data; SCTP_INP_WLOCK(inp); if (sinit->sinit_num_ostreams) inp->sctp_ep.pre_open_stream_count = sinit->sinit_num_ostreams; if (sinit->sinit_max_instreams) inp->sctp_ep.max_open_streams_intome = sinit->sinit_max_instreams; if (sinit->sinit_max_attempts) inp->sctp_ep.max_init_times = sinit->sinit_max_attempts; if (sinit->sinit_max_init_timeo > 10) /* We must be at least a 100ms (we set in ticks) */ inp->sctp_ep.initial_init_rto_max = sinit->sinit_max_init_timeo; SCTP_INP_WUNLOCK(inp); } break; case SCTP_PRIMARY_ADDR: { struct sctp_setprim *spa; struct sctp_nets *net, *lnet; if (sopt->sopt_size < sizeof(struct sctp_setprim)) { error = EINVAL; break; } spa = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } else { error = EINVAL; break; } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, spa->ssp_assoc_id); if (stcb == NULL) { /* One last shot */ SCTP_INP_WLOCK(inp); SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, (struct sockaddr *)&spa->ssp_addr, &net, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); error = EINVAL; break; } } else { /* find the net, associd or connected lookup type */ net = sctp_findnet(stcb, (struct sockaddr *)&spa->ssp_addr); if (net == NULL) { SCTP_TCB_UNLOCK(stcb); error = EINVAL; break; } } if ((net != stcb->asoc.primary_destination) && (!(net->dest_state & SCTP_ADDR_UNCONFIRMED))) { /* Ok we need to set it */ lnet = stcb->asoc.primary_destination; lnet->next_tsn_at_change = net->next_tsn_at_change = stcb->asoc.sending_seq; if (sctp_set_primary_addr(stcb, (struct sockaddr *)NULL, net) == 0) { if (net->dest_state & SCTP_ADDR_SWITCH_PRIMARY) { net->dest_state |= SCTP_ADDR_DOUBLE_SWITCH; } net->dest_state |= SCTP_ADDR_SWITCH_PRIMARY; } } SCTP_TCB_UNLOCK(stcb); } break; case SCTP_SET_PEER_PRIMARY_ADDR: { struct sctp_setpeerprim *sspp; if (sopt->sopt_size < sizeof(struct sctp_setpeerprim)) { error = EINVAL; break; } sspp = sopt->sopt_data; if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_UNLOCK(stcb); } SCTP_INP_RUNLOCK(inp); } else stcb = sctp_findassociation_ep_asocid(inp, sspp->sspp_assoc_id); if (stcb == NULL) { error = EINVAL; break; } if (sctp_set_primary_ip_address_sa(stcb, (struct sockaddr *)&sspp->sspp_addr) != 0) { error = EINVAL; } SCTP_TCB_UNLOCK(stcb); } break; case SCTP_BINDX_ADD_ADDR: { struct sctp_getaddresses *addrs; struct sockaddr *addr_touse; struct sockaddr_in sin; /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { error = EINVAL; break; } if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } addrs = sopt->sopt_data; addr_touse = addrs->addr; if (addrs->addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr_touse; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin, sin6); addr_touse = (struct sockaddr *)&sin; } } if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { error = sctp_inpcb_bind(so, addr_touse, curlwp); break; } /* No locks required here since bind and mgmt_ep_sa all * do their own locking. If we do something for the FIX: * below we may need to lock in that case. */ if (addrs->sget_assoc_id == 0) { /* add the address */ struct sctp_inpcb *lep; ((struct sockaddr_in *)addr_touse)->sin_port = inp->sctp_lport; lep = sctp_pcb_findep(addr_touse, 1, 0); if (lep != NULL) { /* We must decrement the refcount * since we have the ep already and * are binding. No remove going on * here. */ SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } if (lep == inp) { /* already bound to it.. ok */ break; } else if (lep == NULL) { ((struct sockaddr_in *)addr_touse)->sin_port = 0; error = sctp_addr_mgmt_ep_sa(inp, addr_touse, SCTP_ADD_IP_ADDRESS); } else { error = EADDRNOTAVAIL; } if (error) break; } else { /* FIX: decide whether we allow assoc based bindx */ } } break; case SCTP_BINDX_REM_ADDR: { struct sctp_getaddresses *addrs; struct sockaddr *addr_touse; struct sockaddr_in sin; /* see if we're bound all already! */ if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { error = EINVAL; break; } if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) { error = EINVAL; break; } addrs = sopt->sopt_data; addr_touse = addrs->addr; if (addrs->addr->sa_family == AF_INET6) { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)addr_touse; if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) { in6_sin6_2_sin(&sin, sin6); addr_touse = (struct sockaddr *)&sin; } } /* No lock required mgmt_ep_sa does its own locking. If * the FIX: below is ever changed we may need to * lock before calling association level binding. */ if (addrs->sget_assoc_id == 0) { /* delete the address */ sctp_addr_mgmt_ep_sa(inp, addr_touse, SCTP_DEL_IP_ADDRESS); } else { /* FIX: decide whether we allow assoc based bindx */ } } break; default: error = ENOPROTOOPT; break; } /* end switch (opt) */ return (error); } int sctp_ctloutput(int op, struct socket *so, struct sockopt *sopt) { int s, error = 0; struct inpcb *inp; #ifdef INET6 struct in6pcb *in6p; #endif int family; /* family of the socket */ family = so->so_proto->pr_domain->dom_family; s = splsoftnet(); switch (family) { case PF_INET: inp = sotoinpcb(so); #ifdef INET6 in6p = NULL; #endif break; #ifdef INET6 case PF_INET6: inp = NULL; in6p = sotoin6pcb(so); break; #endif default: splx(s); return EAFNOSUPPORT; } #ifndef INET6 if (inp == NULL) #else if (inp == NULL && in6p == NULL) #endif { splx(s); return (ECONNRESET); } if (sopt->sopt_level != IPPROTO_SCTP) { switch (family) { case PF_INET: error = ip_ctloutput(op, so, sopt); break; #ifdef INET6 case PF_INET6: error = ip6_ctloutput(op, so, sopt); break; #endif } splx(s); return (error); } /* Ok if we reach here it is a SCTP option we hope */ if (op == PRCO_SETOPT) { error = sctp_optsset(so, sopt); } else if (op == PRCO_GETOPT) { error = sctp_optsget(so, sopt); } else { error = EINVAL; } splx(s); return (error); } static int sctp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l) { int error = 0; struct sctp_inpcb *inp; struct sctp_tcb *stcb; KASSERT(solocked(so)); #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_PCB1) { printf("Connect called in SCTP to "); sctp_print_address(nam); printf("Port %d\n", ntohs(((struct sockaddr_in *)nam)->sin_port)); } #endif /* SCTP_DEBUG */ inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { /* I made the same as TCP since we are not setup? */ return (ECONNRESET); } SCTP_ASOC_CREATE_LOCK(inp); #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_PCB1) { printf("After ASOC lock\n"); } #endif /* SCTP_DEBUG */ SCTP_INP_WLOCK(inp); #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_PCB1) { printf("After INP_WLOCK lock\n"); } #endif /* SCTP_DEBUG */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) || (inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) { /* Should I really unlock ? */ SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); return (EFAULT); } #ifdef INET6 if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) && (nam->sa_family == AF_INET6)) { SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); return (EINVAL); } #endif /* INET6 */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) == SCTP_PCB_FLAGS_UNBOUND) { /* Bind a ephemeral port */ SCTP_INP_WUNLOCK(inp); error = sctp_inpcb_bind(so, NULL, l); if (error) { SCTP_ASOC_CREATE_UNLOCK(inp); return (error); } SCTP_INP_WLOCK(inp); } #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_PCB1) { printf("After bind\n"); } #endif /* SCTP_DEBUG */ /* Now do we connect? */ if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ SCTP_INP_WUNLOCK(inp); SCTP_ASOC_CREATE_UNLOCK(inp); return (EADDRINUSE); } if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_UNLOCK(stcb); } SCTP_INP_WUNLOCK(inp); } else { SCTP_INP_INCR_REF(inp); SCTP_INP_WUNLOCK(inp); stcb = sctp_findassociation_ep_addr(&inp, nam, NULL, NULL, NULL); if (stcb == NULL) { SCTP_INP_WLOCK(inp); SCTP_INP_DECR_REF(inp); SCTP_INP_WUNLOCK(inp); } } if (stcb != NULL) { /* Already have or am bring up an association */ SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_TCB_UNLOCK(stcb); return (EALREADY); } /* We