/* $NetBSD: acpi.c,v 1.15.8.3 2019/01/03 11:26:42 martin Exp $ */ /*- * Copyright (c) 1998 Doug Rabson * Copyright (c) 2000 Mitsuru IWASAKI * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: head/usr.sbin/acpi/acpidump/acpi.c 321299 2017-07-20 17:36:17Z emaste $ */ #include __RCSID("$NetBSD: acpi.c,v 1.15.8.3 2019/01/03 11:26:42 martin Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acpidump.h" #define BEGIN_COMMENT "/*\n" #define END_COMMENT " */\n" /* Commonly used helper functions */ static void acpi_print_string(char *s, size_t length); static void acpi_print_tabs(unsigned int n); static void acpi_dump_bytes(uint8_t *p, uint32_t len, unsigned int ntabs); static void acpi_dump_table(ACPI_TABLE_HEADER *sdp); static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas); static void acpi_print_pci(uint16_t vendorid, uint16_t deviceid, uint8_t seg, uint8_t bus, uint8_t device, uint8_t func); static void acpi_print_pci_sbdf(uint8_t seg, uint8_t bus, uint8_t device, uint8_t func); #ifdef notyet static void acpi_print_hest_generic_status(ACPI_HEST_GENERIC_STATUS *); static void acpi_print_hest_generic_data(ACPI_HEST_GENERIC_DATA *); #endif static void acpi_print_whea(ACPI_WHEA_HEADER *whea, void (*print_action)(ACPI_WHEA_HEADER *), void (*print_ins)(ACPI_WHEA_HEADER *), void (*print_flags)(ACPI_WHEA_HEADER *)); static uint64_t acpi_select_address(uint32_t, uint64_t); /* Handlers for each table */ static void acpi_handle_fadt(ACPI_TABLE_HEADER *fadt); static void acpi_print_cpu(u_char cpu_id); static void acpi_print_cpu_uid(uint32_t uid, char *uid_string); static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags); static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr); static void acpi_print_mps_flags(uint16_t flags); static void acpi_print_intr(uint32_t intr, uint16_t mps_flags); static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags); static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp); static void acpi_handle_bert(ACPI_TABLE_HEADER *sdp); static void acpi_handle_boot(ACPI_TABLE_HEADER *sdp); static void acpi_handle_cpep(ACPI_TABLE_HEADER *sdp); static void acpi_handle_csrt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_dbgp(ACPI_TABLE_HEADER *sdp); static void acpi_handle_dbg2(ACPI_TABLE_HEADER *sdp); static void acpi_handle_einj(ACPI_TABLE_HEADER *sdp); static void acpi_handle_erst(ACPI_TABLE_HEADER *sdp); static void acpi_handle_gtdt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_hest(ACPI_TABLE_HEADER *sdp); static void acpi_handle_lpit(ACPI_TABLE_HEADER *sdp); static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_msct(ACPI_TABLE_HEADER *sdp); static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp); static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp); static void acpi_handle_sbst(ACPI_TABLE_HEADER *sdp); static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp); static void acpi_handle_spcr(ACPI_TABLE_HEADER *sdp); static void acpi_handle_spmi(ACPI_TABLE_HEADER *sdp); static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain, uint32_t flags, uint32_t clockdomain); static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp); static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat); static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp); static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp); static void acpi_print_nfit(ACPI_NFIT_HEADER *nfit); static void acpi_handle_nfit(ACPI_TABLE_HEADER *sdp); static void acpi_handle_uefi(ACPI_TABLE_HEADER *sdp); static void acpi_handle_waet(ACPI_TABLE_HEADER *sdp); static void acpi_handle_wdat(ACPI_TABLE_HEADER *sdp); static void acpi_handle_wddt(ACPI_TABLE_HEADER *sdp); static void acpi_handle_wdrt(ACPI_TABLE_HEADER *sdp); static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp); static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp); static void acpi_print_facs(ACPI_TABLE_FACS *facs); static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp); static ACPI_TABLE_HEADER *acpi_map_sdt(vm_offset_t pa); static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp); static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp); static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_SUBTABLE_HEADER *)); static void acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_NFIT_HEADER *)); /* Size of an address. 32-bit for ACPI 1.0, 64-bit for ACPI 2.0 and up. */ static int addr_size; /* Strings used in the TCPA table */ static const char *tcpa_event_type_strings[] = { "PREBOOT Certificate", "POST Code", "Unused", "No Action", "Separator", "Action", "Event Tag", "S-CRTM Contents", "S-CRTM Version", "CPU Microcode", "Platform Config Flags", "Table of Devices", "Compact Hash", "IPL", "IPL Partition Data", "Non-Host Code", "Non-Host Config", "Non-Host Info" }; static const char *TCPA_pcclient_strings[] = { "", "SMBIOS", "BIS Certificate", "POST BIOS ROM Strings", "ESCD", "CMOS", "NVRAM", "Option ROM Execute", "Option ROM Configurateion", "", "Option ROM Microcode Update ", "S-CRTM Version String", "S-CRTM Contents", "POST Contents", "Table of Devices", }; #define PRINTFLAG_END() printflag_end() static char pf_sep = '{'; static void printflag_end(void) { if (pf_sep == ',') { printf("}"); } else if (pf_sep == '{') { printf("{}"); } pf_sep = '{'; printf("\n"); } static void printflag(uint64_t var, uint64_t mask, const char *name) { if (var & mask) { printf("%c%s", pf_sep, name); pf_sep = ','; } } static void acpi_print_string(char *s, size_t length) { int c; /* Trim trailing spaces and NULLs */ while (length > 0 && (s[length - 1] == ' ' || s[length - 1] == '\0')) length--; while (length--) { c = *s++; if (c == '\0') return; putchar(c); } } static void acpi_print_gas(ACPI_GENERIC_ADDRESS *gas) { switch (gas->SpaceId) { case ACPI_ADR_SPACE_SYSTEM_MEMORY: if (gas->BitWidth <= 32) printf("0x%08x:%u[%u] (Memory)", (u_int)gas->Address, gas->BitOffset, gas->BitWidth); else printf("0x%016jx:%u[%u] (Memory)", (uintmax_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_ADR_SPACE_SYSTEM_IO: printf("0x%02x:%u[%u] (IO)", (u_int)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_ADR_SPACE_PCI_CONFIG: printf("%x:%x+0x%x (PCI)", (uint16_t)(gas->Address >> 32), (uint16_t)((gas->Address >> 16) & 0xffff), (uint16_t)gas->Address); break; /* XXX How to handle these below? */ case ACPI_ADR_SPACE_EC: printf("0x%x:%u[%u] (EC)", (uint16_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_ADR_SPACE_SMBUS: printf("0x%x:%u[%u] (SMBus)", (uint16_t)gas->Address, gas->BitOffset, gas->BitWidth); break; case ACPI_ADR_SPACE_CMOS: case ACPI_ADR_SPACE_PCI_BAR_TARGET: case ACPI_ADR_SPACE_IPMI: case ACPI_ADR_SPACE_GPIO: case ACPI_ADR_SPACE_GSBUS: case ACPI_ADR_SPACE_PLATFORM_COMM: case ACPI_ADR_SPACE_FIXED_HARDWARE: default: printf("0x%016jx (SpaceID=%hhu)", (uintmax_t)gas->Address, gas->SpaceId); break; } } static void acpi_print_pci(uint16_t vendorid, uint16_t deviceid, uint8_t seg, uint8_t bus, uint8_t device, uint8_t func) { if (vendorid == 0xffff && deviceid == 0xffff) { printf("\tPCI Device=NONE\n"); return; } printf("\tPCI device={\n"); printf("\t\tVendor=0x%x\n", vendorid); printf("\t\tDevice=0x%x\n", deviceid); printf("\n"); printf("\t\tSegment Group=%d\n", seg); printf("\t\tBus=%d\n", bus); printf("\t\tDevice=%d\n", device); printf("\t\tFunction=%d\n", func); printf("\t}\n"); } static void acpi_print_pci_sbdf(uint8_t seg, uint8_t bus, uint8_t device, uint8_t func) { if (bus == 0xff && device == 0xff && func == 0xff) { printf("\tPCI Device=NONE\n"); return; } printf("\tPCI device={\n"); printf("\t\tSegment Group=%d\n", seg); printf("\t\tBus=%d\n", bus); printf("\t\tDevice=%d\n", device); printf("\t\tFunction=%d\n", func); printf("\t}\n"); } #ifdef notyet static void acpi_print_hest_errorseverity(uint32_t error) { printf("\tError Severity={ "); switch (error) { case 0: printf("Recoverable"); break; case 1: printf("Fatal"); break; case 2: printf("Corrected"); break; case 3: printf("None"); break; default: printf("%d (reserved)", error); break; } printf("}\n"); } #endif static void acpi_print_hest_errorbank(ACPI_HEST_IA_ERROR_BANK *bank) { printf("\n"); printf("\tBank Number=%d\n", bank->BankNumber); printf("\tClear Status On Init={%s}\n", bank->ClearStatusOnInit ? "NO" : "YES"); printf("\tStatus Data Format={ "); switch (bank->StatusFormat) { case 0: printf("IA32 MCA"); break; case 1: printf("EMT64 MCA"); break; case 2: printf("AMD64 MCA"); break; } printf(" }\n"); if (bank->ControlRegister) printf("\tControl Register=0x%x\n", bank->ControlRegister); printf("\tControl Init Data=0x%"PRIx64"\n", bank->ControlData); printf("\tStatus MSR=0x%x\n", bank->StatusRegister); printf("\tAddress MSR=0x%x\n", bank->AddressRegister); printf("\tMisc MSR=0x%x\n", bank->MiscRegister); } static void acpi_print_hest_header(ACPI_HEST_HEADER *hest) { printf("\tType={"); switch (hest->Type) { case ACPI_HEST_TYPE_IA32_CHECK: printf("IA32 Machine Check Exception"); break; case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK: printf("IA32 Corrected Machine Check"); break; case ACPI_HEST_TYPE_IA32_NMI: printf("IA32 Non-Maskable Interrupt"); break; case ACPI_HEST_TYPE_NOT_USED3: case ACPI_HEST_TYPE_NOT_USED4: case ACPI_HEST_TYPE_NOT_USED5: printf("unused type: %d", hest->Type); break; case ACPI_HEST_TYPE_AER_ROOT_PORT: printf("PCI Express Root Port AER"); break; case ACPI_HEST_TYPE_AER_ENDPOINT: printf("PCI Express Endpoint AER"); break; case ACPI_HEST_TYPE_AER_BRIDGE: printf("PCI Express/PCI-X Bridge AER"); break; case ACPI_HEST_TYPE_GENERIC_ERROR: printf("Generic Hardware Error Source"); break; case ACPI_HEST_TYPE_GENERIC_ERROR_V2: printf("Generic Hardware Error Source version 2"); break; case ACPI_HEST_TYPE_RESERVED: default: printf("Reserved (%d)", hest->Type); break; } printf("}\n"); printf("\tSourceId=%d\n", hest->SourceId); } static void acpi_print_hest_aer_common(ACPI_HEST_AER_COMMON *data) { printf("\tFlags={ "); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("FIRMWARE_FIRST"); if (data->Flags & ACPI_HEST_GLOBAL) printf("GLOBAL"); printf(" }\n"); printf("\tEnabled={ %s ", data->Flags ? "YES" : "NO"); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("(ignored) "); printf("}\n"); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax. Sections per Record=%d\n", data->MaxSectionsPerRecord); if (!