/* $NetBSD: lfs_vnops.c,v 1.315.2.1 2017/10/30 09:29:04 snj Exp $ */ /*- * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Konrad E. Schroder . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1986, 1989, 1991, 1993, 1995 * The Regents of the University of California. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95 */ /* from NetBSD: ufs_vnops.c,v 1.232 2016/05/19 18:32:03 riastradh Exp */ /*- * Copyright (c) 2008 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Wasabi Systems, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1982, 1986, 1989, 1993, 1995 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)ufs_vnops.c 8.28 (Berkeley) 7/31/95 */ #include __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.315.2.1 2017/10/30 09:29:04 snj Exp $"); #ifdef _KERNEL_OPT #include "opt_compat_netbsd.h" #include "opt_uvm_page_trkown.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern kcondvar_t lfs_writerd_cv; int lfs_ignore_lazy_sync = 1; static int lfs_openextattr(void *v); static int lfs_closeextattr(void *v); static int lfs_getextattr(void *v); static int lfs_setextattr(void *v); static int lfs_listextattr(void *v); static int lfs_deleteextattr(void *v); static int lfs_makeinode(struct vattr *vap, struct vnode *, const struct ulfs_lookup_results *, struct vnode **, struct componentname *); /* Global vfs data structures for lfs. */ int (**lfs_vnodeop_p)(void *); const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, ulfs_lookup }, /* lookup */ { &vop_create_desc, lfs_create }, /* create */ { &vop_whiteout_desc, ulfs_whiteout }, /* whiteout */ { &vop_mknod_desc, lfs_mknod }, /* mknod */ { &vop_open_desc, ulfs_open }, /* open */ { &vop_close_desc, lfs_close }, /* close */ { &vop_access_desc, ulfs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, lfs_read }, /* read */ { &vop_write_desc, lfs_write }, /* write */ { &vop_fallocate_desc, genfs_eopnotsupp }, /* fallocate */ { &vop_fdiscard_desc, genfs_eopnotsupp }, /* fdiscard */ { &vop_ioctl_desc, ulfs_ioctl }, /* ioctl */ { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */ { &vop_poll_desc, ulfs_poll }, /* poll */ { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */ { &vop_revoke_desc, ulfs_revoke }, /* revoke */ { &vop_mmap_desc, lfs_mmap }, /* mmap */ { &vop_fsync_desc, lfs_fsync }, /* fsync */ { &vop_seek_desc, ulfs_seek }, /* seek */ { &vop_remove_desc, lfs_remove }, /* remove */ { &vop_link_desc, lfs_link }, /* link */ { &vop_rename_desc, lfs_rename }, /* rename */ { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */ { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */ { &vop_symlink_desc, lfs_symlink }, /* symlink */ { &vop_readdir_desc, ulfs_readdir }, /* readdir */ { &vop_readlink_desc, ulfs_readlink }, /* readlink */ { &vop_abortop_desc, ulfs_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ulfs_lock }, /* lock */ { &vop_unlock_desc, ulfs_unlock }, /* unlock */ { &vop_bmap_desc, ulfs_bmap }, /* bmap */ { &vop_strategy_desc, lfs_strategy }, /* strategy */ { &vop_print_desc, ulfs_print }, /* print */ { &vop_islocked_desc, ulfs_islocked }, /* islocked */ { &vop_pathconf_desc, ulfs_pathconf }, /* pathconf */ { &vop_advlock_desc, ulfs_advlock }, /* advlock */ { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */ { &vop_getpages_desc, lfs_getpages }, /* getpages */ { &vop_putpages_desc, lfs_putpages }, /* putpages */ { &vop_openextattr_desc, lfs_openextattr }, /* openextattr */ { &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */ { &vop_getextattr_desc, lfs_getextattr }, /* getextattr */ { &vop_setextattr_desc, lfs_setextattr }, /* setextattr */ { &vop_listextattr_desc, lfs_listextattr }, /* listextattr */ { &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */ { NULL, NULL } }; const struct vnodeopv_desc lfs_vnodeop_opv_desc = { &lfs_vnodeop_p, lfs_vnodeop_entries }; int (**lfs_specop_p)(void *); const struct vnodeopv_entry_desc lfs_specop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, spec_lookup }, /* lookup */ { &vop_create_desc, spec_create }, /* create */ { &vop_mknod_desc, spec_mknod }, /* mknod */ { &vop_open_desc, spec_open }, /* open */ { &vop_close_desc, lfsspec_close }, /* close */ { &vop_access_desc, ulfs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, ulfsspec_read }, /* read */ { &vop_write_desc, ulfsspec_write }, /* write */ { &vop_fallocate_desc, spec_fallocate }, /* fallocate */ { &vop_fdiscard_desc, spec_fdiscard }, /* fdiscard */ { &vop_ioctl_desc, spec_ioctl }, /* ioctl */ { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */ { &vop_poll_desc, spec_poll }, /* poll */ { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */ { &vop_revoke_desc, spec_revoke }, /* revoke */ { &vop_mmap_desc, spec_mmap }, /* mmap */ { &vop_fsync_desc, spec_fsync }, /* fsync */ { &vop_seek_desc, spec_seek }, /* seek */ { &vop_remove_desc, spec_remove }, /* remove */ { &vop_link_desc, spec_link }, /* link */ { &vop_rename_desc, spec_rename }, /* rename */ { &vop_mkdir_desc, spec_mkdir }, /* mkdir */ { &vop_rmdir_desc, spec_rmdir }, /* rmdir */ { &vop_symlink_desc, spec_symlink }, /* symlink */ { &vop_readdir_desc, spec_readdir }, /* readdir */ { &vop_readlink_desc, spec_readlink }, /* readlink */ { &vop_abortop_desc, spec_abortop }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ulfs_lock }, /* lock */ { &vop_unlock_desc, ulfs_unlock }, /* unlock */ { &vop_bmap_desc, spec_bmap }, /* bmap */ { &vop_strategy_desc, spec_strategy }, /* strategy */ { &vop_print_desc, ulfs_print }, /* print */ { &vop_islocked_desc, ulfs_islocked }, /* islocked */ { &vop_pathconf_desc, spec_pathconf }, /* pathconf */ { &vop_advlock_desc, spec_advlock }, /* advlock */ { &vop_bwrite_desc, vn_bwrite }, /* bwrite */ { &vop_getpages_desc, spec_getpages }, /* getpages */ { &vop_putpages_desc, spec_putpages }, /* putpages */ { &vop_openextattr_desc, lfs_openextattr }, /* openextattr */ { &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */ { &vop_getextattr_desc, lfs_getextattr }, /* getextattr */ { &vop_setextattr_desc, lfs_setextattr }, /* setextattr */ { &vop_listextattr_desc, lfs_listextattr }, /* listextattr */ { &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */ { NULL, NULL } }; const struct vnodeopv_desc lfs_specop_opv_desc = { &lfs_specop_p, lfs_specop_entries }; int (**lfs_fifoop_p)(void *); const struct vnodeopv_entry_desc lfs_fifoop_entries[] = { { &vop_default_desc, vn_default_error }, { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */ { &vop_create_desc, vn_fifo_bypass }, /* create */ { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */ { &vop_open_desc, vn_fifo_bypass }, /* open */ { &vop_close_desc, lfsfifo_close }, /* close */ { &vop_access_desc, ulfs_access }, /* access */ { &vop_getattr_desc, lfs_getattr }, /* getattr */ { &vop_setattr_desc, lfs_setattr }, /* setattr */ { &vop_read_desc, ulfsfifo_read }, /* read */ { &vop_write_desc, ulfsfifo_write }, /* write */ { &vop_fallocate_desc, vn_fifo_bypass }, /* fallocate */ { &vop_fdiscard_desc, vn_fifo_bypass }, /* fdiscard */ { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */ { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */ { &vop_poll_desc, vn_fifo_bypass }, /* poll */ { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */ { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */ { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */ { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */ { &vop_seek_desc, vn_fifo_bypass }, /* seek */ { &vop_remove_desc, vn_fifo_bypass }, /* remove */ { &vop_link_desc, vn_fifo_bypass }, /* link */ { &vop_rename_desc, vn_fifo_bypass }, /* rename */ { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */ { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */ { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */ { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */ { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */ { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */ { &vop_inactive_desc, lfs_inactive }, /* inactive */ { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */ { &vop_lock_desc, ulfs_lock }, /* lock */ { &vop_unlock_desc, ulfs_unlock }, /* unlock */ { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */ { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */ { &vop_print_desc, ulfs_print }, /* print */ { &vop_islocked_desc, ulfs_islocked }, /* islocked */ { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */ { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */ { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */ { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */ { &vop_openextattr_desc, lfs_openextattr }, /* openextattr */ { &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */ { &vop_getextattr_desc, lfs_getextattr }, /* getextattr */ { &vop_setextattr_desc, lfs_setextattr }, /* setextattr */ { &vop_listextattr_desc, lfs_listextattr }, /* listextattr */ { &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */ { NULL, NULL } }; const struct vnodeopv_desc lfs_fifoop_opv_desc = { &lfs_fifoop_p, lfs_fifoop_entries }; #define LFS_READWRITE #include #undef LFS_READWRITE /* * Allocate a new inode. */ static int lfs_makeinode(struct vattr *vap, struct vnode *dvp, const struct ulfs_lookup_results *ulr, struct vnode **vpp, struct componentname *cnp) { struct inode *ip; struct vnode *tvp; int error; error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, &tvp); if (error) return error; error = vn_lock(tvp, LK_EXCLUSIVE); if (error) { vrele(tvp); return error; } MARK_VNODE(tvp); *vpp = tvp; ip = VTOI(tvp); ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_nlink = 1; DIP_ASSIGN(ip, nlink, 1); /* Authorize setting SGID if needed. */ if (ip->i_mode & ISGID) { error = kauth_authorize_vnode(cnp->cn_cred, KAUTH_VNODE_WRITE_SECURITY, tvp, NULL, genfs_can_chmod(tvp->v_type, cnp->cn_cred, ip->i_uid, ip->i_gid, MAKEIMODE(vap->va_type, vap->va_mode))); if (error) { ip->i_mode &= ~ISGID; DIP_ASSIGN(ip, mode, ip->i_mode); } } if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_ASSIGN(ip, flags, ip->i_flags); } /* * Make sure inode goes to disk before directory entry. */ if ((error = lfs_update(tvp, NULL, NULL, UPDATE_DIROP)) != 0) goto bad; error = ulfs_direnter(dvp, ulr, tvp, cnp, ip->i_number, LFS_IFTODT(ip->i_mode), NULL); if (error) goto bad; *vpp = tvp; KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE); return (0); bad: /* * Write error occurred trying to update the inode * or the directory so must deallocate the inode. */ ip->i_nlink = 0; DIP_ASSIGN(ip, nlink, 0); ip->i_state |= IN_CHANGE; /* If IN_ADIROP, account for it */ UNMARK_VNODE(tvp); vput(tvp); return (error); } /* * Synch an open file. */ /* ARGSUSED */ int lfs_fsync(void *v) { struct vop_fsync_args /* { struct vnode *a_vp; kauth_cred_t a_cred; int a_flags; off_t offlo; off_t offhi; } */ *ap = v; struct vnode *vp = ap->a_vp; int wait; struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; int error = 0; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); /* If we're mounted read-only, don't try to sync. */ if (fs->lfs_ronly) goto out; /* If a removed vnode is being cleaned, no need to sync here. */ if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0) goto out; /* * Trickle sync simply adds this vnode to the pager list, as if * the pagedaemon had requested a pageout. */ if (ap->a_flags & FSYNC_LAZY) { if (lfs_ignore_lazy_sync == 0) { mutex_enter(&lfs_lock); if (!(ip->i_state & IN_PAGING)) { ip->i_state |= IN_PAGING; TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain); } cv_broadcast(&lfs_writerd_cv); mutex_exit(&lfs_lock); } goto out; } /* * If a vnode is being cleaned, flush it out before we try to * reuse it. This prevents the cleaner from writing files twice * in the same partial segment, causing an accounting underflow. */ if (ap->a_flags & FSYNC_RECLAIM && ip->i_state & IN_CLEANING) { lfs_vflush(vp); } wait = (ap->a_flags & FSYNC_WAIT); do { mutex_enter(vp->v_interlock); error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo), round_page(ap->a_offhi), PGO_CLEANIT | (wait ? PGO_SYNCIO : 0)); if (error == EAGAIN) { mutex_enter(&lfs_lock); mtsleep(&fs->lfs_availsleep, PCATCH | PUSER, "lfs_fsync", hz / 100 + 1, &lfs_lock); mutex_exit(&lfs_lock); } } while (error == EAGAIN); if (error) goto out; if ((ap->a_flags & FSYNC_DATAONLY) == 0) error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0); if (error == 0 && ap->a_flags & FSYNC_CACHE) { int l = 0; error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE, curlwp->l_cred); } if (wait && !VPISEMPTY(vp)) LFS_SET_UINO(ip, IN_MODIFIED); out: KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); return error; } /* * Take IN_ADIROP off, then call ulfs_inactive. */ int lfs_inactive(void *v) { struct vop_inactive_v2_args /* { struct vnode *a_vp; bool *a_recycle; } */ *ap = v; KASSERT(VOP_ISLOCKED(ap->a_vp) == LK_EXCLUSIVE); UNMARK_VNODE(ap->a_vp); /* * The Ifile is only ever inactivated on unmount. * Streamline this process by not giving it more dirty blocks. */ if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) { mutex_enter(&lfs_lock); LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD); mutex_exit(&lfs_lock); return 0; } #ifdef DEBUG /* * This might happen on unmount. * XXX If it happens at any other time, it should be a panic. */ if (ap->a_vp->v_uflag & VU_DIROP) { struct inode *ip = VTOI(ap->a_vp); printf("lfs_inactive: inactivating VU_DIROP? ino = %llu\n", (unsigned long long) ip->i_number); } #endif /* DIAGNOSTIC */ return ulfs_inactive(v); } int lfs_set_dirop(struct vnode *dvp, struct vnode *vp) { struct lfs *fs; int error; KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); KASSERT(vp == NULL || VOP_ISLOCKED(vp) == LK_EXCLUSIVE); fs = VTOI(dvp)->i_lfs; ASSERT_NO_SEGLOCK(fs); /* * LFS_NRESERVE calculates direct and indirect blocks as well * as an inode block; an overestimate in most cases. */ if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0) return (error); restart: mutex_enter(&lfs_lock); if (fs->lfs_dirops == 0) { mutex_exit(&lfs_lock); lfs_check(dvp, LFS_UNUSED_LBN, 0); mutex_enter(&lfs_lock); } while (fs->lfs_writer) { error = cv_wait_sig(&fs->lfs_diropscv, &lfs_lock); if (error == EINTR) { mutex_exit(&lfs_lock); goto unreserve; } } if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) { cv_broadcast(&lfs_writerd_cv); mutex_exit(&lfs_lock); preempt(); goto restart; } if (lfs_dirvcount > LFS_MAX_DIROP) { DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, " "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount)); if ((error = mtsleep(&lfs_dirvcount, PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0, &lfs_lock)) != 0) { mutex_exit(&lfs_lock); goto unreserve; } mutex_exit(&lfs_lock); goto restart; } ++fs->lfs_dirops; /* fs->lfs_doifile = 1; */ /* XXX why? --ks */ mutex_exit(&lfs_lock); /* Hold a reference so SET_ENDOP will be happy */ vref(dvp); if (vp) { vref(vp); MARK_VNODE(vp); } MARK_VNODE(dvp); return 0; unreserve: lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs)); return error; } /* * Opposite of lfs_set_dirop... mostly. For now at least must call * UNMARK_VNODE(dvp) explicitly first. (XXX: clean that up) */ void lfs_unset_dirop(struct lfs *fs, struct vnode *dvp, const char *str) { mutex_enter(&lfs_lock); --fs->lfs_dirops; if (!fs->lfs_dirops) { if (fs->lfs_nadirop) { panic("lfs_unset_dirop: %s: no dirops but " " nadirop=%d", str, fs->lfs_nadirop); } wakeup(&fs->lfs_writer); mutex_exit(&lfs_lock); lfs_check(dvp, LFS_UNUSED_LBN, 0); } else { mutex_exit(&lfs_lock); } lfs_reserve(fs, dvp, NULL, -LFS_NRESERVE(fs)); } void lfs_mark_vnode(struct vnode *vp) { struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; mutex_enter(&lfs_lock); if (!(ip->i_state & IN_ADIROP)) { if (!(vp->v_uflag & VU_DIROP)) { mutex_exit(&lfs_lock); vref(vp); mutex_enter(&lfs_lock); ++lfs_dirvcount; ++fs->lfs_dirvcount; TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain); vp->v_uflag |= VU_DIROP; } ++fs->lfs_nadirop; ip->i_state &= ~IN_CDIROP; ip->i_state |= IN_ADIROP; } else KASSERT(vp->v_uflag & VU_DIROP); mutex_exit(&lfs_lock); } void lfs_unmark_vnode(struct vnode *vp) { struct inode *ip = VTOI(vp); mutex_enter(&lfs_lock); if (ip && (ip->i_state & IN_ADIROP)) { KASSERT(vp->v_uflag & VU_DIROP); --ip->i_lfs->lfs_nadirop; ip->i_state &= ~IN_ADIROP; } mutex_exit(&lfs_lock); } int lfs_symlink(void *v) { struct vop_symlink_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; char *a_target; } */ *ap = v; struct lfs *fs; struct vnode *dvp, **vpp; struct inode *ip; struct ulfs_lookup_results *ulr; ssize_t len; /* XXX should be size_t */ int error; dvp = ap->a_dvp; vpp = ap->a_vpp; KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); KASSERT(vpp != NULL); KASSERT(*vpp == NULL); KASSERT(ap->a_vap->va_type == VLNK); /* XXX should handle this material another way */ ulr = &VTOI(ap->a_dvp)->i_crap; ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp)); fs = VFSTOULFS(dvp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) { return EROFS; } error = lfs_set_dirop(dvp, NULL); if (error) return error; error = lfs_makeinode(ap->a_vap, dvp, ulr, vpp, ap->a_cnp); if (error) { goto out; } KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE); VN_KNOTE(ap->a_dvp, NOTE_WRITE); ip = VTOI(*vpp); /* * This test is off by one. um_maxsymlinklen contains the * number of bytes available, and we aren't storing a \0, so * the test should properly be <=. However, it cannot be * changed as this would break compatibility with existing fs * images -- see the way ulfs_readlink() works. */ len = strlen(ap->a_target); if (len < ip->i_lfs->um_maxsymlinklen) { memcpy((char *)SHORTLINK(ip), ap->a_target, len); ip->i_size = len; DIP_ASSIGN(ip, size, len); uvm_vnp_setsize(*vpp, ip->i_size); ip->i_state |= IN_CHANGE | IN_UPDATE; if ((*vpp)->v_mount->mnt_flag & MNT_RELATIME) ip->i_state |= IN_ACCESS; } else { error = ulfs_bufio(UIO_WRITE, *vpp, ap->a_target, len, (off_t)0, IO_NODELOCKED | IO_JOURNALLOCKED, ap->a_cnp->cn_cred, NULL, NULL); } VOP_UNLOCK(*vpp); if (error) vrele(*vpp); out: UNMARK_VNODE(dvp); /* XXX: is it even possible for the symlink to get MARK'd? */ UNMARK_VNODE(*vpp); if (error) { *vpp = NULL; } lfs_unset_dirop(fs, dvp, "symlink"); vrele(dvp); return (error); } int lfs_mknod(void *v) { struct vop_mknod_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; struct lfs *fs; struct vnode *dvp, **vpp; struct vattr *vap; struct inode *ip; int error; ino_t ino; struct ulfs_lookup_results *ulr; dvp = ap->a_dvp; vpp = ap->a_vpp; vap = ap->a_vap; KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); KASSERT(vpp != NULL); KASSERT(*vpp == NULL); /* XXX should handle this material another way */ ulr = &VTOI(dvp)->i_crap; ULFS_CHECK_CRAPCOUNTER(VTOI(dvp)); fs = VFSTOULFS(dvp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) { return EROFS; } error = lfs_set_dirop(dvp, NULL); if (error) return error; error = lfs_makeinode(vap, dvp, ulr, vpp, ap->a_cnp); /* Either way we're done with the dirop at this point */ UNMARK_VNODE(dvp); UNMARK_VNODE(*vpp); lfs_unset_dirop(fs, dvp, "mknod"); if (error) { vrele(dvp); *vpp = NULL; return (error); } KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE); VN_KNOTE(dvp, NOTE_WRITE); ip = VTOI(*vpp); ino = ip->i_number; ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE; /* * Call fsync to write the vnode so that we don't have to deal with * flushing it when it's marked VU_DIROP or reclaiming. * * XXX KS - If we can't flush we also can't call vgone(), so must * return. But, that leaves this vnode in limbo, also not good. * Can this