are GOOD to go */ stcb = sctp_aloc_assoc(inp, nam, 1, &error, 0); if (stcb == NULL) { /* Gak! no memory */ return (error); } if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) { stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED; /* Set the connected flag so we can queue data */ soisconnecting(so); } stcb->asoc.state = SCTP_STATE_COOKIE_WAIT; SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered); sctp_send_initiate(inp, stcb); SCTP_ASOC_CREATE_UNLOCK(inp); SCTP_TCB_UNLOCK(stcb); return error; } static int sctp_connect2(struct socket *so, struct socket *so2) { KASSERT(solocked(so)); return EOPNOTSUPP; } int sctp_rcvd(struct socket *so, int flags, struct lwp *l) { struct sctp_socket_q_list *sq=NULL; /* * The user has received some data, we may be able to stuff more * up the socket. And we need to possibly update the rwnd. */ struct sctp_inpcb *inp; struct sctp_tcb *stcb=NULL; inp = (struct sctp_inpcb *)so->so_pcb; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) printf("Read for so:%p inp:%p Flags:%x\n", so, inp, flags); #endif if (inp == 0) { /* I made the same as TCP since we are not setup? */ #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) printf("Nope, connection reset\n"); #endif return (ECONNRESET); } /* * Grab the first one on the list. It will re-insert itself if * it runs out of room */ SCTP_INP_WLOCK(inp); if ((flags & MSG_EOR) && ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) && ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { /* Ok the other part of our grubby tracking * stuff for our horrible layer violation that * the tsvwg thinks is ok for sctp_peeloff.. gak! * We must update the next vtag pending on the * socket buffer (if any). */ inp->sctp_vtag_first = sctp_get_first_vtag_from_sb(so); sq = TAILQ_FIRST(&inp->sctp_queue_list); if (sq) { stcb = sq->tcb; } else { stcb = NULL; } } else { stcb = LIST_FIRST(&inp->sctp_asoc_list); } if (stcb) { SCTP_TCB_LOCK(stcb); } if (stcb) { long incr; /* all code in normal stcb path assumes * that you have a tcb_lock only. Thus * we must release the inp write lock. */ if (flags & MSG_EOR) { if (((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) && ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { stcb = sctp_remove_from_socket_q(inp); } #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) printf("remove from socket queue for inp:%p tcbret:%p\n", inp, stcb); #endif stcb->asoc.my_rwnd_control_len = sctp_sbspace_sub(stcb->asoc.my_rwnd_control_len, sizeof(struct mbuf)); if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVDATAIOEVNT) { stcb->asoc.my_rwnd_control_len = sctp_sbspace_sub(stcb->asoc.my_rwnd_control_len, CMSG_LEN(sizeof(struct sctp_sndrcvinfo))); } } if ((TAILQ_EMPTY(&stcb->asoc.delivery_queue) == 0) || (TAILQ_EMPTY(&stcb->asoc.reasmqueue) == 0)) { /* Deliver if there is something to be delivered */ sctp_service_queues(stcb, &stcb->asoc, 1); } sctp_set_rwnd(stcb, &stcb->asoc); /* if we increase by 1 or more MTU's (smallest MTUs of all * nets) we send a window update sack */ incr = stcb->asoc.my_rwnd - stcb->asoc.my_last_reported_rwnd; if (incr < 0) { incr = 0; } if (((uint32_t)incr >= (stcb->asoc.smallest_mtu * SCTP_SEG_TO_RWND_UPD)) || ((((uint32_t)incr)*SCTP_SCALE_OF_RWND_TO_UPD) >= so->so_rcv.sb_hiwat)) { if (callout_pending(&stcb->asoc.dack_timer.timer)) { /* If the timer is up, stop it */ sctp_timer_stop(SCTP_TIMER_TYPE_RECV, stcb->sctp_ep, stcb, NULL); } /* Send the sack, with the new rwnd */ sctp_send_sack(stcb); /* Now do the output */ sctp_chunk_output(inp, stcb, 10); } } else { if ((( sq ) && (flags & MSG_EOR) && ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0)) && ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { stcb = sctp_remove_from_socket_q(inp); } } if ((so->so_rcv.sb_mb == NULL) && (TAILQ_EMPTY(&inp->sctp_queue_list) == 0)) { int sq_cnt=0; #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) printf("Something off, inp:%p so->so_rcv->sb_mb is empty and sockq is