(data->Flags & ACPI_HEST_GLOBAL)) acpi_print_pci_sbdf(0, data->Bus, data->Device, data->Function); printf("\tDevice Control=0x%x\n", data->DeviceControl); printf("\tUncorrectable Error Mask Register=0x%x\n", data->UncorrectableMask); printf("\tUncorrectable Error Severity Register=0x%x\n", data->UncorrectableSeverity); printf("\tCorrectable Error Mask Register=0x%x\n", data->CorrectableMask); printf("\tAdvanced Capabilities Register=0x%x\n", data->AdvancedCapabilities); } static void acpi_print_hest_notify(ACPI_HEST_NOTIFY *notify) { printf("\tHW Error Notification={\n"); printf("\t\tType={"); switch (notify->Type) { case ACPI_HEST_NOTIFY_POLLED: printf("POLLED"); break; case ACPI_HEST_NOTIFY_EXTERNAL: printf("EXTERN"); break; case ACPI_HEST_NOTIFY_LOCAL: printf("LOCAL"); break; case ACPI_HEST_NOTIFY_SCI: printf("SCI"); break; case ACPI_HEST_NOTIFY_NMI: printf("NMI"); break; case ACPI_HEST_NOTIFY_CMCI: printf("CMCI"); break; case ACPI_HEST_NOTIFY_MCE: printf("MCE"); break; case ACPI_HEST_NOTIFY_GPIO: printf("GPIO-Signal"); break; case ACPI_HEST_NOTIFY_SEA: printf("ARMv8 SEA"); break; case ACPI_HEST_NOTIFY_SEI: printf("ARMv8 SEI"); break; case ACPI_HEST_NOTIFY_GSIV: printf("External Interrupt - GSIV"); break; case ACPI_HEST_NOTIFY_RESERVED: printf("RESERVED"); break; default: printf("%d (reserved)", notify->Type); break; } printf("}\n"); printf("\t\tLength=%d\n", notify->Length); #define PRINTFLAG(var, flag) printflag((var), ACPI_HEST_## flag, #flag) printf("\t\tConfig Write Enable="); PRINTFLAG(notify->ConfigWriteEnable, TYPE); PRINTFLAG(notify->ConfigWriteEnable, POLL_INTERVAL); PRINTFLAG(notify->ConfigWriteEnable, POLL_THRESHOLD_VALUE); PRINTFLAG(notify->ConfigWriteEnable, POLL_THRESHOLD_WINDOW); PRINTFLAG(notify->ConfigWriteEnable, ERR_THRESHOLD_VALUE); PRINTFLAG(notify->ConfigWriteEnable, ERR_THRESHOLD_WINDOW); PRINTFLAG_END(); #undef PRINTFLAG printf("\t\tPoll Interval=%d msec\n", notify->PollInterval); printf("\t\tInterrupt Vector=%d\n", notify->Vector); printf("\t\tSwitch To Polling Threshold Value=%d\n", notify->PollingThresholdValue); printf("\t\tSwitch To Polling Threshold Window=%d msec\n", notify->PollingThresholdWindow); printf("\t\tError Threshold Value=%d\n", notify->ErrorThresholdValue); printf("\t\tError Threshold Window=%d msec\n", notify->ErrorThresholdWindow); printf("\t}\n"); } #ifdef notyet static void acpi_print_hest_generic_status(ACPI_HEST_GENERIC_STATUS *data) { uint32_t i, pos, entries; ACPI_HEST_GENERIC_DATA *gen; entries = data->BlockStatus & ACPI_HEST_ERROR_ENTRY_COUNT; printf("\tGeneric Error Status={\n"); printf("\t\tBlock Status={ "); if (data->BlockStatus & ACPI_HEST_UNCORRECTABLE) printf("UNCORRECTABLE"); if (data->BlockStatus & ACPI_HEST_CORRECTABLE) printf("CORRECTABLE"); if (data->BlockStatus & ACPI_HEST_MULTIPLE_UNCORRECTABLE) printf("MULTIPLE UNCORRECTABLE"); if (data->BlockStatus & ACPI_HEST_MULTIPLE_CORRECTABLE) printf("MULTIPLE CORRECTABLE"); printf(" }\n"); printf("\t\tEntry Count=%d\n", entries); printf("\t\tRaw Data Offset=%d\n", data->RawDataOffset); printf("\t\tRaw Data Length=%d\n", data->RawDataLength); printf("\t\tData Length=%d\n", data->DataLength); printf("\t"); acpi_print_hest_errorseverity(data->ErrorSeverity); printf("\t}\n"); pos = sizeof(ACPI_HEST_GENERIC_STATUS); for (i = 0; i < entries; i++) { gen = (ACPI_HEST_GENERIC_DATA *)((char *)data + pos); acpi_print_hest_generic_data(gen); pos += sizeof(ACPI_HEST_GENERIC_DATA); } } #endif #ifdef notyet static void acpi_print_hest_generic_data(ACPI_HEST_GENERIC_DATA *data) { printf("\tGeneric Error Data={\n"); printf("\t\tSectionType="); acpi_print_string((char *)data->SectionType, sizeof(data->SectionType)); printf("\n\t"); acpi_print_hest_errorseverity(data->ErrorSeverity); printf("\t\tRevision=0x%x\n", data->Revision); printf("\t\tValidation Bits=0x%x\n", data->ValidationBits); printf("\t\tFlags=0x%x\n", data->Flags); printf("\t\tData Length=%d\n", data->ErrorDataLength); printf("\t\tField Replication Unit Id="); acpi_print_string((char *)data->FruId, sizeof(data->FruId)); printf("\n"); printf("\t\tField Replication Unit="); acpi_print_string((char *)data->FruText, sizeof(data->FruText)); printf("\n"); printf("\t}\n"); } #endif static void acpi_print_whea(ACPI_WHEA_HEADER *whea, void (*print_action)(ACPI_WHEA_HEADER *), void (*print_ins)(ACPI_WHEA_HEADER *), void (*print_flags)(ACPI_WHEA_HEADER *)) { printf("\n"); print_action(whea); print_ins(whea); if (print_flags) print_flags(whea); printf("\tRegisterRegion="); acpi_print_gas(&whea->RegisterRegion); printf("\n"); printf("\tMASK=0x%08"PRIx64"\n", whea->Mask); } static void acpi_print_hest_ia32_check(ACPI_HEST_IA_MACHINE_CHECK *data) { uint32_t i, pos; ACPI_HEST_IA_ERROR_BANK *bank; acpi_print_hest_header(&data->Header); printf("\tFlags={ "); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("FIRMWARE_FIRST"); printf(" }\n"); printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO"); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%d\n", data->MaxSectionsPerRecord); printf("\tGlobal Capability Init Data=0x%"PRIx64"\n", data->GlobalCapabilityData); printf("\tGlobal Control Init Data=0x%"PRIx64"\n", data->GlobalControlData); printf("\tNumber of Hardware Error Reporting Banks=%d\n", data->NumHardwareBanks); pos = sizeof(ACPI_HEST_IA_MACHINE_CHECK); for (i = 0; i < data->NumHardwareBanks; i++) { bank = (ACPI_HEST_IA_ERROR_BANK *)((char *)data + pos); acpi_print_hest_errorbank(bank); pos += sizeof(ACPI_HEST_IA_ERROR_BANK); } } static void acpi_print_hest_ia32_correctedcheck(ACPI_HEST_IA_CORRECTED *data) { uint32_t i, pos; ACPI_HEST_IA_ERROR_BANK *bank; acpi_print_hest_header(&data->Header); printf("\tFlags={ "); if (data->Flags & ACPI_HEST_FIRMWARE_FIRST) printf("FIRMWARE_FIRST"); printf(" }\n"); printf("\tEnabled={ %s }\n", data->Enabled ? "YES" : "NO"); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%d\n", data->MaxSectionsPerRecord); acpi_print_hest_notify(&data->Notify); printf("\tNumber of Hardware Error Reporting Banks=%d\n", data->NumHardwareBanks); pos = sizeof(ACPI_HEST_IA_MACHINE_CHECK); for (i = 0; i < data->NumHardwareBanks; i++) { bank = (ACPI_HEST_IA_ERROR_BANK *)((char *)data + pos); acpi_print_hest_errorbank(bank); pos += sizeof(ACPI_HEST_IA_ERROR_BANK); } } static void acpi_print_hest_ia32_nmi(ACPI_HEST_IA_NMI *data) { acpi_print_hest_header(&data->Header); printf("\tNumber of Record to pre-allocate=%d\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%d\n", data->MaxSectionsPerRecord); printf("\tMax Raw Data Length=%d\n", data->MaxRawDataLength); } static void acpi_print_hest_aer_root(ACPI_HEST_AER_ROOT *data) { acpi_print_hest_header(&data->Header); acpi_print_hest_aer_common(&data->Aer); printf("Root Error Command Register=0x%x\n", data->RootErrorCommand); } static void acpi_print_hest_aer_endpoint(ACPI_HEST_AER *data) { acpi_print_hest_header(&data->Header); acpi_print_hest_aer_common(&data->Aer); } static void acpi_print_hest_aer_bridge(ACPI_HEST_AER_BRIDGE *data) { acpi_print_hest_header(&data->Header); acpi_print_hest_aer_common(&data->Aer); printf("\tSecondary Uncorrectable Error Mask Register=0x%x\n", data->UncorrectableMask2); printf("\tSecondary Uncorrectable Error Severity Register=0x%x\n", data->UncorrectableSeverity2); printf("\tSecondory Advanced Capabilities Register=0x%x\n", data->AdvancedCapabilities2); } static void acpi_print_hest_generic(ACPI_HEST_GENERIC *data) { acpi_print_hest_header(&data->Header); if (data->RelatedSourceId != 0xffff) printf("\tReleated SourceId=%d\n", data->RelatedSourceId); printf("\tEnabled={%s}\n", data->Enabled ? "YES" : "NO"); printf("\tNumber of Records to pre-allocate=%u\n", data->RecordsToPreallocate); printf("\tMax Sections per Record=%u\n", data->MaxSectionsPerRecord); printf("\tMax Raw Data Length=%u\n", data->MaxRawDataLength); printf("\tError Status Address="); acpi_print_gas(&data->ErrorStatusAddress); printf("\n"); acpi_print_hest_notify(&data->Notify); printf("\tError Block Length=%u\n", data->ErrorBlockLength); } static void acpi_print_hest_generic_v2(ACPI_HEST_GENERIC_V2 *data) { /* The first 64 bytes are the same as ACPI_HEST_GENERIC */ acpi_print_hest_generic((ACPI_HEST_GENERIC *)data); printf("\tError Status Address"); acpi_print_gas(&data->ReadAckRegister); printf("\tRead Ack Preserve=0x%016jx\n", (uintmax_t)data->ReadAckPreserve); printf("\tRead Ack Write=0x%016jx\n", (uintmax_t)data->ReadAckWrite); } static void acpi_handle_hest(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HEST *hest; ACPI_HEST_HEADER *subhest; uint32_t i, pos; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); hest = (ACPI_TABLE_HEST *)sdp; printf("\tError Source Count=%d\n", hest->ErrorSourceCount); pos = sizeof(ACPI_TABLE_HEST); for (i = 0; i < hest->ErrorSourceCount; i++) { subhest = (ACPI_HEST_HEADER *)((char *)hest + pos); printf("\n"); switch (subhest->Type) { case ACPI_HEST_TYPE_IA32_CHECK: acpi_print_hest_ia32_check( (ACPI_HEST_IA_MACHINE_CHECK *)subhest); pos += sizeof(ACPI_HEST_IA_MACHINE_CHECK); break; case ACPI_HEST_TYPE_IA32_CORRECTED_CHECK: acpi_print_hest_ia32_correctedcheck( (ACPI_HEST_IA_CORRECTED *)subhest); pos += sizeof(ACPI_HEST_IA_CORRECTED); break; case ACPI_HEST_TYPE_IA32_NMI: acpi_print_hest_ia32_nmi( (ACPI_HEST_IA_NMI *)subhest); pos += sizeof(ACPI_HEST_IA_NMI); break; case ACPI_HEST_TYPE_NOT_USED3: case ACPI_HEST_TYPE_NOT_USED4: case ACPI_HEST_TYPE_NOT_USED5: pos += sizeof(ACPI_HEST_HEADER); break; case ACPI_HEST_TYPE_AER_ROOT_PORT: acpi_print_hest_aer_root((ACPI_HEST_AER_ROOT *)subhest); pos += sizeof(ACPI_HEST_AER_ROOT); break; case ACPI_HEST_TYPE_AER_ENDPOINT: acpi_print_hest_aer_endpoint((ACPI_HEST_AER *)subhest); pos += sizeof(ACPI_HEST_AER); break; case ACPI_HEST_TYPE_AER_BRIDGE: acpi_print_hest_aer_bridge((ACPI_HEST_AER_BRIDGE *)subhest); pos += sizeof(ACPI_HEST_AER_BRIDGE); break; case ACPI_HEST_TYPE_GENERIC_ERROR: acpi_print_hest_generic((ACPI_HEST_GENERIC *)subhest); pos += sizeof(ACPI_HEST_GENERIC); break; case ACPI_HEST_TYPE_GENERIC_ERROR_V2: acpi_print_hest_generic_v2( (ACPI_HEST_GENERIC_V2 *)subhest); pos += sizeof(ACPI_HEST_GENERIC_V2); break; case ACPI_HEST_TYPE_RESERVED: default: pos += sizeof(ACPI_HEST_HEADER); break; } } printf(END_COMMENT); } static uint64_t acpi_select_address(uint32_t addr32, uint64_t addr64) { if (addr64 == 0) return addr32; if ((addr32 != 0) && ((addr64 & 0xfffffff) != addr32)) { /* * A few systems (e.g., IBM T23) have an RSDP that claims * revision 2 but the 64 bit addresses are invalid. If * revision 2 and the 32 bit address is non-zero but the * 32 and 64 bit versions don't match, prefer the 32 bit * version for all subsequent tables. */ return addr32; } return addr64; } static void acpi_handle_fadt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HEADER *dsdp; ACPI_TABLE_FACS *facs; ACPI_TABLE_FADT *fadt; fadt = (ACPI_TABLE_FADT *)sdp; acpi_print_fadt(sdp); if (acpi_select_address(fadt->Facs, fadt->XFacs) == 0) { if ((fadt->Flags & ACPI_FADT_HW_REDUCED) == 0) errx(EXIT_FAILURE, "Missing FACS and HW_REDUCED_ACPI flag not set in FADT"); } else { facs = (ACPI_TABLE_FACS *)acpi_map_sdt( acpi_select_address(fadt->Facs, fadt->XFacs)); if (memcmp(facs->Signature, ACPI_SIG_FACS, 4) != 0 || facs->Length < 64) errx(EXIT_FAILURE, "FACS is corrupt"); acpi_print_facs(facs); } dsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt( acpi_select_address(fadt->Dsdt, fadt->XDsdt)); if (memcmp(dsdp->Signature, ACPI_SIG_DSDT, 4) != 0) errx(EXIT_FAILURE, "DSDT signature mismatch"); if (acpi_checksum(dsdp, dsdp->Length)) errx(EXIT_FAILURE, "DSDT is corrupt"); acpi_print_dsdt(dsdp); } static void acpi_walk_subtables(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_SUBTABLE_HEADER *)) { ACPI_SUBTABLE_HEADER *subtable; char *end; subtable = first; end = (char *)table + table->Length; while ((char *)subtable < end) { printf("\n"); if (subtable->Length < sizeof(ACPI_SUBTABLE_HEADER)) { warnx("invalid subtable length %u", subtable->Length); return; } action(subtable); subtable = (ACPI_SUBTABLE_HEADER *)((char *)subtable + subtable->Length); } } static void acpi_walk_nfit(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_NFIT_HEADER *)) { ACPI_NFIT_HEADER *subtable; char *end; subtable = first; end = (char *)table + table->Length; while ((char *)subtable < end) { printf("\n"); if (subtable->Length < sizeof(ACPI_NFIT_HEADER)) { warnx("invalid subtable length %u", subtable->Length); return; } action(subtable); subtable = (ACPI_NFIT_HEADER *)((char *)subtable + subtable->Length); } } static void acpi_print_cpu(u_char cpu_id) { printf("\tACPI CPU="); if (cpu_id == 0xff) printf("ALL\n"); else printf("%d\n", (u_int)cpu_id); } static void acpi_print_cpu_uid(uint32_t uid, char *uid_string) { printf("\tUID=%d", uid); if (uid_string != NULL) printf(" (%s)", uid_string); printf("\n"); } static void acpi_print_local_apic(uint32_t apic_id, uint32_t flags) { printf("\tFlags={"); if (flags & ACPI_MADT_ENABLED) printf("ENABLED"); else printf("DISABLED"); printf("}\n"); printf("\tAPIC ID=%d\n", apic_id); } static void acpi_print_io_apic(uint32_t apic_id, uint32_t int_base, uint64_t apic_addr) { printf("\tAPIC ID=%d\n", apic_id); printf("\tINT BASE=%d\n", int_base); printf("\tADDR=0x%016jx\n", (uintmax_t)apic_addr); } static void acpi_print_mps_flags(uint16_t flags) { printf("\tFlags={Polarity="); switch (flags & ACPI_MADT_POLARITY_MASK) { case ACPI_MADT_POLARITY_CONFORMS: printf("conforming"); break; case ACPI_MADT_POLARITY_ACTIVE_HIGH: printf("active-hi"); break; case ACPI_MADT_POLARITY_ACTIVE_LOW: printf("active-lo"); break; default: printf("0x%x", flags & ACPI_MADT_POLARITY_MASK); break; } printf(", Trigger="); switch (flags & ACPI_MADT_TRIGGER_MASK) { case ACPI_MADT_TRIGGER_CONFORMS: printf("conforming"); break; case ACPI_MADT_TRIGGER_EDGE: printf("edge"); break; case ACPI_MADT_TRIGGER_LEVEL: printf("level"); break; default: printf("0x%x", (flags & ACPI_MADT_TRIGGER_MASK) >> 2); } printf("}\n"); } static void acpi_print_gicc_flags(uint32_t flags) { printf("\tFlags={Performance intr="); if (flags & ACPI_MADT_PERFORMANCE_IRQ_MODE) printf("edge"); else printf("level"); printf(", VGIC intr="); if (flags & ACPI_MADT_VGIC_IRQ_MODE) printf("edge"); else printf("level"); printf("}\n"); } static void acpi_print_intr(uint32_t intr, uint16_t mps_flags) { printf("\tINTR=%d\n", intr); acpi_print_mps_flags(mps_flags); } static void acpi_print_local_nmi(u_int lint, uint16_t mps_flags) { printf("\tLINT Pin=%d\n", lint); acpi_print_mps_flags(mps_flags); } static const char *apic_types[] = { [ACPI_MADT_TYPE_LOCAL_APIC] = "Local APIC", [ACPI_MADT_TYPE_IO_APIC] = "IO APIC", [ACPI_MADT_TYPE_INTERRUPT_OVERRIDE] = "INT Override", [ACPI_MADT_TYPE_NMI_SOURCE] = "NMI", [ACPI_MADT_TYPE_LOCAL_APIC_NMI] = "Local APIC NMI", [ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE] = "Local APIC Override", [ACPI_MADT_TYPE_IO_SAPIC] = "IO SAPIC", [ACPI_MADT_TYPE_LOCAL_SAPIC] = "Local SAPIC", [ACPI_MADT_TYPE_INTERRUPT_SOURCE] = "Platform Interrupt", [ACPI_MADT_TYPE_LOCAL_X2APIC] = "Local X2APIC", [ACPI_MADT_TYPE_LOCAL_X2APIC_NMI] = "Local X2APIC NMI", [ACPI_MADT_TYPE_GENERIC_INTERRUPT] = "GIC CPU Interface Structure", [ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR] = "GIC Distributor Structure", [ACPI_MADT_TYPE_GENERIC_MSI_FRAME] = "GICv2m MSI Frame", [ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR] = "GIC Redistributor Structure", [ACPI_MADT_TYPE_GENERIC_TRANSLATOR] = "GIC ITS Structure" }; static const char *platform_int_types[] = { "0 (unknown)", "PMI", "INIT", "Corrected Platform Error" }; static void acpi_print_gicm_flags(ACPI_MADT_GENERIC_MSI_FRAME *gicm) { uint32_t flags = gicm->Flags; printf("\tFLAGS={"); if (flags & ACPI_MADT_OVERRIDE_SPI_VALUES) printf("SPI Count/Base Select"); printf("}\n"); } static void acpi_print_madt(ACPI_SUBTABLE_HEADER *mp) { ACPI_MADT_LOCAL_APIC *lapic; ACPI_MADT_IO_APIC *ioapic; ACPI_MADT_INTERRUPT_OVERRIDE *over; ACPI_MADT_NMI_SOURCE *nmi; ACPI_MADT_LOCAL_APIC_NMI *lapic_nmi; ACPI_MADT_LOCAL_APIC_OVERRIDE *lapic_over; ACPI_MADT_IO_SAPIC *iosapic; ACPI_MADT_LOCAL_SAPIC *lsapic; ACPI_MADT_INTERRUPT_SOURCE *isrc; ACPI_MADT_LOCAL_X2APIC *x2apic; ACPI_MADT_LOCAL_X2APIC_NMI *x2apic_nmi; ACPI_MADT_GENERIC_INTERRUPT *gicc; ACPI_MADT_GENERIC_DISTRIBUTOR *gicd; ACPI_MADT_GENERIC_MSI_FRAME *gicm; ACPI_MADT_GENERIC_REDISTRIBUTOR *gicr; ACPI_MADT_GENERIC_TRANSLATOR *gict; if (mp->Type < __arraycount(apic_types)) printf("\tType=%s\n", apic_types[mp->Type]); else printf("\tType=%d (unknown)\n", mp->Type); switch (mp->Type) { case ACPI_MADT_TYPE_LOCAL_APIC: lapic = (ACPI_MADT_LOCAL_APIC *)mp; acpi_print_cpu(lapic->ProcessorId); acpi_print_local_apic(lapic->Id, lapic->LapicFlags); break; case ACPI_MADT_TYPE_IO_APIC: ioapic = (ACPI_MADT_IO_APIC *)mp; acpi_print_io_apic(ioapic->Id, ioapic->GlobalIrqBase, ioapic->Address); break; case ACPI_MADT_TYPE_INTERRUPT_OVERRIDE: over = (ACPI_MADT_INTERRUPT_OVERRIDE *)mp; printf("\tBUS=%d\n", (u_int)over->Bus); printf("\tIRQ=%d\n", (u_int)over->SourceIrq); acpi_print_intr(over->GlobalIrq, over->IntiFlags); break; case ACPI_MADT_TYPE_NMI_SOURCE: nmi = (ACPI_MADT_NMI_SOURCE *)mp; acpi_print_intr(nmi->GlobalIrq, nmi->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_APIC_NMI: lapic_nmi = (ACPI_MADT_LOCAL_APIC_NMI *)mp; acpi_print_cpu(lapic_nmi->ProcessorId); acpi_print_local_nmi(lapic_nmi->Lint, lapic_nmi->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_APIC_OVERRIDE: lapic_over = (ACPI_MADT_LOCAL_APIC_OVERRIDE *)mp; printf("\tLocal APIC ADDR=0x%016jx\n", (uintmax_t)lapic_over->Address); break; case ACPI_MADT_TYPE_IO_SAPIC: iosapic = (ACPI_MADT_IO_SAPIC *)mp; acpi_print_io_apic(iosapic->Id, iosapic->GlobalIrqBase, iosapic->Address); break; case ACPI_MADT_TYPE_LOCAL_SAPIC: lsapic = (ACPI_MADT_LOCAL_SAPIC *)mp; acpi_print_cpu(lsapic->ProcessorId); acpi_print_local_apic(lsapic->Id, lsapic->LapicFlags); printf("\tAPIC EID=%d\n", (u_int)lsapic->Eid); if (mp->Length > offsetof(ACPI_MADT_LOCAL_SAPIC, Uid)) acpi_print_cpu_uid(lsapic->Uid, lsapic->UidString); break; case ACPI_MADT_TYPE_INTERRUPT_SOURCE: isrc = (ACPI_MADT_INTERRUPT_SOURCE *)mp; if (isrc->Type < __arraycount(platform_int_types)) printf("\tType=%s\n", platform_int_types[isrc->Type]); else printf("\tType=%d (unknown)\n", isrc->Type); printf("\tAPIC ID=%d\n", (u_int)isrc->Id); printf("\tAPIC EID=%d\n", (u_int)isrc->Eid); printf("\tSAPIC Vector=%d\n", (u_int)isrc->IoSapicVector); acpi_print_intr(isrc->GlobalIrq, isrc->IntiFlags); break; case ACPI_MADT_TYPE_LOCAL_X2APIC: x2apic = (ACPI_MADT_LOCAL_X2APIC *)mp; acpi_print_cpu_uid(x2apic->Uid, NULL); acpi_print_local_apic(x2apic->LocalApicId, x2apic->LapicFlags); break; case ACPI_MADT_TYPE_LOCAL_X2APIC_NMI: x2apic_nmi = (ACPI_MADT_LOCAL_X2APIC_NMI *)mp; acpi_print_cpu_uid(x2apic_nmi->Uid, NULL); acpi_print_local_nmi(x2apic_nmi->Lint, x2apic_nmi->IntiFlags); break; case ACPI_MADT_TYPE_GENERIC_INTERRUPT: gicc = (ACPI_MADT_GENERIC_INTERRUPT *)mp; acpi_print_cpu_uid(gicc->Uid, NULL); printf("\tCPU INTERFACE=%x\n", gicc->CpuInterfaceNumber); acpi_print_gicc_flags(gicc->Flags); printf("\tParking Protocol Version=%x\n", gicc->ParkingVersion); printf("\tPERF