ever happen (barring hardware failure)? */ if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) { panic("lfs_mknod: couldn't fsync (ino %llu)", (unsigned long long) ino); /* return (error); */ } vrele(dvp); KASSERT(error == 0); VOP_UNLOCK(*vpp); return (0); } /* * Create a regular file */ int lfs_create(void *v) { struct vop_create_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; struct lfs *fs; struct vnode *dvp, **vpp; struct vattr *vap; struct ulfs_lookup_results *ulr; int error; dvp = ap->a_dvp; vpp = ap->a_vpp; vap = ap->a_vap; KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); KASSERT(vpp != NULL); KASSERT(*vpp == NULL); /* XXX should handle this material another way */ ulr = &VTOI(dvp)->i_crap; ULFS_CHECK_CRAPCOUNTER(VTOI(dvp)); fs = VFSTOULFS(dvp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) { return EROFS; } error = lfs_set_dirop(dvp, NULL); if (error) return error; error = lfs_makeinode(vap, dvp, ulr, vpp, ap->a_cnp); if (error) { goto out; } KASSERT(VOP_ISLOCKED(*vpp) == LK_EXCLUSIVE); VN_KNOTE(dvp, NOTE_WRITE); VOP_UNLOCK(*vpp); out: UNMARK_VNODE(dvp); UNMARK_VNODE(*vpp); if (error) { *vpp = NULL; } lfs_unset_dirop(fs, dvp, "create"); vrele(dvp); return (error); } int lfs_mkdir(void *v) { struct vop_mkdir_v3_args /* { struct vnode *a_dvp; struct vnode **a_vpp; struct componentname *a_cnp; struct vattr *a_vap; } */ *ap = v; struct lfs *fs; struct vnode *dvp, *tvp, **vpp; struct inode *dp, *ip; struct componentname *cnp; struct vattr *vap; struct ulfs_lookup_results *ulr; struct buf *bp; LFS_DIRHEADER *dirp; int dirblksiz; int error; dvp = ap->a_dvp; tvp = NULL; vpp = ap->a_vpp; cnp = ap->a_cnp; vap = ap->a_vap; KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); dp = VTOI(dvp); ip = NULL; KASSERT(vap->va_type == VDIR); KASSERT(vpp != NULL); KASSERT(*vpp == NULL); /* XXX should handle this material another way */ ulr = &dp->i_crap; ULFS_CHECK_CRAPCOUNTER(dp); fs = VFSTOULFS(dvp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) { return EROFS; } dirblksiz = fs->um_dirblksiz; /* XXX dholland 20150911 I believe this to be true, but... */ //KASSERT(dirblksiz == LFS_DIRBLKSIZ); error = lfs_set_dirop(dvp, NULL); if (error) return error; if ((nlink_t)dp->i_nlink >= LINK_MAX) { error = EMLINK; goto out; } /* * Must simulate part of lfs_makeinode here to acquire the inode, * but not have it entered in the parent directory. The entry is * made later after writing "." and ".." entries. */ error = vcache_new(dvp->v_mount, dvp, vap, cnp->cn_cred, ap->a_vpp); if (error) goto out; error = vn_lock(*ap->a_vpp, LK_EXCLUSIVE); if (error) { vrele(*ap->a_vpp); *ap->a_vpp = NULL; goto out; } tvp = *ap->a_vpp; MARK_VNODE(tvp); ip = VTOI(tvp); ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE; ip->i_nlink = 2; DIP_ASSIGN(ip, nlink, 2); if (cnp->cn_flags & ISWHITEOUT) { ip->i_flags |= UF_OPAQUE; DIP_ASSIGN(ip, flags, ip->i_flags); } /* * Bump link count in parent directory to reflect work done below. */ dp->i_nlink++; DIP_ASSIGN(dp, nlink, dp->i_nlink); dp->i_state |= IN_CHANGE; if ((error = lfs_update(dvp, NULL, NULL, UPDATE_DIROP)) != 0) goto bad; /* * Initialize directory with "." and "..". This used to use a * static template but that adds moving parts for very little * benefit. */ if ((error = lfs_balloc(tvp, (off_t)0, dirblksiz, cnp->cn_cred, B_CLRBUF, &bp)) != 0) goto bad; ip->i_size = dirblksiz; DIP_ASSIGN(ip, size, dirblksiz); ip->i_state |= IN_ACCESS | IN_CHANGE | IN_UPDATE; uvm_vnp_setsize(tvp, ip->i_size); dirp = bp->b_data; /* . */ lfs_dir_setino(fs, dirp, ip->i_number); lfs_dir_setreclen(fs, dirp, LFS_DIRECTSIZ(fs, 1)); lfs_dir_settype(fs, dirp, LFS_DT_DIR); lfs_dir_setnamlen(fs, dirp, 1); lfs_copydirname(fs, lfs_dir_nameptr(fs, dirp), ".", 1, LFS_DIRECTSIZ(fs, 1)); dirp = LFS_NEXTDIR(fs, dirp); /* .. */ lfs_dir_setino(fs, dirp, dp->i_number); lfs_dir_setreclen(fs, dirp, dirblksiz - LFS_DIRECTSIZ(fs, 1)); lfs_dir_settype(fs, dirp, LFS_DT_DIR); lfs_dir_setnamlen(fs, dirp, 2); lfs_copydirname(fs, lfs_dir_nameptr(fs, dirp), "..", 2, dirblksiz - LFS_DIRECTSIZ(fs, 1)); /* * Directory set up; now install its entry in the parent directory. */ if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) goto bad; if ((error = lfs_update(tvp, NULL, NULL, UPDATE_DIROP)) != 0) { goto bad; } error = ulfs_direnter(dvp, ulr, tvp, cnp, ip->i_number, LFS_IFTODT(ip->i_mode), bp); bad: if (error == 0) { VN_KNOTE(dvp, NOTE_WRITE | NOTE_LINK); VOP_UNLOCK(tvp); } else { dp->i_nlink--; DIP_ASSIGN(dp, nlink, dp->i_nlink); dp->i_state |= IN_CHANGE; /* * No need to do an explicit lfs_truncate here, vrele will * do this for us because we set the link count to 0. */ ip->i_nlink = 0; DIP_ASSIGN(ip, nlink, 0); ip->i_state |= IN_CHANGE; /* If IN_ADIROP, account for it */ UNMARK_VNODE(tvp); vput(tvp); } out: UNMARK_VNODE(dvp); UNMARK_VNODE(*vpp); if (error) { *vpp = NULL; } lfs_unset_dirop(fs, dvp, "mkdir"); vrele(dvp); return (error); } int lfs_remove(void *v) { struct vop_remove_v2_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *dvp, *vp; struct inode *ip; int error; dvp = ap->a_dvp; vp = ap->a_vp; KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); if ((error = lfs_set_dirop(dvp, vp)) != 0) { if (dvp == vp) vrele(vp); else vput(vp); return error; } error = ulfs_remove(ap); if (ip->i_nlink == 0) lfs_orphan(ip->i_lfs, ip->i_number); UNMARK_VNODE(dvp); if (ap->a_vp) { UNMARK_VNODE(ap->a_vp); } lfs_unset_dirop(ip->i_lfs, dvp, "remove"); vrele(dvp); if (ap->a_vp) { vrele(ap->a_vp); } return (error); } int lfs_rmdir(void *v) { struct vop_rmdir_v2_args /* { struct vnodeop_desc *a_desc; struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct vnode *vp; struct inode *ip; int error; vp = ap->a_vp; KASSERT(VOP_ISLOCKED(ap->a_dvp) == LK_EXCLUSIVE); KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); if ((error = lfs_set_dirop(ap->a_dvp, ap->a_vp)) != 0) { if (ap->a_dvp == vp) vrele(vp); else vput(vp); return error; } error = ulfs_rmdir(ap); if (ip->i_nlink == 0) lfs_orphan(ip->i_lfs, ip->i_number); UNMARK_VNODE(ap->a_dvp); if (ap->a_vp) { UNMARK_VNODE(ap->a_vp); } lfs_unset_dirop(ip->i_lfs, ap->a_dvp, "rmdir"); vrele(ap->a_dvp); if (ap->a_vp) { vrele(ap->a_vp); } return (error); } int lfs_link(void *v) { struct vop_link_v2_args /* { struct vnode *a_dvp; struct vnode *a_vp; struct componentname *a_cnp; } */ *ap = v; struct lfs *fs; struct vnode *dvp; int error; dvp = ap->a_dvp; KASSERT(VOP_ISLOCKED(dvp) == LK_EXCLUSIVE); fs = VFSTOULFS(dvp->v_mount)->um_lfs; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) { return