not.. cleaning\n", inp); #endif if (((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0) && ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { int done_yet; done_yet = TAILQ_EMPTY(&inp->sctp_queue_list); while (!done_yet) { sq_cnt++; (void)sctp_remove_from_socket_q(inp); done_yet = TAILQ_EMPTY(&inp->sctp_queue_list); } } #ifdef SCTP_DEBUG if (sctp_debug_on & SCTP_DEBUG_USRREQ2) printf("Cleaned up %d sockq's\n", sq_cnt); #endif } if (stcb) { SCTP_TCB_UNLOCK(stcb); } SCTP_INP_WUNLOCK(inp); return (0); } int sctp_listen(struct socket *so, struct lwp *l) { /* * Note this module depends on the protocol processing being * called AFTER any socket level flags and backlog are applied * to the socket. The traditional way that the socket flags are * applied is AFTER protocol processing. We have made a change * to the sys/kern/uipc_socket.c module to reverse this but this * MUST be in place if the socket API for SCTP is to work properly. */ int error = 0; struct sctp_inpcb *inp; inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { /* I made the same as TCP since we are not setup? */ return (ECONNRESET); } SCTP_INP_RLOCK(inp); if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) && (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) { /* We are already connected AND the TCP model */ SCTP_INP_RUNLOCK(inp); return (EADDRINUSE); } if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) { /* We must do a bind. */ SCTP_INP_RUNLOCK(inp); if ((error = sctp_inpcb_bind(so, NULL, l))) { /* bind error, probably perm */ return (error); } } else { SCTP_INP_RUNLOCK(inp); } SCTP_INP_WLOCK(inp); if (inp->sctp_socket->so_qlimit) { if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) { /* * For the UDP model we must TURN OFF the ACCEPT * flags since we do NOT allow the accept() call. * The TCP model (when present) will do accept which * then prohibits connect(). */ inp->sctp_socket->so_options &= ~SO_ACCEPTCONN; } inp->sctp_flags |= SCTP_PCB_FLAGS_ACCEPTING; } else { if (inp->sctp_flags & SCTP_PCB_FLAGS_ACCEPTING) { /* * Turning off the listen flags if the backlog is * set to 0 (i.e. qlimit is 0). */ inp->sctp_flags &= ~SCTP_PCB_FLAGS_ACCEPTING; } inp->sctp_socket->so_options &= ~SO_ACCEPTCONN; } SCTP_INP_WUNLOCK(inp); return (error); } int sctp_accept(struct socket *so, struct sockaddr *nam) { struct sctp_tcb *stcb; const struct sockaddr *prim; struct sctp_inpcb *inp; int error; if (nam == NULL) { return EINVAL; } inp = (struct sctp_inpcb *)so->so_pcb; if (inp == 0) { return ECONNRESET; } SCTP_INP_RLOCK(inp); if (so->so_state & SS_ISDISCONNECTED) { SCTP_INP_RUNLOCK(inp); return ECONNABORTED; } stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { SCTP_INP_RUNLOCK(inp); return ECONNRESET; } SCTP_TCB_LOCK(stcb); SCTP_INP_RUNLOCK(inp); prim = (const struct sockaddr *)rtcache_getdst(&stcb->asoc.primary_destination->ro); if (prim->sa_family == AF_INET) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)nam; memset((void *)sin, 0, sizeof (*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); sin->sin_port = ((const struct sockaddr_in *)prim)->sin_port; sin->sin_addr = ((const struct sockaddr_in *)prim)->sin_addr; } else { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)nam; memset((void *)sin6, 0, sizeof (*sin6)); sin6->sin6_family = AF_INET6; sin6->sin6_len = sizeof(*sin6); sin6->sin6_port = ((const struct sockaddr_in6 *)prim)->sin6_port; sin6->sin6_addr = ((const struct sockaddr_in6 *)prim)->sin6_addr; if ((error = sa6_recoverscope(sin6)) != 0) return error; } /* Wake any delayed sleep action */ SCTP_TCB_UNLOCK(stcb); SCTP_INP_WLOCK(inp); if (inp->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_DONT_WAKE; if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT; if (sowritable(inp->sctp_socket)) sowwakeup(inp->sctp_socket); } if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT) { inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT; if (soreadable(inp->sctp_socket)) sorwakeup(inp->sctp_socket); } } SCTP_INP_WUNLOCK(inp); return 