INTR=%d\n", gicc->PerformanceInterrupt); printf("\tParked ADDR=%016jx\n", (uintmax_t)gicc->ParkedAddress); printf("\tBase ADDR=%016jx\n", (uintmax_t)gicc->BaseAddress); printf("\tGICV=%016jx\n", (uintmax_t)gicc->GicvBaseAddress); printf("\tGICH=%016jx\n", (uintmax_t)gicc->GichBaseAddress); printf("\tVGIC INTR=%d\n", gicc->VgicInterrupt); printf("\tGICR ADDR=%016jx\n", (uintmax_t)gicc->GicrBaseAddress); printf("\tMPIDR=%jx\n", (uintmax_t)gicc->ArmMpidr); printf("\tEfficency Class=%d\n", (u_int)gicc->EfficiencyClass); break; case ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR: gicd = (ACPI_MADT_GENERIC_DISTRIBUTOR *)mp; printf("\tGIC ID=%d\n", (u_int)gicd->GicId); printf("\tBase ADDR=%016jx\n", (uintmax_t)gicd->BaseAddress); printf("\tVector Base=%d\n", gicd->GlobalIrqBase); printf("\tGIC VERSION=%d\n", (u_int)gicd->Version); break; case ACPI_MADT_TYPE_GENERIC_MSI_FRAME: gicm = (ACPI_MADT_GENERIC_MSI_FRAME*)mp; printf("\tBase ADDR=%016jx\n", (uintmax_t)gicm->BaseAddress); acpi_print_gicm_flags(gicm); printf("\tSPI Count=%u\n", gicm->SpiCount); printf("\tSPI Base=%u\n", gicm->SpiBase); break; case ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR: gicr = (ACPI_MADT_GENERIC_REDISTRIBUTOR *)mp; printf("\tBase ADDR=%016jx\n", (uintmax_t)gicr->BaseAddress); printf("\tLength=%08x\n", gicr->Length); break; case ACPI_MADT_TYPE_GENERIC_TRANSLATOR: gict = (ACPI_MADT_GENERIC_TRANSLATOR *)mp; printf("\tGIC ITS ID=%d\n", gict->TranslationId); printf("\tBase ADDR=%016jx\n", (uintmax_t)gict->BaseAddress); break; } } #ifdef notyet static void acpi_print_bert_region(ACPI_BERT_REGION *region) { uint32_t i, pos, entries; ACPI_HEST_GENERIC_DATA *data; printf("\n"); printf("\tBlockStatus={ "); if (region->BlockStatus & ACPI_BERT_UNCORRECTABLE) printf("Uncorrectable"); if (region->BlockStatus & ACPI_BERT_CORRECTABLE) printf("Correctable"); if (region->BlockStatus & ACPI_BERT_MULTIPLE_UNCORRECTABLE) printf("Multiple Uncorrectable"); if (region->BlockStatus & ACPI_BERT_MULTIPLE_CORRECTABLE) printf("Multiple Correctable"); entries = region->BlockStatus & ACPI_BERT_ERROR_ENTRY_COUNT; printf(", Error Entry Count=%d", entries); printf("}\n"); printf("\tRaw Data Offset=0x%x\n", region->RawDataOffset); printf("\tRaw Data Length=0x%x\n", region->RawDataLength); printf("\tData Length=0x%x\n", region->DataLength); acpi_print_hest_errorseverity(region->ErrorSeverity); pos = sizeof(ACPI_BERT_REGION); for (i = 0; i < entries; i++) { data = (ACPI_HEST_GENERIC_DATA *)((char *)region + pos); acpi_print_hest_generic_data(data); pos += sizeof(ACPI_HEST_GENERIC_DATA); } } #endif static void acpi_handle_bert(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_BERT *bert; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); bert = (ACPI_TABLE_BERT *)sdp; printf("\tLength of Boot Error Region=%d bytes\n", bert->RegionLength); printf("\tPhysical Address of Region=0x%"PRIx64"\n", bert->Address); printf(END_COMMENT); } static void acpi_handle_boot(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_BOOT *boot; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); boot = (ACPI_TABLE_BOOT *)sdp; printf("\tCMOS Index=0x%02x\n", boot->CmosIndex); printf(END_COMMENT); } static void acpi_handle_cpep(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_CPEP *cpep; ACPI_CPEP_POLLING *poll; uint32_t cpep_pos; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); cpep = (ACPI_TABLE_CPEP *)sdp; cpep_pos = sizeof(ACPI_TABLE_CPEP); while (cpep_pos < sdp->Length) { poll = (ACPI_CPEP_POLLING *)((char *)cpep + cpep_pos); acpi_print_cpu(poll->Id); printf("\tACPI CPU EId=%d\n", poll->Eid); printf("\tPoll Interval=%d msec\n", poll->Interval); cpep_pos += sizeof(ACPI_CPEP_POLLING); } printf(END_COMMENT); } static void acpi_print_csrt_resource_group(ACPI_CSRT_GROUP *grp) { ACPI_CSRT_DESCRIPTOR *desc; printf("\tLength=%u\n", grp->Length); printf("\tVendorId="); acpi_print_string((char *)&grp->VendorId, 4); printf("\n"); if (grp->SubvendorId != 0) { printf("\tSubvendorId="); acpi_print_string((char *)&grp->SubvendorId, 4); printf("\n"); } printf("\tDeviceId=0x%08x\n", grp->DeviceId); if (grp->SubdeviceId != 0) printf("\tSubdeviceId=0x%08x\n", grp->SubdeviceId); printf("\tRevision=%hu\n", grp->Revision); printf("\tSharedInfoLength=%u\n", grp->SharedInfoLength); /* Next is Shared Info */ if (grp->SharedInfoLength != 0) { printf("\tShared Info "); acpi_dump_bytes((uint8_t *)(grp + 1), grp->SharedInfoLength, 1); } /* And then, Resource Descriptors */ desc = (ACPI_CSRT_DESCRIPTOR *) ((vaddr_t)(grp + 1) + grp->SharedInfoLength); while (desc < (ACPI_CSRT_DESCRIPTOR *)((vaddr_t)grp + grp->Length)) { bool unknownsubytpe = false; printf("\n\tLength=%u\n", desc->Length); printf("\tResource Type="); switch (desc->Type) { case ACPI_CSRT_TYPE_INTERRUPT: printf("Interrupt"); switch (desc->Subtype) { case ACPI_CSRT_XRUPT_LINE: printf("(Interrupt line)\n"); break; case ACPI_CSRT_XRUPT_CONTROLLER: printf("(Interrupt controller)\n"); break; default: unknownsubytpe = true; break; } break; case ACPI_CSRT_TYPE_TIMER: printf("Timer"); switch (desc->Subtype) { case ACPI_CSRT_TIMER: printf("\n"); break; default: unknownsubytpe = true; break; } break; case ACPI_CSRT_TYPE_DMA: printf("DMA"); switch (desc->Subtype) { case ACPI_CSRT_DMA_CHANNEL: printf("(DMA channel)\n"); break; case ACPI_CSRT_DMA_CONTROLLER: printf("(DMA controller)\n"); break; default: unknownsubytpe = true; break; } break; case 0x0004: /* XXX Platform Security */ printf("Platform Security"); switch (desc->Subtype) { case 0x0001: printf("\n"); /* Platform Security */ break; default: unknownsubytpe = true; break; } break; default: printf("Unknown (%hx)\n", desc->Type); break; } if (unknownsubytpe) printf("(unknown subtype(%hx))\n", desc->Subtype); printf("\tUID=0x%08x\n", desc->Uid); printf("\tVendor defined info "); acpi_dump_bytes((uint8_t *)(desc + 1), desc->Length - sizeof(ACPI_CSRT_DESCRIPTOR), 1); /* Next */ desc = (ACPI_CSRT_DESCRIPTOR *)((vaddr_t)desc + desc->Length); } } static void acpi_handle_csrt(ACPI_TABLE_HEADER *sdp) { ACPI_CSRT_GROUP *grp; uint totallen = sdp->Length; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); grp = (ACPI_CSRT_GROUP *)(sdp + 1); while (grp < (ACPI_CSRT_GROUP *)((vaddr_t)sdp + totallen)) { printf("\n"); acpi_print_csrt_resource_group(grp); /* Next */ grp = (ACPI_CSRT_GROUP *)((vaddr_t)grp + grp->Length); } printf(END_COMMENT); } static void acpi_handle_dbgp(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_DBGP *dbgp; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); dbgp = (ACPI_TABLE_DBGP *)sdp; printf("\tType={"); switch (dbgp->Type) { case 0: printf("full 16550"); break; case 1: printf("subset of 16550"); break; } printf("}\n"); printf("\tDebugPort="); acpi_print_gas(&dbgp->DebugPort); printf("\n"); printf(END_COMMENT); } /* This function is used by DBG2 and SPCR. */ static void acpi_print_dbg2_serial_subtype(uint16_t subtype) { switch (subtype) { case ACPI_DBG2_16550_COMPATIBLE: printf("Fully 16550 compatible\n"); break; case ACPI_DBG2_16550_SUBSET: printf("16550 subset with DBGP Rev. 1\n"); break; case ACPI_DBG2_ARM_PL011: printf("ARM PL011\n"); break; case ACPI_DBG2_ARM_SBSA_32BIT: printf("ARM SBSA 32bit only\n"); break; case ACPI_DBG2_ARM_SBSA_GENERIC: printf("ARM SBSA Generic\n"); break; case ACPI_DBG2_ARM_DCC: printf("ARM DCC\n"); break; case ACPI_DBG2_BCM2835: printf("BCM2835\n"); break; default: printf("reserved (%04hx)\n", subtype); break; } } static void acpi_print_dbg2_device(ACPI_DBG2_DEVICE *dev) { printf("\t\tRevision=%u\n", dev->Revision); printf("\t\tLength=%u\n", dev->Length); printf("\t\tRegisterCount=%u\n", dev->RegisterCount); printf("\t\tNamepath="); acpi_print_string((char *)((vaddr_t)dev + dev->NamepathOffset), dev->NamepathLength); printf("\n"); if (dev->OemDataLength) { printf("\t\tOemDataLength=%u\n", dev->OemDataLength); printf("\t\tOemDataOffset=%u\n", dev->OemDataOffset); /* XXX need dump */ } printf("\t\tPortType="); switch (dev->PortType) { case ACPI_DBG2_SERIAL_PORT: printf("Serial\n" "\t\tPortSubtype="); acpi_print_dbg2_serial_subtype(dev->PortSubtype); break; case ACPI_DBG2_1394_PORT: printf("IEEE1394\n" "\t\tPortSubtype="); if (dev->PortSubtype == ACPI_DBG2_1394_STANDARD) printf("Standard\n"); else printf("reserved (%04hx)\n", dev->PortSubtype); break; case ACPI_DBG2_USB_PORT: printf("USB\n" "\t\tPortSubtype="); switch (dev->PortSubtype) { case ACPI_DBG2_USB_XHCI: printf("XHCIn"); break; case ACPI_DBG2_USB_EHCI: printf("EHCI\n"); break; default: printf("reserved (%04hx)\n", dev->PortSubtype); break; } break; case ACPI_DBG2_NET_PORT: printf("Net\n" "\t\tPciVendorID=%04x\n", dev->PortSubtype); break; default: printf("reserved (%04hx)\n", dev->PortType); printf("\t\tPortSubtype=reserved (%04hx)\n", dev->PortSubtype); break; } printf("\t\tBaseAddressOffset=0x%04x\n", dev->BaseAddressOffset); printf("\t\tAddressSizeOffset=0x%04x\n", dev->AddressSizeOffset); } static void acpi_handle_dbg2(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_DBG2 *dbg2; ACPI_DBG2_DEVICE *device; unsigned int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); dbg2 = (ACPI_TABLE_DBG2 *)sdp; printf("\tCount=%u\n", dbg2->InfoCount); device = (ACPI_DBG2_DEVICE *)((vaddr_t)sdp + dbg2->InfoOffset); for (i = 0; i < dbg2->InfoCount; i++) { printf("\tDevice %u={\n", i); acpi_print_dbg2_device(device); printf("\t}\n"); device++; } printf(END_COMMENT); } static void acpi_print_einj_action(ACPI_WHEA_HEADER *whea) { printf("\tACTION={"); switch (whea->Action) { case ACPI_EINJ_BEGIN_OPERATION: printf("Begin Operation"); break; case ACPI_EINJ_GET_TRIGGER_TABLE: printf("Get Trigger Table"); break; case ACPI_EINJ_SET_ERROR_TYPE: printf("Set Error Type"); break; case ACPI_EINJ_GET_ERROR_TYPE: printf("Get Error Type"); break; case ACPI_EINJ_END_OPERATION: printf("End Operation"); break; case