EROFS; } error = lfs_set_dirop(dvp, NULL); if (error) { return error; } error = ulfs_link(ap); UNMARK_VNODE(dvp); lfs_unset_dirop(fs, dvp, "link"); vrele(dvp); return (error); } /* XXX hack to avoid calling ITIMES in getattr */ int lfs_getattr(void *v) { struct vop_getattr_args /* { struct vnode *a_vp; struct vattr *a_vap; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct vattr *vap = ap->a_vap; struct lfs *fs; KASSERT(VOP_ISLOCKED(vp)); ip = VTOI(vp); fs = ip->i_lfs; /* * Copy from inode table */ vap->va_fsid = ip->i_dev; vap->va_fileid = ip->i_number; vap->va_mode = ip->i_mode & ~LFS_IFMT; vap->va_nlink = ip->i_nlink; vap->va_uid = ip->i_uid; vap->va_gid = ip->i_gid; switch (vp->v_type) { case VBLK: case VCHR: vap->va_rdev = (dev_t)lfs_dino_getrdev(fs, ip->i_din); break; default: vap->va_rdev = NODEV; break; } vap->va_size = vp->v_size; vap->va_atime.tv_sec = lfs_dino_getatime(fs, ip->i_din); vap->va_atime.tv_nsec = lfs_dino_getatimensec(fs, ip->i_din); vap->va_mtime.tv_sec = lfs_dino_getmtime(fs, ip->i_din); vap->va_mtime.tv_nsec = lfs_dino_getmtimensec(fs, ip->i_din); vap->va_ctime.tv_sec = lfs_dino_getctime(fs, ip->i_din); vap->va_ctime.tv_nsec = lfs_dino_getctimensec(fs, ip->i_din); vap->va_flags = ip->i_flags; vap->va_gen = ip->i_gen; /* this doesn't belong here */ if (vp->v_type == VBLK) vap->va_blocksize = BLKDEV_IOSIZE; else if (vp->v_type == VCHR) vap->va_blocksize = MAXBSIZE; else vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize; vap->va_bytes = lfs_fsbtob(fs, ip->i_lfs_effnblks); vap->va_type = vp->v_type; vap->va_filerev = ip->i_modrev; return (0); } /* * Check to make sure the inode blocks won't choke the buffer * cache, then call ulfs_setattr as usual. */ int lfs_setattr(void *v) { struct vop_setattr_args /* { struct vnode *a_vp; struct vattr *a_vap; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); lfs_check(vp, LFS_UNUSED_LBN, 0); return ulfs_setattr(v); } /* * Release the block we hold on lfs_newseg wrapping. Called on file close, * or explicitly from LFCNWRAPGO. Called with the interlock held. */ static int lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor) { if (fs->lfs_stoplwp != curlwp) return EBUSY; fs->lfs_stoplwp = NULL; cv_signal(&fs->lfs_stopcv); KASSERT(fs->lfs_nowrap > 0); if (fs->lfs_nowrap <= 0) { return 0; } if (--fs->lfs_nowrap == 0) { log(LOG_NOTICE, "%s: re-enabled log wrap\n", lfs_sb_getfsmnt(fs)); wakeup(&fs->lfs_wrappass); lfs_wakeup_cleaner(fs); } if (waitfor) { cv_wait_sig(&fs->lfs_nextsegsleep, &lfs_lock); } return 0; } /* * Close called. * * Update the times on the inode. */ /* ARGSUSED */ int lfs_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct lfs *fs; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); fs = ip->i_lfs; if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) && fs->lfs_stoplwp == curlwp) { mutex_enter(&lfs_lock); log(LOG_NOTICE, "lfs_close: releasing log wrap control\n"); lfs_wrapgo(fs, ip, 0); mutex_exit(&lfs_lock); } if (vp == ip->i_lfs->lfs_ivnode && vp->v_mount->mnt_iflag & IMNT_UNMOUNT) return 0; if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) { LFS_ITIMES(ip, NULL, NULL, NULL); } return (0); } /* * Close wrapper for special devices. * * Update the times on the inode then do device close. */ int lfsspec_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct vnode *vp; struct inode *ip; vp = ap->a_vp; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); if (vp->v_usecount > 1) { LFS_ITIMES(ip, NULL, NULL, NULL); } return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Close wrapper for fifo's. * * Update the times on the inode then do device close. */ int lfsfifo_close(void *v) { struct vop_close_args /* { struct vnode *a_vp; int a_fflag; kauth_cred_ a_cred; } */ *ap = v; struct vnode *vp; struct inode *ip; vp = ap->a_vp; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); if (ap->a_vp->v_usecount > 1) { LFS_ITIMES(ip, NULL, NULL, NULL); } return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap)); } /* * Reclaim an inode so that it can be used for other purposes. */ int lfs_reclaim(void *v) { struct vop_reclaim_v2_args /* { struct vnode *a_vp; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct lfs *fs; int error; VOP_UNLOCK(vp); ip = VTOI(vp); fs = ip->i_lfs; /* * The inode must be freed and updated before being removed * from its hash chain. Other threads trying to gain a hold * or lock on the inode will be stalled. */ if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0) lfs_vfree(vp, ip->i_number, ip->i_omode); mutex_enter(&lfs_lock); LFS_CLR_UINO(ip, IN_ALLMOD); mutex_exit(&lfs_lock); if ((error = ulfs_reclaim(vp))) return (error); /* * Take us off the paging and/or dirop queues if we were on them. * We shouldn't be on them. */ mutex_enter(&lfs_lock); if (ip->i_state & IN_PAGING) { log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n", lfs_sb_getfsmnt(fs)); ip->i_state &= ~IN_PAGING; TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain); } if (vp->v_uflag & VU_DIROP) panic("reclaimed vnode is VU_DIROP"); mutex_exit(&lfs_lock); pool_put(&lfs_dinode_pool, ip->i_din); lfs_deregister_all(vp); pool_put(&lfs_inoext_pool, ip->inode_ext.lfs); ip->inode_ext.lfs = NULL; genfs_node_destroy(vp); pool_put(&lfs_inode_pool, vp->v_data); vp->v_data = NULL; return (0); } /* * Read a block from a storage device. * * Calculate the logical to physical mapping if not done already, * then call the device strategy routine. * * In order to avoid reading blocks that are in the process of being * written by the cleaner---and hence are not mutexed by the normal * buffer cache / page cache mechanisms---check for collisions before * reading. * * We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before* * the active cleaner test. * * XXX This code assumes that lfs_markv makes synchronous checkpoints. */ int lfs_strategy(void *v) { struct vop_strategy_args /* { struct vnode *a_vp; struct buf *a_bp; } */ *ap = v; struct buf *bp; struct lfs *fs; struct vnode *vp; struct inode *ip; daddr_t tbn; #define MAXLOOP 25 int i, sn, error, slept, loopcount; bp = ap->a_bp; vp = ap->a_vp; ip = VTOI(vp); fs = ip->i_lfs; /* lfs uses its strategy routine only for read */ KASSERT(bp->b_flags & B_READ); if (vp->v_type == VBLK || vp->v_type == VCHR) panic("lfs_strategy: spec"); KASSERT(bp->b_bcount != 0); if (bp->b_blkno == bp->b_lblkno) { error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL); if (error) { bp->b_error = error; bp->b_resid = bp->b_bcount; biodone(bp); return (error); } if ((long)bp->b_blkno == -1) /* no valid data */ clrbuf(bp); } if ((long)bp->b_blkno < 0) { /* block is not on disk */ bp->b_resid = bp->b_bcount; biodone(bp); return (0); } slept = 1; loopcount = 0; mutex_enter(&lfs_lock); while (slept && fs->lfs_seglock) { mutex_exit(&lfs_lock); /* * Look through list of intervals. * There will only be intervals to look through * if the cleaner holds the seglock. * Since the cleaner is synchronous, we can trust * the list of intervals to be current. */ tbn = LFS_DBTOFSB(fs, bp->b_blkno); sn = lfs_dtosn(fs, tbn); slept = 0; for (i = 0; i < fs->lfs_cleanind; i++) { if (sn == lfs_dtosn(fs, fs->lfs_cleanint[i]) && tbn >= fs->lfs_cleanint[i]) { DLOG((DLOG_CLEAN, "lfs_strategy: ino %llu lbn %" PRId64 " ind %d sn %d fsb %" PRIx64 " given sn %d fsb %" PRIx64 "\n", (unsigned long long) ip->i_number, bp->b_lblkno, i, lfs_dtosn(fs, fs->lfs_cleanint[i]), fs->lfs_cleanint[i], sn, tbn)); DLOG((DLOG_CLEAN, "lfs_strategy: sleeping on ino %llu lbn %" PRId64 "\n", (unsigned long long) ip->i_number, bp->b_lblkno)); mutex_enter(&lfs_lock); if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) { /* * Cleaner can't wait for itself. * Instead, wait for the blocks * to be written to disk. * XXX we need pribio in the test * XXX here. */ mtsleep(&fs->lfs_iocount, (PRIBIO + 1) | PNORELOCK, "clean2", hz/10 + 1, &lfs_lock); slept = 1; ++loopcount; break; } else if (fs->lfs_seglock) { mtsleep(&fs->lfs_seglock, (PRIBIO + 1) | PNORELOCK, "clean1", 0, &lfs_lock); slept = 1; break; } mutex_exit(&lfs_lock); } } mutex_enter(&lfs_lock); if (loopcount > MAXLOOP) { printf("lfs_strategy: breaking out of clean2 loop\n"); break; } } mutex_exit(&lfs_lock); vp = ip->i_devvp; return VOP_STRATEGY(vp, bp); } /* * Inline lfs_segwrite/lfs_writevnodes, but just for dirops. * Technically this is a checkpoint (the on-disk state is valid) * even though we are leaving out all the file data. */ int lfs_flush_dirops(struct lfs *fs) { struct inode *ip, *nip; struct vnode *vp; extern int lfs_dostats; /* XXX this does not belong here */ struct segment *sp; SEGSUM *ssp; int flags = 0; int error = 0; ASSERT_MAYBE_SEGLOCK(fs); KASSERT(fs->lfs_nadirop == 0); if (fs->lfs_ronly) return EROFS; mutex_enter(&lfs_lock); if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) { mutex_exit(&lfs_lock); return 0; } else mutex_exit(&lfs_lock); if (lfs_dostats) ++lfs_stats.flush_invoked; lfs_imtime(fs); lfs_seglock(fs, flags); sp = fs->lfs_sp; /* * lfs_writevnodes, optimized to get dirops out of the way. * Only write dirops, and don't flush files' pages, only * blocks from the directories. * * We don't need to vref these files because they are * dirops and so hold an extra reference until the * segunlock clears them of that status. * * We don't need to check for IN_ADIROP because we know that * no dirops are active. * */ mutex_enter(&lfs_lock); for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) { nip = TAILQ_NEXT(ip, i_lfs_dchain); mutex_exit(&lfs_lock); vp = ITOV(ip); mutex_enter(vp->v_interlock); KASSERT((ip->i_state & IN_ADIROP) == 0); KASSERT(vp->v_uflag & VU_DIROP); KASSERT(vdead_check(vp, VDEAD_NOWAIT) == 0); /* * All writes to directories come from dirops; all * writes to files' direct blocks go through the page * cache, which we're not touching. Reads to files * and/or directories will not be affected by writing * directory blocks inodes and file inodes. So we don't * really need to lock. */ if (vdead_check(vp, VDEAD_NOWAIT) != 0) { mutex_exit(vp->v_interlock); mutex_enter(&lfs_lock); continue; } mutex_exit(vp->v_interlock); /* XXX see below * waslocked = VOP_ISLOCKED(vp); */ if (vp->v_type != VREG && ((ip->i_state & IN_ALLMOD) || !VPISEMPTY(vp))) { error = lfs_writefile(fs, sp, vp); if (!VPISEMPTY(vp) && !WRITEINPROG(vp) && !(ip->i_state & IN_ALLMOD)) { mutex_enter(&lfs_lock); LFS_SET_UINO(ip, IN_MODIFIED); mutex_exit(&lfs_lock); } if (error && (sp->seg_flags & SEGM_SINGLE)) { mutex_enter(&lfs_lock); error = EAGAIN; break; } } KDASSERT(ip->i_number != LFS_IFILE_INUM); error = lfs_writeinode(fs, sp, ip); mutex_enter(&lfs_lock); if (error && (sp->seg_flags & SEGM_SINGLE)) { error = EAGAIN; break; } /* * We might need to update these inodes again, * for example, if they have data blocks to write. * Make sure that after this flush, they are still * marked IN_MODIFIED so that we don't forget to * write them. */ /* XXX only for non-directories? --KS */ LFS_SET_UINO(ip, IN_MODIFIED); } mutex_exit(&lfs_lock); /* We've written all the dirops there are */ ssp = (SEGSUM *)sp->segsum; lfs_ss_setflags(fs, ssp, lfs_ss_getflags(fs, ssp) & ~(SS_CONT)); lfs_finalize_fs_seguse(fs); (void) lfs_writeseg(fs, sp); lfs_segunlock(fs); return error; } /* * Flush all vnodes for which the pagedaemon has requested pageouts. * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop() * has just run, this would be an error). If we have to skip a vnode * for any reason, just skip it; if we have to wait for the cleaner, * abort. The writer daemon will call us again later. */ int lfs_flush_pchain(struct lfs *fs) { struct inode *ip, *nip; struct vnode *vp; extern int lfs_dostats; struct segment *sp; int error, error2; ASSERT_NO_SEGLOCK(fs); if (fs->lfs_ronly) return EROFS; mutex_enter(&lfs_lock); if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) { mutex_exit(&lfs_lock); return 0; } else mutex_exit(&lfs_lock); /* Get dirops out of the way */ if ((error = lfs_flush_dirops(fs)) != 0) return error; if (lfs_dostats) ++lfs_stats.flush_invoked; /* * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts. */ lfs_imtime(fs); lfs_seglock(fs, 0); sp = fs->lfs_sp; /* * lfs_writevnodes, optimized to clear pageout requests. * Only write non-dirop files that are in the pageout queue. * We're very conservative about what we write; we want to be * fast and async. */ mutex_enter(&lfs_lock); top: for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) { struct mount *mp = ITOV(ip)->v_mount; ino_t ino = ip->i_number; nip = TAILQ_NEXT(ip, i_lfs_pchain); if (!(ip->i_state & IN_PAGING)) goto top; mutex_exit(&lfs_lock); if (vcache_get(mp, &ino, sizeof(ino), &vp) != 0) { mutex_enter(&lfs_lock); continue; }; if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) != 0) { vrele(vp); mutex_enter(&lfs_lock); continue; } ip = VTOI(vp); mutex_enter(&lfs_lock); if ((vp->v_uflag & VU_DIROP) != 0 || vp->v_type != VREG || !(ip->i_state & IN_PAGING)) { mutex_exit(&lfs_lock); vput(vp); mutex_enter(&lfs_lock); goto top; } mutex_exit(&lfs_lock); error = lfs_writefile(fs, sp, vp); if (!VPISEMPTY(vp) && !WRITEINPROG(vp) && !