0; } static int sctp_stat(struct socket *so, struct stat *ub) { return 0; } int sctp_sockaddr(struct socket *so, struct sockaddr *nam) { struct sockaddr_in *sin = (struct sockaddr_in *)nam; struct sctp_inpcb *inp; memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); inp = (struct sctp_inpcb *)so->so_pcb; if (!inp) { return ECONNRESET; } SCTP_INP_RLOCK(inp); sin->sin_port = inp->sctp_lport; if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) { if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) { struct sctp_tcb *stcb; const struct sockaddr_in *sin_a; struct sctp_nets *net; int fnd; stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb == NULL) { goto notConn; } fnd = 0; sin_a = NULL; SCTP_TCB_LOCK(stcb); TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a = (const struct sockaddr_in *)rtcache_getdst(&net->ro); if (sin_a->sin_family == AF_INET) { fnd = 1; break; } } if ((!fnd) || (sin_a == NULL)) { /* punt */ SCTP_TCB_UNLOCK(stcb); goto notConn; } sin->sin_addr = sctp_ipv4_source_address_selection(inp, stcb, (struct route *)&net->ro, net, 0); SCTP_TCB_UNLOCK(stcb); } else { /* For the bound all case you get back 0 */ notConn: sin->sin_addr.s_addr = 0; } } else { /* Take the first IPv4 address in the list */ struct sctp_laddr *laddr; int fnd = 0; LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) { if (laddr->ifa->ifa_addr->sa_family == AF_INET) { struct sockaddr_in *sin_a; sin_a = (struct sockaddr_in *)laddr->ifa->ifa_addr; sin->sin_addr = sin_a->sin_addr; fnd = 1; break; } } if (!fnd) { SCTP_INP_RUNLOCK(inp); return ENOENT; } } SCTP_INP_RUNLOCK(inp); return (0); } int sctp_peeraddr(struct socket *so, struct sockaddr *nam) { struct sockaddr_in *sin = (struct sockaddr_in *)nam; int fnd; const struct sockaddr_in *sin_a; struct sctp_inpcb *inp; struct sctp_tcb *stcb; struct sctp_nets *net; /* Do the malloc first in case it blocks. */ inp = (struct sctp_inpcb *)so->so_pcb; if ((inp == NULL) || ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) { /* UDP type and listeners will drop out here */ return (ENOTCONN); } memset(sin, 0, sizeof(*sin)); sin->sin_family = AF_INET; sin->sin_len = sizeof(*sin); /* We must recapture incase we blocked */ inp = (struct sctp_inpcb *)so->so_pcb; if (!inp) { return ECONNRESET; } SCTP_INP_RLOCK(inp); stcb = LIST_FIRST(&inp->sctp_asoc_list); if (stcb) { SCTP_TCB_LOCK(stcb); } SCTP_INP_RUNLOCK(inp); if (stcb == NULL) { return ECONNRESET; } fnd = 0; TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) { sin_a = (const struct sockaddr_in *)rtcache_getdst(&net->ro); if (sin_a->sin_family == AF_INET) { fnd = 1; sin->sin_port = stcb->rport; sin->sin_addr = sin_a->sin_addr; break; } } SCTP_TCB_UNLOCK(stcb); if (!fnd) { /* No IPv4 address */ return ENOENT; } return (0); } static int sctp_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control) { KASSERT(solocked(so)); m_freem(m); m_freem(control); return EOPNOTSUPP; } static int sctp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp) { int error = 0; int family; family = so->so_proto->pr_domain->dom_family; switch (family) { #ifdef INET case PF_INET: error = in_control(so, cmd, nam, ifp); break; #endif #ifdef INET6 case PF_INET6: error = in6_control(so, cmd, nam, ifp); break; #endif default: error = EAFNOSUPPORT; } return (error); } static int sctp_purgeif(struct socket *so, struct ifnet *ifp) { struct ifaddr *ifa; IFADDR_READER_FOREACH(ifa, ifp) { if (ifa->ifa_addr->sa_family == PF_INET) { sctp_delete_ip_address(ifa); } } mutex_enter(softnet_lock); in_purgeif(ifp); mutex_exit(softnet_lock); return 0; } /* * Sysctl for sctp variables. */ SYSCTL_SETUP(sysctl_net_inet_sctp_setup, "sysctl net.inet.sctp subtree setup") { sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "net", NULL, NULL, 0, NULL, 0, CTL_NET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "inet", NULL, NULL, 0, NULL, 0, CTL_NET, PF_INET, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT, CTLTYPE_NODE, "sctp", SYSCTL_DESCR("sctp