ACPI_EINJ_EXECUTE_OPERATION: printf("Execute Operation"); break; case ACPI_EINJ_CHECK_BUSY_STATUS: printf("Check Busy Status"); break; case ACPI_EINJ_GET_COMMAND_STATUS: printf("Get Command Status"); break; case ACPI_EINJ_SET_ERROR_TYPE_WITH_ADDRESS: printf("Set Error Type With Address"); break; case ACPI_EINJ_GET_EXECUTE_TIMINGS: printf("Get Execute Operation Timings"); break; case ACPI_EINJ_ACTION_RESERVED: printf("Preserved"); break; case ACPI_EINJ_TRIGGER_ERROR: printf("Trigger Error"); break; default: printf("%d", whea->Action); break; } printf("}\n"); } static void acpi_print_einj_instruction(ACPI_WHEA_HEADER *whea) { uint32_t ins = whea->Instruction; printf("\tINSTRUCTION={"); switch (ins) { case ACPI_EINJ_READ_REGISTER: printf("Read Register"); break; case ACPI_EINJ_READ_REGISTER_VALUE: printf("Read Register Value"); break; case ACPI_EINJ_WRITE_REGISTER: printf("Write Register"); break; case ACPI_EINJ_WRITE_REGISTER_VALUE: printf("Write Register Value"); break; case ACPI_EINJ_NOOP: printf("Noop"); break; case ACPI_EINJ_INSTRUCTION_RESERVED: printf("Reserved"); break; default: printf("%d", ins); break; } printf("}\n"); } static void acpi_print_einj_flags(ACPI_WHEA_HEADER *whea) { uint32_t flags = whea->Flags; printf("\tFLAGS={"); if (flags & ACPI_EINJ_PRESERVE) printf("PRESERVED"); printf("}\n"); } static void acpi_handle_einj(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_EINJ *einj; ACPI_EINJ_ENTRY *einj_entry; uint32_t einj_pos; u_int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); einj = (ACPI_TABLE_EINJ *)sdp; printf("\tHeader Length=%d\n", einj->HeaderLength); printf("\tFlags=0x%x\n", einj->Flags); printf("\tEntries=%d\n", einj->Entries); einj_pos = sizeof(ACPI_TABLE_EINJ); for (i = 0; i < einj->Entries; i++) { einj_entry = (ACPI_EINJ_ENTRY *)((char *)einj + einj_pos); acpi_print_whea(&einj_entry->WheaHeader, acpi_print_einj_action, acpi_print_einj_instruction, acpi_print_einj_flags); einj_pos += sizeof(ACPI_EINJ_ENTRY); } printf(END_COMMENT); } static void acpi_print_erst_action(ACPI_WHEA_HEADER *whea) { printf("\tACTION={"); switch (whea->Action) { case ACPI_ERST_BEGIN_WRITE: printf("Begin Write"); break; case ACPI_ERST_BEGIN_READ: printf("Begin Read"); break; case ACPI_ERST_BEGIN_CLEAR: printf("Begin Clear"); break; case ACPI_ERST_END: printf("End"); break; case ACPI_ERST_SET_RECORD_OFFSET: printf("Set Record Offset"); break; case ACPI_ERST_EXECUTE_OPERATION: printf("Execute Operation"); break; case ACPI_ERST_CHECK_BUSY_STATUS: printf("Check Busy Status"); break; case ACPI_ERST_GET_COMMAND_STATUS: printf("Get Command Status"); break; case ACPI_ERST_GET_RECORD_ID: printf("Get Record ID"); break; case ACPI_ERST_SET_RECORD_ID: printf("Set Record ID"); break; case ACPI_ERST_GET_RECORD_COUNT: printf("Get Record Count"); break; case ACPI_ERST_BEGIN_DUMMY_WRIITE: printf("Begin Dummy Write"); break; case ACPI_ERST_NOT_USED: printf("Unused"); break; case ACPI_ERST_GET_ERROR_RANGE: printf("Get Error Range"); break; case ACPI_ERST_GET_ERROR_LENGTH: printf("Get Error Length"); break; case ACPI_ERST_GET_ERROR_ATTRIBUTES: printf("Get Error Attributes"); break; case ACPI_ERST_EXECUTE_TIMINGS: printf("Execute Operation Timings"); break; case ACPI_ERST_ACTION_RESERVED: printf("Reserved"); break; default: printf("%d", whea->Action); break; } printf("}\n"); } static void acpi_print_erst_instruction(ACPI_WHEA_HEADER *whea) { printf("\tINSTRUCTION={"); switch (whea->Instruction) { case ACPI_ERST_READ_REGISTER: printf("Read Register"); break; case ACPI_ERST_READ_REGISTER_VALUE: printf("Read Register Value"); break; case ACPI_ERST_WRITE_REGISTER: printf("Write Register"); break; case ACPI_ERST_WRITE_REGISTER_VALUE: printf("Write Register Value"); break; case ACPI_ERST_NOOP: printf("Noop"); break; case ACPI_ERST_LOAD_VAR1: printf("Load Var1"); break; case ACPI_ERST_LOAD_VAR2: printf("Load Var2"); break; case ACPI_ERST_STORE_VAR1: printf("Store Var1"); break; case ACPI_ERST_ADD: printf("Add"); break; case ACPI_ERST_SUBTRACT: printf("Subtract"); break; case ACPI_ERST_ADD_VALUE: printf("Add Value"); break; case ACPI_ERST_SUBTRACT_VALUE: printf("Subtract Value"); break; case ACPI_ERST_STALL: printf("Stall"); break; case ACPI_ERST_STALL_WHILE_TRUE: printf("Stall While True"); break; case ACPI_ERST_SKIP_NEXT_IF_TRUE: printf("Skip Next If True"); break; case ACPI_ERST_GOTO: printf("Goto"); break; case ACPI_ERST_SET_SRC_ADDRESS_BASE: printf("Set Src Address Base"); break; case ACPI_ERST_SET_DST_ADDRESS_BASE: printf("Set Dst Address Base"); break; case ACPI_ERST_MOVE_DATA: printf("Move Data"); break; case ACPI_ERST_INSTRUCTION_RESERVED: printf("Reserved"); break; default: printf("%d (reserved)", whea->Instruction); break; } printf("}\n"); } static void acpi_print_erst_flags(ACPI_WHEA_HEADER *whea) { uint32_t flags = whea->Flags; printf("\tFLAGS={"); if (flags & ACPI_ERST_PRESERVE) printf("PRESERVED"); printf("}\n"); } static void acpi_handle_erst(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_ERST *erst; ACPI_ERST_ENTRY *erst_entry; uint32_t erst_pos; u_int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); erst = (ACPI_TABLE_ERST *)sdp; printf("\tHeader Length=%d\n", erst->HeaderLength); printf("\tEntries=%d\n", erst->Entries); erst_pos = sizeof(ACPI_TABLE_ERST); for (i = 0; i < erst->Entries; i++) { erst_entry = (ACPI_ERST_ENTRY *)((char *)erst + erst_pos); acpi_print_whea(&erst_entry->WheaHeader, acpi_print_erst_action, acpi_print_erst_instruction, acpi_print_erst_flags); erst_pos += sizeof(ACPI_ERST_ENTRY); } printf(END_COMMENT); } static void acpi_print_gtd_timer(const char *name, uint32_t interrupt, uint32_t flags) { printf("\t%s Timer GSIV=%d\n", name, interrupt); printf("\t%s Flags={Mode=", name); if (flags & ACPI_GTDT_INTERRUPT_MODE) printf("edge"); else printf("level"); printf(", Polarity="); if (flags & ACPI_GTDT_INTERRUPT_POLARITY) printf("active-lo"); else printf("active-hi"); if (flags & ACPI_GTDT_ALWAYS_ON) printf(", always-on"); printf("}\n"); } static void acpi_print_gtd_block_timer_flags(const char *name, uint32_t interrupt, uint32_t flags) { printf("\t\t%s Timer GSIV=%d\n", name, interrupt); printf("\t\t%s Timer Flags={Mode=", name); if (flags & ACPI_GTDT_GT_IRQ_MODE) printf("Secure"); else printf("Non-Secure"); printf(", Polarity="); if (flags & ACPI_GTDT_GT_IRQ_POLARITY) printf("active-lo"); else printf("active-hi"); printf("}\n"); } static void acpi_print_gtblock(ACPI_GTDT_TIMER_BLOCK *gtblock) { ACPI_GTDT_TIMER_ENTRY *entry; unsigned int i; printf("\tType=GT Block\n"); printf("\tLength=%d\n", gtblock->Header.Length); /* XXX might not 8byte aligned */ printf("\tBlockAddress=%016jx\n", (uintmax_t)gtblock->BlockAddress); printf("\tGT Block Timer Count=%d\n", gtblock->TimerCount); entry = (ACPI_GTDT_TIMER_ENTRY *)((vaddr_t)gtblock + gtblock->TimerOffset); for (i = 0; i < gtblock->TimerCount; i++) { printf("\n"); if (entry >= (ACPI_GTDT_TIMER_ENTRY *)((vaddr_t)gtblock + gtblock->Header.Length)) { printf("\\ttWrong Timer entry\n"); break; } printf("\t\tFrame Number=%d\n", entry->FrameNumber); /* XXX might not 8byte aligned */ printf("\t\tBaseAddress=%016jx\n", (uintmax_t)entry->BaseAddress); /* XXX might not 8byte aligned */ printf("\t\tEl0BaseAddress=%016jx\n", (uintmax_t)entry->El0BaseAddress); acpi_print_gtd_block_timer_flags("Physical", entry->TimerInterrupt, entry->TimerFlags); acpi_print_gtd_block_timer_flags("Virtual", entry->VirtualTimerInterrupt, entry->VirtualTimerFlags); printf("\t\tCommon Flags={Mode="); if (entry->CommonFlags & ACPI_GTDT_GT_IS_SECURE_TIMER) printf("Secure"); else printf("Non-Secure"); if (entry->CommonFlags & ACPI_GTDT_GT_ALWAYS_ON) printf(", always-on"); printf("}\n"); entry++; } } static void acpi_print_sbsa_watchdog(ACPI_GTDT_WATCHDOG *wdog) { printf("\tType=Watchdog GT\n"); printf("\tLength=%d\n", wdog->Header.Length); /* XXX might not 8byte aligned */ printf("\tRefreshFrameAddress=%016jx\n", (uintmax_t)wdog->RefreshFrameAddress); /* XXX might not 8byte aligned */ printf("\tControlFrameAddress=%016jx\n", (uintmax_t)wdog->ControlFrameAddress); printf("\tGSIV=%d\n", wdog->TimerInterrupt); printf("\tFlags={Mode="); if (wdog->TimerFlags & ACPI_GTDT_WATCHDOG_IRQ_MODE) printf("edge"); else printf("level"); printf(", Polarity="); if (wdog->TimerFlags & ACPI_GTDT_WATCHDOG_IRQ_POLARITY) printf("active-lo"); else printf("active-hi"); if (wdog->TimerFlags & ACPI_GTDT_WATCHDOG_SECURE) printf(", Secure"); else printf(", Non-Secure"); printf("}\n"); } static void acpi_handle_gtdt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_GTDT *gtdt; ACPI_GTDT_HEADER *hdr; u_int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); gtdt = (ACPI_TABLE_GTDT *)sdp; printf("\tCounterBlockAddresss=%016jx\n", (uintmax_t)gtdt->CounterBlockAddresss); /* XXX not 8byte aligned */ printf("\tCounterReadBlockAddress=%016jx\n", (uintmax_t)gtdt->CounterReadBlockAddress); #define PRINTTIMER(gtdt, name) acpi_print_gtd_timer( \ #name, (gtdt)-> name## Interrupt, \ (gtdt)-> name ## Flags) PRINTTIMER(gtdt, SecureEl1); PRINTTIMER(gtdt, NonSecureEl1); PRINTTIMER(gtdt, VirtualTimer); PRINTTIMER(gtdt, NonSecureEl2); #undef PRINTTIMER printf("\tPlatform Timer Count=%d\n", gtdt->PlatformTimerCount); hdr = (ACPI_GTDT_HEADER *)((vaddr_t)sdp + gtdt->PlatformTimerOffset); for (i = 0; i < gtdt->PlatformTimerCount; i++) { printf("\n"); if (hdr >= (ACPI_GTDT_HEADER *)((vaddr_t)sdp + sdp->Length)) { printf("\tWrong GTDT header" "(type = %hhu, length = %hu)\n", hdr->Type, hdr->Length); break; } switch (hdr->Type) { case ACPI_GTDT_TYPE_TIMER_BLOCK: acpi_print_gtblock((ACPI_GTDT_TIMER_BLOCK *)hdr); break; case ACPI_GTDT_TYPE_WATCHDOG: acpi_print_sbsa_watchdog((ACPI_GTDT_WATCHDOG *)hdr); break; default: printf("\tUnknown Platform Timer Type" "(type = %hhu, length = %hu)\n", hdr->Type, hdr->Length); break; } /* Next */ hdr = (ACPI_GTDT_HEADER *)((vaddr_t)hdr + hdr->Length); } printf(END_COMMENT); } static void acpi_handle_madt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MADT *madt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); madt = (ACPI_TABLE_MADT *)sdp; printf("\tLocal APIC ADDR=0x%08x\n", madt->Address); printf("\tFlags={"); if (madt->Flags & ACPI_MADT_PCAT_COMPAT) printf("PC-AT"); printf("}\n"); acpi_walk_subtables(sdp, (madt + 1), acpi_print_madt); printf(END_COMMENT); } static void acpi_handle_hpet(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_HPET *hpet; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); hpet = (ACPI_TABLE_HPET *)sdp; printf("\tHPET Number=%d\n", hpet->Sequence); printf("\tADDR="); acpi_print_gas(&hpet->Address); printf("\tHW Rev=0x%x\n", hpet->Id & ACPI_HPET_ID_HARDWARE_REV_ID); printf("\tComparators=%d\n", (hpet->Id & ACPI_HPET_ID_COMPARATORS) >> 8); printf("\tCounter Size=%d\n", hpet->Id & ACPI_HPET_ID_COUNT_SIZE_CAP ? 