(ip->i_state & IN_ALLMOD)) { mutex_enter(&lfs_lock); LFS_SET_UINO(ip, IN_MODIFIED); mutex_exit(&lfs_lock); } KDASSERT(ip->i_number != LFS_IFILE_INUM); error2 = lfs_writeinode(fs, sp, ip); VOP_UNLOCK(vp); vrele(vp); if (error == EAGAIN || error2 == EAGAIN) { lfs_writeseg(fs, sp); mutex_enter(&lfs_lock); break; } mutex_enter(&lfs_lock); } mutex_exit(&lfs_lock); (void) lfs_writeseg(fs, sp); lfs_segunlock(fs); return 0; } /* * Conversion for compat. */ static void block_info_from_70(BLOCK_INFO *bi, const BLOCK_INFO_70 *bi70) { bi->bi_inode = bi70->bi_inode; bi->bi_lbn = bi70->bi_lbn; bi->bi_daddr = bi70->bi_daddr; bi->bi_segcreate = bi70->bi_segcreate; bi->bi_version = bi70->bi_version; bi->bi_bp = bi70->bi_bp; bi->bi_size = bi70->bi_size; } static void block_info_to_70(BLOCK_INFO_70 *bi70, const BLOCK_INFO *bi) { bi70->bi_inode = bi->bi_inode; bi70->bi_lbn = bi->bi_lbn; bi70->bi_daddr = bi->bi_daddr; bi70->bi_segcreate = bi->bi_segcreate; bi70->bi_version = bi->bi_version; bi70->bi_bp = bi->bi_bp; bi70->bi_size = bi->bi_size; } /* * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}. */ int lfs_fcntl(void *v) { struct vop_fcntl_args /* { struct vnode *a_vp; u_int a_command; void * a_data; int a_fflag; kauth_cred_t a_cred; } */ *ap = v; struct timeval tv; struct timeval *tvp; BLOCK_INFO *blkiov; BLOCK_INFO_70 *blkiov70; CLEANERINFO *cip; SEGUSE *sup; int blkcnt, i, error; size_t fh_size; struct lfs_fcntl_markv blkvp; struct lfs_fcntl_markv_70 blkvp70; struct lwp *l; fsid_t *fsidp; struct lfs *fs; struct buf *bp; fhandle_t *fhp; daddr_t off; int oclean; /* Only respect LFS fcntls on fs root or Ifile */ if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO && VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) { return ulfs_fcntl(v); } /* Avoid locking a draining lock */ if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) { return ESHUTDOWN; } /* LFS control and monitoring fcntls are available only to root */ l = curlwp; if (((ap->a_command & 0xff00) >> 8) == 'L' && (error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS, KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0) return (error); fs = VTOI(ap->a_vp)->i_lfs; fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx; error = 0; switch ((int)ap->a_command) { case LFCNSEGWAITALL_COMPAT_50: case LFCNSEGWAITALL_COMPAT: fsidp = NULL; /* FALLTHROUGH */ case LFCNSEGWAIT_COMPAT_50: case LFCNSEGWAIT_COMPAT: { struct timeval50 *tvp50 = (struct timeval50 *)ap->a_data; timeval50_to_timeval(tvp50, &tv); tvp = &tv; } goto segwait_common; case LFCNSEGWAITALL: fsidp = NULL; /* FALLTHROUGH */ case LFCNSEGWAIT: tvp = (struct timeval *)ap->a_data; segwait_common: mutex_enter(&lfs_lock); ++fs->lfs_sleepers; mutex_exit(&lfs_lock); error = lfs_segwait(fsidp, tvp); mutex_enter(&lfs_lock); if (--fs->lfs_sleepers == 0) cv_broadcast(&fs->lfs_sleeperscv); mutex_exit(&lfs_lock); return error; case LFCNBMAPV_COMPAT_70: case LFCNMARKV_COMPAT_70: blkvp70 = *(struct lfs_fcntl_markv_70 *)ap->a_data; blkcnt = blkvp70.blkcnt; if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) return (EINVAL); blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); blkiov70 = lfs_malloc(fs, sizeof(BLOCK_INFO_70), LFS_NB_BLKIOV); for (i = 0; i < blkcnt; i++) { error = copyin(&blkvp70.blkiov[i], blkiov70, sizeof(*blkiov70)); if (error) { lfs_free(fs, blkiov70, LFS_NB_BLKIOV); lfs_free(fs, blkiov, LFS_NB_BLKIOV); return error; } block_info_from_70(&blkiov[i], blkiov70); } mutex_enter(&lfs_lock); ++fs->lfs_sleepers; mutex_exit(&lfs_lock); if (ap->a_command == LFCNBMAPV) error = lfs_bmapv(l, fsidp, blkiov, blkcnt); else /* LFCNMARKV */ error = lfs_markv(l, fsidp, blkiov, blkcnt); if (error == 0) { for (i = 0; i < blkcnt; i++) { block_info_to_70(blkiov70, &blkiov[i]); error = copyout(blkiov70, &blkvp70.blkiov[i], sizeof(*blkiov70)); if (error) { break; } } } mutex_enter(&lfs_lock); if (--fs->lfs_sleepers == 0) cv_broadcast(&fs->lfs_sleeperscv); mutex_exit(&lfs_lock); lfs_free(fs, blkiov, LFS_NB_BLKIOV); return error; case LFCNBMAPV: case LFCNMARKV: blkvp = *(struct lfs_fcntl_markv *)ap->a_data; blkcnt = blkvp.blkcnt; if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT) return (EINVAL); blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV); if ((error = copyin(blkvp.blkiov, blkiov, blkcnt * sizeof(BLOCK_INFO))) != 0) { lfs_free(fs, blkiov, LFS_NB_BLKIOV); return error; } mutex_enter(&lfs_lock); ++fs->lfs_sleepers; mutex_exit(&lfs_lock); if (ap->a_command == LFCNBMAPV) error = lfs_bmapv(l, fsidp, blkiov, blkcnt); else /* LFCNMARKV */ error = lfs_markv(l, fsidp, blkiov, blkcnt); if (error == 0) error = copyout(blkiov, blkvp.blkiov, blkcnt * sizeof(BLOCK_INFO)); mutex_enter(&lfs_lock); if (--fs->lfs_sleepers == 0) cv_broadcast(&fs->lfs_sleeperscv); mutex_exit(&lfs_lock); lfs_free(fs, blkiov, LFS_NB_BLKIOV); return error; case LFCNRECLAIM: /* * Flush dirops and write Ifile, allowing empty segments * to be immediately reclaimed. */ lfs_writer_enter(fs, "pndirop"); off = lfs_sb_getoffset(fs); lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP); lfs_flush_dirops(fs); LFS_CLEANERINFO(cip, fs, bp); oclean = lfs_ci_getclean(fs, cip); LFS_SYNC_CLEANERINFO(cip, fs, bp, 1); lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP); fs->lfs_sp->seg_flags |= SEGM_PROT; lfs_segunlock(fs); lfs_writer_leave(fs); #ifdef DEBUG LFS_CLEANERINFO(cip, fs, bp); DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned %" PRId32 " segments (activesb %d)\n", lfs_sb_getoffset(fs) - off, lfs_ci_getclean(fs, cip) - oclean, fs->lfs_activesb)); LFS_SYNC_CLEANERINFO(cip, fs, bp, 0); #else __USE(oclean); __USE(off); #endif return 0; case LFCNIFILEFH_COMPAT: /* Return the filehandle of the Ifile */ if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0) return (error); fhp = (struct fhandle *)ap->a_data; fhp->fh_fsid = *fsidp; fh_size = 16; /* former VFS_MAXFIDSIZ */ return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size); case LFCNIFILEFH_COMPAT2: case LFCNIFILEFH: /* Return the filehandle of the Ifile */ fhp = (struct fhandle *)ap->a_data; fhp->fh_fsid = *fsidp; fh_size = sizeof(struct lfs_fhandle) - offsetof(fhandle_t, fh_fid); return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size); case LFCNREWIND: /* Move lfs_offset to the lowest-numbered segment */ return lfs_rewind(fs, *(int *)ap->a_data); case LFCNINVAL: /* Mark a segment SEGUSE_INVAL */ LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp); if (sup->su_nbytes > 0) { brelse(bp, 0); lfs_unset_inval_all(fs); return