related settings"), NULL, 0, NULL, 0, CTL_NET, PF_INET, IPPROTO_SCTP, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxdgram", SYSCTL_DESCR("Maximum outgoing SCTP buffer size"), NULL, 0, &sctp_sendspace, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_MAXDGRAM, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "recvspace", SYSCTL_DESCR("Maximum incoming SCTP buffer size"), NULL, 0, &sctp_recvspace, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_RECVSPACE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "autoasconf", SYSCTL_DESCR("Enable SCTP Auto-ASCONF"), NULL, 0, &sctp_auto_asconf, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_AUTOASCONF, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "ecn_enable", SYSCTL_DESCR("Enable SCTP ECN"), NULL, 0, &sctp_ecn, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_ECN_ENABLE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "ecn_nonce", SYSCTL_DESCR("Enable SCTP ECN Nonce"), NULL, 0, &sctp_ecn_nonce, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_ECN_NONCE, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "strict_sack", SYSCTL_DESCR("Enable SCTP Strict SACK checking"), NULL, 0, &sctp_strict_sacks, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_STRICT_SACK, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "loopback_nocsum", SYSCTL_DESCR("Enable NO Csum on packets sent on loopback"), NULL, 0, &sctp_no_csum_on_loopback, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_NOCSUM_LO, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "strict_init", SYSCTL_DESCR("Enable strict INIT/INIT-ACK singleton enforcement"), NULL, 0, &sctp_strict_init, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_STRICT_INIT, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "peer_chkoh", SYSCTL_DESCR("Amount to debit peers rwnd per chunk sent"), NULL, 0, &sctp_peer_chunk_oh, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_PEER_CHK_OH, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxburst", SYSCTL_DESCR("Default max burst for sctp endpoints"), NULL, 0, &sctp_max_burst_default, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_MAXBURST, CTL_EOL); sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "maxchunks", SYSCTL_DESCR("Default max chunks on queue per asoc"), NULL, 0, &sctp_max_chunks_on_queue, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_MAXCHUNKONQ, CTL_EOL); #ifdef SCTP_DEBUG sysctl_createv(clog, 0, NULL, NULL, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Configure debug output"), NULL, 0, &sctp_debug_on, 0, CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_DEBUG, CTL_EOL); #endif } PR_WRAP_USRREQS(sctp) #define sctp_attach sctp_attach_wrapper #define sctp_detach sctp_detach_wrapper #define sctp_accept sctp_accept_wrapper #define sctp_bind sctp_bind_wrapper #define sctp_listen sctp_listen_wrapper #define sctp_connect sctp_connect_wrapper #define sctp_connect2 sctp_connect2_wrapper #define sctp_disconnect sctp_disconnect_wrapper #define sctp_shutdown sctp_shutdown_wrapper #define sctp_abort sctp_abort_wrapper #define sctp_ioctl sctp_ioctl_wrapper #define sctp_stat sctp_stat_wrapper #define sctp_peeraddr sctp_peeraddr_wrapper #define sctp_sockaddr sctp_sockaddr_wrapper #define sctp_rcvd sctp_rcvd_wrapper #define sctp_recvoob sctp_recvoob_wrapper #define sctp_send sctp_send_wrapper #define sctp_sendoob sctp_sendoob_wrapper #define sctp_purgeif sctp_purgeif_wrapper const struct pr_usrreqs sctp_usrreqs = { .pr_attach = sctp_attach, .pr_detach = sctp_detach, .pr_accept = sctp_accept, .pr_bind = sctp_bind, .pr_listen = sctp_listen, .pr_connect = sctp_connect, .pr_connect2 = sctp_connect2, .pr_disconnect = sctp_disconnect, .pr_shutdown = sctp_shutdown, .pr_abort = sctp_abort, .pr_ioctl = sctp_ioctl, .pr_stat = sctp_stat, .pr_peeraddr = sctp_peeraddr, .pr_sockaddr = sctp_sockaddr, .pr_rcvd = sctp_rcvd, .pr_recvoob = sctp_recvoob, .pr_send = sctp_send, .pr_sendoob = sctp_sendoob, .pr_purgeif = sctp_purgeif, };