1 : 0); printf("\tLegacy IRQ routing capable={"); if (hpet->Id & ACPI_HPET_ID_LEGACY_CAPABLE) printf("TRUE}\n"); else printf("FALSE}\n"); printf("\tPCI Vendor ID=0x%04x\n", hpet->Id >> 16); printf("\tMinimal Tick=%d\n", hpet->MinimumTick); printf("\tFlags=0x%02x\n", hpet->Flags); printf(END_COMMENT); } static void acpi_print_native_lpit(ACPI_LPIT_NATIVE *nl) { printf("\tEntryTrigger="); acpi_print_gas(&nl->EntryTrigger); printf("\tResidency=%u\n", nl->Residency); printf("\tLatency=%u\n", nl->Latency); if (nl->Header.Flags & ACPI_LPIT_NO_COUNTER) printf("\tResidencyCounter=Not Present"); else { printf("\tResidencyCounter="); acpi_print_gas(&nl->ResidencyCounter); } if (nl->CounterFrequency) printf("\tCounterFrequency=%ju\n", nl->CounterFrequency); else printf("\tCounterFrequency=TSC\n"); } static void acpi_print_lpit(ACPI_LPIT_HEADER *lpit) { if (lpit->Type == ACPI_LPIT_TYPE_NATIVE_CSTATE) printf("\tType=ACPI_LPIT_TYPE_NATIVE_CSTATE\n"); else warnx("unknown LPIT type %u", lpit->Type); printf("\tLength=%u\n", lpit->Length); printf("\tUniqueId=0x%04x\n", lpit->UniqueId); #define PRINTFLAG(var, flag) printflag((var), ACPI_LPIT_## flag, #flag) printf("\tFlags="); PRINTFLAG(lpit->Flags, STATE_DISABLED); PRINTFLAG_END(); #undef PRINTFLAG if (lpit->Type == ACPI_LPIT_TYPE_NATIVE_CSTATE) return acpi_print_native_lpit((ACPI_LPIT_NATIVE *)lpit); } static void acpi_walk_lpit(ACPI_TABLE_HEADER *table, void *first, void (*action)(ACPI_LPIT_HEADER *)) { ACPI_LPIT_HEADER *subtable; char *end; subtable = first; end = (char *)table + table->Length; while ((char *)subtable < end) { printf("\n"); if (subtable->Length < sizeof(ACPI_LPIT_HEADER)) { warnx("invalid subtable length %u", subtable->Length); return; } action(subtable); subtable = (ACPI_LPIT_HEADER *)((char *)subtable + subtable->Length); } } static void acpi_handle_lpit(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_LPIT *lpit; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); lpit = (ACPI_TABLE_LPIT *)sdp; acpi_walk_lpit(sdp, (lpit + 1), acpi_print_lpit); printf(END_COMMENT); } static void acpi_handle_msct(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MSCT *msct; ACPI_MSCT_PROXIMITY *msctentry; uint32_t pos; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); msct = (ACPI_TABLE_MSCT *)sdp; printf("\tProximity Offset=0x%x\n", msct->ProximityOffset); printf("\tMax Proximity Domains=%d\n", msct->MaxProximityDomains); printf("\tMax Clock Domains=%d\n", msct->MaxClockDomains); printf("\tMax Physical Address=0x%"PRIx64"\n", msct->MaxAddress); pos = msct->ProximityOffset; while (pos < msct->Header.Length) { msctentry = (ACPI_MSCT_PROXIMITY *)((char *)msct + pos); pos += msctentry->Length; printf("\n"); printf("\tRevision=%d\n", msctentry->Revision); printf("\tLength=%d\n", msctentry->Length); printf("\tRange Start=%d\n", msctentry->RangeStart); printf("\tRange End=%d\n", msctentry->RangeEnd); printf("\tProcessor Capacity=%d\n", msctentry->ProcessorCapacity); printf("\tMemory Capacity=0x%"PRIx64" byte\n", msctentry->MemoryCapacity); } printf(END_COMMENT); } static void acpi_handle_ecdt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_ECDT *ecdt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); ecdt = (ACPI_TABLE_ECDT *)sdp; printf("\tEC_CONTROL="); acpi_print_gas(&ecdt->Control); printf("\n\tEC_DATA="); acpi_print_gas(&ecdt->Data); printf("\n\tUID=%#x, ", ecdt->Uid); printf("GPE_BIT=%#x\n", ecdt->Gpe); printf("\tEC_ID=%s\n", ecdt->Id); printf(END_COMMENT); } static void acpi_handle_mcfg(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_MCFG *mcfg; ACPI_MCFG_ALLOCATION *alloc; u_int i, entries; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); mcfg = (ACPI_TABLE_MCFG *)sdp; entries = (sdp->Length - sizeof(ACPI_TABLE_MCFG)) / sizeof(ACPI_MCFG_ALLOCATION); alloc = (ACPI_MCFG_ALLOCATION *)(mcfg + 1); for (i = 0; i < entries; i++, alloc++) { printf("\n"); printf("\tBase Address=0x%016jx\n", (uintmax_t)alloc->Address); printf("\tSegment Group=0x%04x\n", alloc->PciSegment); printf("\tStart Bus=%d\n", alloc->StartBusNumber); printf("\tEnd Bus=%d\n", alloc->EndBusNumber); } printf(END_COMMENT); } static void acpi_handle_sbst(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SBST *sbst; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); sbst = (ACPI_TABLE_SBST *)sdp; printf("\tWarning Level=%d mWh\n", sbst->WarningLevel); printf("\tLow Level=%d mWh\n", sbst->LowLevel); printf("\tCritical Level=%d mWh\n", sbst->CriticalLevel); printf(END_COMMENT); } static void acpi_handle_slit(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SLIT *slit; u_int idx; uint64_t cnt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); slit = (ACPI_TABLE_SLIT *)sdp; cnt = slit->LocalityCount * slit->LocalityCount; printf("\tLocalityCount=%ju\n", (uintmax_t)slit->LocalityCount); printf("\tEntry=\n\t"); for (idx = 0; idx < cnt; idx++) { printf("%u ", slit->Entry[idx]); if ((idx % slit->LocalityCount) == (slit->LocalityCount - 1)) { printf("\n"); if (idx < cnt - 1) printf("\t"); } } printf(END_COMMENT); } static void acpi_handle_spcr(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SPCR *spcr; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); spcr = (ACPI_TABLE_SPCR *)sdp; printf("\n\tInterface Type="); switch (sdp->Revision) { case 1: printf("full 16550%s\n", (spcr->InterfaceType == 1) ? "(must also accept writing FCR register)" : ""); break; case 2: acpi_print_dbg2_serial_subtype(spcr->InterfaceType); break; default: printf("unknown Revision\n"); break; } printf("\tSerial Port="); acpi_print_gas(&spcr->SerialPort); printf("\n\tInterrupt Type={"); if (spcr->InterruptType & 0x1) { printf("\n\t\tdual-8259 IRQ="); switch (spcr->PcInterrupt) { case 2 ... 7: case 9 ... 12: case 14 ... 15: printf("%d", spcr->PcInterrupt); break; default: printf("%d (invalid entry)", spcr->PcInterrupt); break; } } if (spcr->InterruptType & 0x2) { printf("\n\t\tIO APIC={ GSI=%d }", spcr->Interrupt); } if (spcr->InterruptType & 0x4) { printf("\n\t\tIO SAPIC={ GSI=%d }", spcr->Interrupt); } if (spcr->InterruptType & 0x8) { printf("\n\t\tARMH GIC={ GSI=%d }", spcr->Interrupt); } printf("\n\t}\n"); printf("\tBaud Rate="); switch (spcr->BaudRate) { case 3: printf("9600"); break; case 4: printf("19200"); break; case 6: printf("57600"); break; case 7: printf("115200"); break; default: printf("unknown speed index %d", spcr->BaudRate); break; } printf("\n\tParity={"); switch (spcr->Parity) { case 0: printf("OFF"); break; default: printf("ON"); break; } printf("}\n"); printf("\tStop Bits={"); switch (spcr->StopBits) { case 1: printf("ON"); break; default: printf("OFF"); break; } printf("}\n"); printf("\tFlow Control={"); if (spcr->FlowControl & 0x1) printf("DCD, "); if (spcr->FlowControl & 0x2) printf("RTS/CTS hardware, "); if (spcr->FlowControl & 0x4) printf("XON/XOFF software"); printf("}\n"); printf("\tTerminal="); switch (spcr->TerminalType) { case 0: printf("VT100"); break; case 1: printf("VT100+"); break; case 2: printf("VT-UTF8"); break; case 3: printf("ANSI"); break; default: printf("unknown type %d", spcr->TerminalType); break; } printf("\n"); acpi_print_pci(spcr->PciVendorId, spcr->PciDeviceId, spcr->PciSegment, spcr->PciBus, spcr->PciDevice, spcr->PciFunction); printf("\tPCI Flags={"); if (spcr->PciFlags & ACPI_SPCR_DO_NOT_DISABLE) printf("DONOT_DISABLE"); printf("}\n"); printf(END_COMMENT); } static void acpi_handle_spmi(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SPMI *spmi; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); spmi = (ACPI_TABLE_SPMI *)sdp; printf("\tInterface Type="); switch (spmi->InterfaceType) { case ACPI_SPMI_KEYBOARD: printf("Keyboard Controller Stype (KCS)"); break; case ACPI_SPMI_SMI: printf("Server Management Interface Chip (SMIC)"); break; case ACPI_SPMI_BLOCK_TRANSFER: printf("Block Transfer (BT)"); break; case ACPI_SPMI_SMBUS: printf("SMBus System Interface (SSIF)"); break; default: printf("Reserved(%d)", spmi->InterfaceType); break; } printf("\n\tSpecRevision=%d.