EBUSY; } sup->su_flags |= SEGUSE_INVAL; VOP_BWRITE(bp->b_vp, bp); return 0; case LFCNRESIZE: /* Resize the filesystem */ return lfs_resize_fs(fs, *(int *)ap->a_data); case LFCNWRAPSTOP: case LFCNWRAPSTOP_COMPAT: /* * Hold lfs_newseg at segment 0; if requested, sleep until * the filesystem wraps around. To support external agents * (dump, fsck-based regression test) that need to look at * a snapshot of the filesystem, without necessarily * requiring that all fs activity stops. */ if (fs->lfs_stoplwp == curlwp) return EALREADY; mutex_enter(&lfs_lock); while (fs->lfs_stoplwp != NULL) cv_wait(&fs->lfs_stopcv, &lfs_lock); fs->lfs_stoplwp = curlwp; if (fs->lfs_nowrap == 0) log(LOG_NOTICE, "%s: disabled log wrap\n", lfs_sb_getfsmnt(fs)); ++fs->lfs_nowrap; if (*(int *)ap->a_data == 1 || ap->a_command == LFCNWRAPSTOP_COMPAT) { log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n"); error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER, "segwrap", 0, &lfs_lock); log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n"); if (error) { lfs_wrapgo(fs, VTOI(ap->a_vp), 0); } } mutex_exit(&lfs_lock); return 0; case LFCNWRAPGO: case LFCNWRAPGO_COMPAT: /* * Having done its work, the agent wakes up the writer. * If the argument is 1, it sleeps until a new segment * is selected. */ mutex_enter(&lfs_lock); error = lfs_wrapgo(fs, VTOI(ap->a_vp), ap->a_command == LFCNWRAPGO_COMPAT ? 1 : *((int *)ap->a_data)); mutex_exit(&lfs_lock); return error; case LFCNWRAPPASS: if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT)) return EALREADY; mutex_enter(&lfs_lock); if (fs->lfs_stoplwp != curlwp) { mutex_exit(&lfs_lock); return EALREADY; } if (fs->lfs_nowrap == 0) { mutex_exit(&lfs_lock); return EBUSY; } fs->lfs_wrappass = 1; wakeup(&fs->lfs_wrappass); /* Wait for the log to wrap, if asked */ if (*(int *)ap->a_data) { vref(ap->a_vp); VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT; log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n"); error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER, "segwrap", 0, &lfs_lock); log(LOG_NOTICE, "LFCNPASS done waiting\n"); VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT; vrele(ap->a_vp); } mutex_exit(&lfs_lock); return error; case LFCNWRAPSTATUS: mutex_enter(&lfs_lock); *(int *)ap->a_data = fs->lfs_wrapstatus; mutex_exit(&lfs_lock); return 0; default: return ulfs_fcntl(v); } return 0; } /* * Return the last logical file offset that should be written for this file * if we're doing a write that ends at "size". If writing, we need to know * about sizes on disk, i.e. fragments if there are any; if reading, we need * to know about entire blocks. */ void lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags) { struct inode *ip = VTOI(vp); struct lfs *fs = ip->i_lfs; daddr_t olbn, nlbn; olbn = lfs_lblkno(fs, ip->i_size); nlbn = lfs_lblkno(fs, size); if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) { *eobp = lfs_fragroundup(fs, size); } else { *eobp = lfs_blkroundup(fs, size); } } #ifdef DEBUG void lfs_dump_vop(void *); void lfs_dump_vop(void *v) { struct vop_putpages_args /* { struct vnode *a_vp; voff_t a_offlo; voff_t a_offhi; int a_flags; } */ *ap = v; struct inode *ip = VTOI(ap->a_vp); struct lfs *fs = ip->i_lfs; #ifdef DDB vfs_vnode_print(ap->a_vp, 0, printf); #endif lfs_dump_dinode(fs, ip->i_din); } #endif int lfs_mmap(void *v) { struct vop_mmap_args /* { const struct vnodeop_desc *a_desc; struct vnode *a_vp; vm_prot_t a_prot; kauth_cred_t a_cred; } */ *ap = v; if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) return EOPNOTSUPP; return ulfs_mmap(v); } static int lfs_openextattr(void *v) { struct vop_openextattr_args /* { struct vnode *a_vp; kauth_cred_t a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct ulfsmount *ump; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); ump = ip->i_ump; /* Not supported for ULFS1 file systems. */ if (ump->um_fstype == ULFS1) return (EOPNOTSUPP); /* XXX Not implemented for ULFS2 file systems. */ return (EOPNOTSUPP); } static int lfs_closeextattr(void *v) { struct vop_closeextattr_args /* { struct vnode *a_vp; int a_commit; kauth_cred_t a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct ulfsmount *ump; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); ump = ip->i_ump; /* Not supported for ULFS1 file systems. */ if (ump->um_fstype == ULFS1) return (EOPNOTSUPP); /* XXX Not implemented for ULFS2 file systems. */ return (EOPNOTSUPP); } static int lfs_getextattr(void *v) { struct vop_getextattr_args /* { struct vnode *a_vp; int a_attrnamespace; const char *a_name; struct uio *a_uio; size_t *a_size; kauth_cred_t a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct ulfsmount *ump; int error; KASSERT(VOP_ISLOCKED(vp)); ip = VTOI(vp); ump = ip->i_ump; if (ump->um_fstype == ULFS1) { #ifdef LFS_EXTATTR error = ulfs_getextattr(ap); #else error = EOPNOTSUPP; #endif return error; } /* XXX Not implemented for ULFS2 file systems. */ return (EOPNOTSUPP); } static int lfs_setextattr(void *v) { struct vop_setextattr_args /* { struct vnode *a_vp; int a_attrnamespace; const char *a_name; struct uio *a_uio; kauth_cred_t a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct ulfsmount *ump; int error; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); ump = ip->i_ump; if (ump->um_fstype == ULFS1) { #ifdef LFS_EXTATTR error = ulfs_setextattr(ap); #else error = EOPNOTSUPP; #endif return error; } /* XXX Not implemented for ULFS2 file systems. */ return (EOPNOTSUPP); } static int lfs_listextattr(void *v) { struct vop_listextattr_args /* { struct vnode *a_vp; int a_attrnamespace; struct uio *a_uio; size_t *a_size; kauth_cred_t a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct ulfsmount *ump; int error; KASSERT(VOP_ISLOCKED(vp)); ip = VTOI(vp); ump = ip->i_ump; if (ump->um_fstype == ULFS1) { #ifdef LFS_EXTATTR error = ulfs_listextattr(ap); #else error = EOPNOTSUPP; #endif return error; } /* XXX Not implemented for ULFS2 file systems. */ return (EOPNOTSUPP); } static int lfs_deleteextattr(void *v) { struct vop_deleteextattr_args /* { struct vnode *a_vp; int a_attrnamespace; kauth_cred_t a_cred; struct proc *a_p; } */ *ap = v; struct vnode *vp = ap->a_vp; struct inode *ip; struct ulfsmount *ump; int error; KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE); ip = VTOI(vp); ump = ip->i_ump; if (ump->um_fstype == ULFS1) { #ifdef LFS_EXTATTR error = ulfs_deleteextattr(ap); #else error = EOPNOTSUPP; #endif return error; } /* XXX Not implemented for ULFS2 file systems. */ return (EOPNOTSUPP); }