%d", spmi->SpecRevision >> 8, spmi->SpecRevision & 0xff); printf("\n\tInterrupt Type={"); if (spmi->InterruptType & 0x1) { printf("\n\t\tSCI triggered GPE=%d", spmi->GpeNumber); } if (spmi->InterruptType & 0x2) { printf("\n\t\tIO APIC/SAPIC={ GSI=%d }", spmi->Interrupt); } printf("\n\t}\n"); printf("\tBase Address="); acpi_print_gas(&spmi->IpmiRegister); printf("\n"); if ((spmi->PciDeviceFlag & 0x01) != 0) acpi_print_pci_sbdf(spmi->PciSegment, spmi->PciBus, spmi->PciDevice, spmi->PciFunction); printf(END_COMMENT); } static void acpi_print_srat_cpu(uint32_t apic_id, uint32_t proximity_domain, uint32_t flags, uint32_t clockdomain) { printf("\tFlags={"); if (flags & ACPI_SRAT_CPU_ENABLED) printf("ENABLED"); else printf("DISABLED"); printf("}\n"); printf("\tAPIC ID=%d\n", apic_id); printf("\tProximity Domain=%d\n", proximity_domain); printf("\tClock Domain=%d\n", clockdomain); } static void acpi_print_srat_memory(ACPI_SRAT_MEM_AFFINITY *mp) { printf("\tFlags={"); if (mp->Flags & ACPI_SRAT_MEM_ENABLED) printf("ENABLED"); else printf("DISABLED"); if (mp->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) printf(",HOT_PLUGGABLE"); if (mp->Flags & ACPI_SRAT_MEM_NON_VOLATILE) printf(",NON_VOLATILE"); printf("}\n"); printf("\tBase Address=0x%016jx\n", (uintmax_t)mp->BaseAddress); printf("\tLength=0x%016jx\n", (uintmax_t)mp->Length); printf("\tProximity Domain=%d\n", mp->ProximityDomain); } static const char *srat_types[] = { [ACPI_SRAT_TYPE_CPU_AFFINITY] = "CPU", [ACPI_SRAT_TYPE_MEMORY_AFFINITY] = "Memory", [ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY] = "X2APIC", [ACPI_SRAT_TYPE_GICC_AFFINITY] = "GICC", }; static void acpi_print_srat(ACPI_SUBTABLE_HEADER *srat) { ACPI_SRAT_CPU_AFFINITY *cpu; ACPI_SRAT_X2APIC_CPU_AFFINITY *x2apic; ACPI_SRAT_GICC_AFFINITY *gic; if (srat->Type < __arraycount(srat_types)) printf("\tType=%s\n", srat_types[srat->Type]); else printf("\tType=%d (unknown)\n", srat->Type); switch (srat->Type) { case ACPI_SRAT_TYPE_CPU_AFFINITY: cpu = (ACPI_SRAT_CPU_AFFINITY *)srat; acpi_print_srat_cpu(cpu->ApicId, cpu->ProximityDomainHi[2] << 24 | cpu->ProximityDomainHi[1] << 16 | cpu->ProximityDomainHi[0] << 0 | cpu->ProximityDomainLo, cpu->Flags, cpu->ClockDomain); break; case ACPI_SRAT_TYPE_MEMORY_AFFINITY: acpi_print_srat_memory((ACPI_SRAT_MEM_AFFINITY *)srat); break; case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: x2apic = (ACPI_SRAT_X2APIC_CPU_AFFINITY *)srat; acpi_print_srat_cpu(x2apic->ApicId, x2apic->ProximityDomain, x2apic->Flags, x2apic->ClockDomain); break; case ACPI_SRAT_TYPE_GICC_AFFINITY: gic = (ACPI_SRAT_GICC_AFFINITY *)srat; acpi_print_srat_cpu(gic->AcpiProcessorUid, gic->ProximityDomain, gic->Flags, gic->ClockDomain); break; } } static void acpi_handle_srat(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_SRAT *srat; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); srat = (ACPI_TABLE_SRAT *)sdp; printf("\tTable Revision=%d\n", srat->TableRevision); acpi_walk_subtables(sdp, (srat + 1), acpi_print_srat); printf(END_COMMENT); } static const char *nfit_types[] = { [ACPI_NFIT_TYPE_SYSTEM_ADDRESS] = "System Address", [ACPI_NFIT_TYPE_MEMORY_MAP] = "Memory Map", [ACPI_NFIT_TYPE_INTERLEAVE] = "Interleave", [ACPI_NFIT_TYPE_SMBIOS] = "SMBIOS", [ACPI_NFIT_TYPE_CONTROL_REGION] = "Control Region", [ACPI_NFIT_TYPE_DATA_REGION] = "Data Region", [ACPI_NFIT_TYPE_FLUSH_ADDRESS] = "Flush Address" }; static void acpi_print_nfit(ACPI_NFIT_HEADER *nfit) { char *uuidstr; uint32_t status; ACPI_NFIT_SYSTEM_ADDRESS *sysaddr; ACPI_NFIT_MEMORY_MAP *mmap; ACPI_NFIT_INTERLEAVE *ileave; ACPI_NFIT_SMBIOS *smbios __unused; ACPI_NFIT_CONTROL_REGION *ctlreg; ACPI_NFIT_DATA_REGION *datareg; ACPI_NFIT_FLUSH_ADDRESS *fladdr; if (nfit->Type < __arraycount(nfit_types)) printf("\tType=%s\n", nfit_types[nfit->Type]); else printf("\tType=%u (unknown)\n", nfit->Type); switch (nfit->Type) { case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: sysaddr = (ACPI_NFIT_SYSTEM_ADDRESS *)nfit; printf("\tRangeIndex=%u\n", (u_int)sysaddr->RangeIndex); printf("\tProximityDomain=%u\n", (u_int)sysaddr->ProximityDomain); uuid_to_string((uuid_t *)(sysaddr->RangeGuid), &uuidstr, &status); if (status != uuid_s_ok) errx(1, "uuid_to_string: status=%u", status); printf("\tRangeGuid=%s\n", uuidstr); free(uuidstr); printf("\tAddress=0x%016jx\n", (uintmax_t)sysaddr->Address); printf("\tLength=0x%016jx\n", (uintmax_t)sysaddr->Length); printf("\tMemoryMapping=0x%016jx\n", (uintmax_t)sysaddr->MemoryMapping); #define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag) printf("\tFlags="); PRINTFLAG(sysaddr->Flags, ADD_ONLINE_ONLY); PRINTFLAG(sysaddr->Flags, PROXIMITY_VALID); PRINTFLAG_END(); #undef PRINTFLAG break; case ACPI_NFIT_TYPE_MEMORY_MAP: mmap = (ACPI_NFIT_MEMORY_MAP *)nfit; printf("\tDeviceHandle=%u\n", (u_int)mmap->DeviceHandle); printf("\tPhysicalId=%u\n", (u_int)mmap->PhysicalId); printf("\tRegionId=%u\n", (u_int)mmap->RegionId); printf("\tRangeIndex=%u\n", (u_int)mmap->RangeIndex); printf("\tRegionIndex=%u\n", (u_int)mmap->RegionIndex); printf("\tRegionSize=0x%016jx\n", (uintmax_t)mmap->RegionSize); printf("\tRegionOffset=0x%016jx\n", (uintmax_t)mmap->RegionOffset); printf("\tAddress=0x%016jx\n", (uintmax_t)mmap->Address); printf("\tInterleaveIndex=%u\n", (u_int)mmap->InterleaveIndex); printf("\tInterleaveWays=%u\n", (u_int)mmap->InterleaveWays); #define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_MEM_## flag, #flag) printf("\tFlags="); PRINTFLAG(mmap->Flags, SAVE_FAILED); PRINTFLAG(mmap->Flags, RESTORE_FAILED); PRINTFLAG(mmap->Flags, FLUSH_FAILED); PRINTFLAG(mmap->Flags, NOT_ARMED); PRINTFLAG(mmap->Flags, HEALTH_OBSERVED); PRINTFLAG(mmap->Flags, HEALTH_ENABLED); PRINTFLAG(mmap->Flags, MAP_FAILED); PRINTFLAG_END(); #undef PRINTFLAG break; case ACPI_NFIT_TYPE_INTERLEAVE: ileave = (ACPI_NFIT_INTERLEAVE *)nfit; printf("\tInterleaveIndex=%u\n", (u_int)ileave->InterleaveIndex); printf("\tLineCount=%u\n", (u_int)ileave->LineCount); printf("\tLineSize=%u\n", (u_int)ileave->LineSize); /* XXX ileave->LineOffset[i] output is not supported */ break; case ACPI_NFIT_TYPE_SMBIOS: smbios = (ACPI_NFIT_SMBIOS *)nfit; /* XXX smbios->Data[x] output is not supported */ break; case ACPI_NFIT_TYPE_CONTROL_REGION: ctlreg = (ACPI_NFIT_CONTROL_REGION *)nfit; printf("\tRegionIndex=%u\n", (u_int)ctlreg->RegionIndex); printf("\tVendorId=0x%04x\n", (u_int)ctlreg->VendorId); printf("\tDeviceId=0x%04x\n", (u_int)ctlreg->DeviceId); printf("\tRevisionId=%u\n", (u_int)ctlreg->RevisionId); printf("\tSubsystemVendorId=0x%04x\n", (u_int)ctlreg->SubsystemVendorId); printf("\tSubsystemDeviceId=0x%04x\n", (u_int)ctlreg->SubsystemDeviceId); printf("\tSubsystemRevisionId=%u\n", (u_int)ctlreg->SubsystemRevisionId); printf("\tValidFields=%02x\n", (u_int)ctlreg->ValidFields); printf("\tManufacturingLocation=%u\n", (u_int)ctlreg->ManufacturingLocation); printf("\tManufacturingDate=%u\n", (u_int)ctlreg->ManufacturingDate); printf("\tSerialNumber=%u\n", (u_int)ctlreg->SerialNumber); printf("\tCode=0x%04x\n", (u_int)ctlreg->Code); printf("\tWindows=%u\n", (u_int)ctlreg->Windows); printf("\tWindowSize=0x%016jx\n", (uintmax_t)ctlreg->WindowSize); printf("\tCommandOffset=0x%016jx\n", (uintmax_t)ctlreg->CommandOffset); printf("\tCommandSize=0x%016jx\n", (uintmax_t)ctlreg->CommandSize); printf("\tStatusOffset=0x%016jx\n", (uintmax_t)ctlreg->StatusOffset); printf("\tStatusSize=0x%016jx\n", (uintmax_t)ctlreg->StatusSize); #define PRINTFLAG(var, flag) printflag((var), ACPI_NFIT_## flag, #flag) printf("\tFlags="); PRINTFLAG(ctlreg->Flags, CONTROL_BUFFERED); PRINTFLAG_END(); #undef PRINTFLAG break; case ACPI_NFIT_TYPE_DATA_REGION: datareg = (ACPI_NFIT_DATA_REGION *)nfit; printf("\tRegionIndex=%u\n", (u_int)datareg->RegionIndex); printf("\tWindows=%u\n", (u_int)datareg->Windows); printf("\tOffset=0x%016jx\n", (uintmax_t)datareg->Offset); printf("\tSize=0x%016jx\n", (uintmax_t)datareg->Size); printf("\tCapacity=0x%016jx\n", (uintmax_t)datareg->Capacity); printf("\tStartAddress=0x%016jx\n", (uintmax_t)datareg->StartAddress); break; case ACPI_NFIT_TYPE_FLUSH_ADDRESS: fladdr = (ACPI_NFIT_FLUSH_ADDRESS *)nfit; printf("\tDeviceHandle=%u\n", (u_int)fladdr->DeviceHandle); printf("\tHintCount=%u\n", (u_int)fladdr->HintCount); /* XXX fladdr->HintAddress[i] output is not supported */ break; } } static void acpi_handle_nfit(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_NFIT *nfit; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); nfit = (ACPI_TABLE_NFIT *)sdp; acpi_walk_nfit(sdp, (nfit + 1), acpi_print_nfit); printf(END_COMMENT); } static char * acpi_tcpa_evname(struct TCPAevent *event) { struct TCPApc_event *pc_event; char *eventname = NULL; pc_event = (struct TCPApc_event *)(event + 1); switch (event->event_type) { case PREBOOT: case POST_CODE: case UNUSED: case NO_ACTION: case SEPARATOR: case SCRTM_CONTENTS: case SCRTM_VERSION: case CPU_MICROCODE: case PLATFORM_CONFIG_FLAGS: case TABLE_OF_DEVICES: case COMPACT_HASH: case IPL: case IPL_PARTITION_DATA: case NONHOST_CODE: case NONHOST_CONFIG: case NONHOST_INFO: asprintf(&eventname, "%s", tcpa_event_type_strings[event->event_type]); break; case ACTION: eventname = calloc(event->event_size + 1, sizeof(char)); memcpy(eventname, pc_event, event->event_size); break; case EVENT_TAG: switch (pc_event->event_id) { case SMBIOS: case BIS_CERT: case CMOS: case NVRAM: case OPTION_ROM_EXEC: case OPTION_ROM_CONFIG: case S_CRTM_VERSION: case POST_BIOS_ROM: case ESCD: case OPTION_ROM_MICROCODE: case S_CRTM_CONTENTS: case POST_CONTENTS: asprintf(&eventname, "%s", TCPA_pcclient_strings[pc_event->event_id]); break; default: asprintf(&eventname, "", pc_event->event_id); break; } break; default: asprintf(&eventname, "", event->event_type); break; } return eventname; } static void acpi_print_tcpa(struct TCPAevent *event) { int i; char *eventname; eventname = acpi_tcpa_evname(event); printf("\t%d", event->pcr_index); printf(" 0x"); for (i = 0; i < 20; i++) printf("%02x", event->pcr_value[i]); printf(" [%s]\n", eventname ? eventname : ""); free(eventname); } static void acpi_handle_tcpa(ACPI_TABLE_HEADER *sdp) { struct TCPAbody *tcpa; struct TCPAevent *event; uintmax_t len, paddr; unsigned char *vaddr = NULL; unsigned char *vend = NULL; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); tcpa = (struct TCPAbody *) sdp; switch (tcpa->platform_class) { case ACPI_TCPA_BIOS_CLIENT: len = tcpa->client.log_max_len; paddr = tcpa->client.log_start_addr; break; case ACPI_TCPA_BIOS_SERVER: len = tcpa->server.log_max_len; paddr = tcpa->server.log_start_addr; break; default: printf("XXX"); printf(END_COMMENT); return; } printf("\tClass %u Base Address 0x%jx Length %ju\n\n", tcpa->platform_class, paddr, len); if (len == 0) { printf("\tEmpty TCPA table\n"); printf(END_COMMENT); return; } if (sdp->Revision == 1) { printf("\tOLD TCPA spec log found. Dumping not supported.\n"); printf(END_COMMENT); return; } vaddr = (unsigned char *)acpi_map_physical(paddr, len); vend = vaddr + len; while (vaddr != NULL) { if ((vaddr + sizeof(struct TCPAevent) >= vend)|| (vaddr + sizeof(struct TCPAevent) < vaddr)) break; event = (struct TCPAevent *)(void *)vaddr; if (vaddr + event->event_size >= vend) break; if (vaddr + event->event_size < vaddr) break; if (event->event_type == 0 && event->event_size == 0) break; #if 0 { unsigned int i, j, k; printf("\n\tsize %d\n\t\t%p ", event->event_size, vaddr); for (j = 0, i = 0; i < sizeof(struct TCPAevent) + event->event_size; i++) { printf("%02x ", vaddr[i]); if ((i+1) % 8 == 0) { for (k = 0; k < 8; k++) printf("%c", isprint(vaddr[j+k]) ? vaddr[j+k] : '.'); printf("\n\t\t%p ", &vaddr[i + 1]); j = i + 1; } } printf("\n"); } #endif acpi_print_tcpa(event); vaddr += sizeof(struct TCPAevent) + event->event_size; } printf(END_COMMENT); } static const char * devscope_type2str(int type) { static char typebuf[16]; switch (type) { case 1: return ("PCI Endpoint Device"); case 2: return ("PCI Sub-Hierarchy"); case 3: return ("IOAPIC"); case 4: return ("HPET"); case 5: return ("ACPI Name space"); default: snprintf(typebuf, sizeof(typebuf), "%d", type); return (typebuf); } } static int acpi_handle_dmar_devscope(void *addr, int remaining) { char sep; int pathlen; ACPI_DMAR_PCI_PATH *path, *pathend; ACPI_DMAR_DEVICE_SCOPE *devscope = addr; if (remaining < (int)sizeof(ACPI_DMAR_DEVICE_SCOPE)) return (-1); if (remaining < devscope->Length) return (-1); printf("\n"); printf("\t\tType=%s\n", devscope_type2str(devscope->EntryType)); printf("\t\tLength=%d\n", devscope->Length); printf("\t\tEnumerationId=%d\n", devscope->EnumerationId); printf("\t\tStartBusNumber=%d\n", devscope->Bus); path = (ACPI_DMAR_PCI_PATH *)(devscope + 1); pathlen = devscope->Length - sizeof(ACPI_DMAR_DEVICE_SCOPE); pathend = path + pathlen / sizeof(ACPI_DMAR_PCI_PATH); if (path < pathend) { sep = '{'; printf("\t\tPath="); do { printf("%c%d:%d", sep, path->Device, path->Function); sep=','; path++; } while (path < pathend); printf("}\n"); } return (devscope->Length); } static void acpi_handle_dmar_drhd(ACPI_DMAR_HARDWARE_UNIT *drhd) { char *cp; int remaining, consumed; printf("\n"); printf("\tType=DRHD\n"); printf("\tLength=%d\n", drhd->Header.Length); #define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag) printf("\tFlags="); PRINTFLAG(drhd->Flags, INCLUDE_ALL); PRINTFLAG_END(); #undef PRINTFLAG printf("\tSegment=%d\n", drhd->Segment); printf("\tAddress=0x%016jx\n", (uintmax_t)drhd->Address); remaining = drhd->Header.Length - sizeof(ACPI_DMAR_HARDWARE_UNIT); if (remaining > 0) printf("\tDevice Scope:"); while (remaining > 0) { cp = (char *)drhd + drhd->Header.Length - remaining; consumed = acpi_handle_dmar_devscope(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } } static void acpi_handle_dmar_rmrr(ACPI_DMAR_RESERVED_MEMORY *rmrr) { char *cp; int remaining, consumed; printf("\n"); printf("\tType=RMRR\n"); printf("\tLength=%d\n", rmrr->Header.Length); printf("\tSegment=%d\n", rmrr->Segment); printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rmrr->BaseAddress); printf("\tLimitAddress=0x%016jx\n", (uintmax_t)rmrr->EndAddress); remaining = rmrr->Header.Length - sizeof(ACPI_DMAR_RESERVED_MEMORY); if (remaining > 0) printf("\tDevice Scope:"); while (remaining > 0) { cp = (char *)rmrr + rmrr->Header.Length - remaining; consumed = acpi_handle_dmar_devscope(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } } static void acpi_handle_dmar_atsr(ACPI_DMAR_ATSR *atsr) { char *cp; int remaining, consumed; printf("\n"); printf("\tType=ATSR\n"); printf("\tLength=%d\n", atsr->Header.Length); #define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag) printf("\tFlags="); PRINTFLAG(atsr->Flags, ALL_PORTS); PRINTFLAG_END(); #undef PRINTFLAG printf("\tSegment=%d\n", atsr->Segment); remaining = atsr->Header.Length - sizeof(ACPI_DMAR_ATSR); if (remaining > 0) printf("\tDevice Scope:"); while (remaining > 0) { cp = (char *)atsr + atsr->Header.Length - remaining; consumed = acpi_handle_dmar_devscope(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } } static void acpi_handle_dmar_rhsa(ACPI_DMAR_RHSA *rhsa) { printf("\n"); printf("\tType=RHSA\n"); printf("\tLength=%d\n", rhsa->Header.Length); printf("\tBaseAddress=0x%016jx\n", (uintmax_t)rhsa->BaseAddress); printf("\tProximityDomain=0x%08x\n", rhsa->ProximityDomain); } static void acpi_handle_dmar_andd(ACPI_DMAR_ANDD *andd) { printf("\n"); printf("\tType=ANDD\n"); printf("\tLength=%d\n", andd->Header.Length); printf("\tDeviceNumber=%d\n", andd->DeviceNumber); printf("\tDeviceName=0x%s\n", andd->DeviceName); } static int acpi_handle_dmar_remapping_structure(void *addr, int remaining) { ACPI_DMAR_HEADER *hdr = addr; if (remaining < (int)sizeof(ACPI_DMAR_HEADER)) return (-1); if (remaining < hdr->Length) return (-1); switch (hdr->Type) { case ACPI_DMAR_TYPE_HARDWARE_UNIT: acpi_handle_dmar_drhd(addr); break; case ACPI_DMAR_TYPE_RESERVED_MEMORY: acpi_handle_dmar_rmrr(addr); break; case ACPI_DMAR_TYPE_ROOT_ATS: acpi_handle_dmar_atsr(addr); break; case ACPI_DMAR_TYPE_HARDWARE_AFFINITY: acpi_handle_dmar_rhsa(addr); break; case ACPI_DMAR_TYPE_NAMESPACE: acpi_handle_dmar_andd(addr); break; default: printf("\n"); printf("\tType=%d\n", hdr->Type); printf("\tLength=%d\n", hdr->Length); break; } return (hdr->Length); } #ifndef ACPI_DMAR_X2APIC_OPT_OUT #define ACPI_DMAR_X2APIC_OPT_OUT (0x2) #endif static void acpi_handle_dmar(ACPI_TABLE_HEADER *sdp) { char *cp; int remaining, consumed; ACPI_TABLE_DMAR *dmar; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); dmar = (ACPI_TABLE_DMAR *)sdp; printf("\tHost Address Width=%d\n", dmar->Width + 1); #define PRINTFLAG(var, flag) printflag((var), ACPI_DMAR_## flag, #flag) printf("\tFlags="); PRINTFLAG(dmar->Flags, INTR_REMAP); PRINTFLAG(dmar->Flags, X2APIC_OPT_OUT); PRINTFLAG(dmar->Flags, X2APIC_MODE); PRINTFLAG_END(); #undef PRINTFLAG remaining = sdp->Length - sizeof(ACPI_TABLE_DMAR); while (remaining > 0) { cp = (char *)sdp + sdp->Length - remaining; consumed = acpi_handle_dmar_remapping_structure(cp, remaining); if (consumed <= 0) break; else remaining -= consumed; } printf(END_COMMENT); } static void acpi_handle_uefi(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_UEFI *uefi; char *uuidstr; uint32_t status; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); uefi = (ACPI_TABLE_UEFI *)sdp; uuid_to_string((uuid_t *)(uefi->Identifier), &uuidstr, &status); if (status != uuid_s_ok) errx(1, "uuid_to_string: status=%u", status); printf("\tUUID=%s\n", uuidstr); free(uuidstr); printf("\tDataOffset=%04hx\n", uefi->DataOffset); /* XXX need write */ printf(END_COMMENT); } static void acpi_handle_waet(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WAET *waet; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); waet = (ACPI_TABLE_WAET *)sdp; printf("\tRTC Timer={"); if (waet->Flags & ACPI_WAET_RTC_NO_ACK) printf("No ACK required"); else printf("default behaviour"); printf("}\n"); printf("\t ACPI PM Timer={"); if (waet->Flags & ACPI_WAET_TIMER_ONE_READ) printf("One Read sufficient"); else printf("default behaviour"); printf("}\n"); printf(END_COMMENT); } static void acpi_print_wdat_action(ACPI_WHEA_HEADER *whea) { printf("\tACTION={"); switch (whea->Action) { case ACPI_WDAT_RESET: printf("RESET"); break; case ACPI_WDAT_GET_CURRENT_COUNTDOWN: printf("GET_CURRENT_COUNTDOWN"); break; case ACPI_WDAT_GET_COUNTDOWN: printf("GET_COUNTDOWN"); break; case ACPI_WDAT_SET_COUNTDOWN: printf("SET_COUNTDOWN"); break; case ACPI_WDAT_GET_RUNNING_STATE: printf("GET_RUNNING_STATE"); break; case ACPI_WDAT_SET_RUNNING_STATE: printf("SET_RUNNING_STATE"); break; case ACPI_WDAT_GET_STOPPED_STATE: printf("GET_STOPPED_STATE"); break; case ACPI_WDAT_SET_STOPPED_STATE: printf("SET_STOPPED_STATE"); break; case ACPI_WDAT_GET_REBOOT: printf("GET_REBOOT"); break; case ACPI_WDAT_SET_REBOOT: printf("SET_REBOOT"); break; case ACPI_WDAT_GET_SHUTDOWN: printf("GET_SHUTDOWN"); break; case ACPI_WDAT_SET_SHUTDOWN: printf("SET_SHUTDOWN"); break; case ACPI_WDAT_GET_STATUS: printf("GET_STATUS"); break; case ACPI_WDAT_SET_STATUS: printf("SET_STATUS"); break; case ACPI_WDAT_ACTION_RESERVED: printf("ACTION_RESERVED"); break; default: printf("%d", whea->Action); break; } printf("}\n"); } static void acpi_print_wdat_instruction(ACPI_WHEA_HEADER *whea) { uint32_t ins; ins = whea->Instruction & ~ACPI_WDAT_PRESERVE_REGISTER; printf("\tINSTRUCTION={"); switch (ins) { case ACPI_WDAT_READ_VALUE: printf("READ_VALUE"); break; case ACPI_WDAT_READ_COUNTDOWN: printf("READ_COUNTDOWN"); break; case ACPI_WDAT_WRITE_VALUE: printf("WRITE_VALUE"); break; case ACPI_WDAT_WRITE_COUNTDOWN: printf("WRITE_COUNTDOWN"); break; case ACPI_WDAT_INSTRUCTION_RESERVED: printf("INSTRUCTION_RESERVED"); break; default: printf("%d", ins); break; } if (whea->Instruction & ACPI_WDAT_PRESERVE_REGISTER) printf(", Preserve Register"); printf("}\n"); } static void acpi_handle_wdat(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WDAT *wdat; ACPI_WHEA_HEADER *whea; ACPI_WDAT_ENTRY *wdat_pos; u_int i; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); wdat = (ACPI_TABLE_WDAT *)sdp; printf("\tHeader Length=%d\n", wdat->HeaderLength); acpi_print_pci_sbdf(wdat->PciSegment, wdat->PciBus, wdat->PciDevice, wdat->PciFunction); printf("\n\tTimer Counter Period=%d msec\n", wdat->TimerPeriod); printf("\tTimer Maximum Counter Value=%d\n", wdat->MaxCount); printf("\tTimer Minimum Counter Value=%d\n", wdat->MinCount); printf("\tFlags={"); if (wdat->Flags & ACPI_WDAT_ENABLED) printf("ENABLED"); if (wdat->Flags & ACPI_WDAT_STOPPED) printf(", STOPPED"); printf("}\n"); wdat_pos = (ACPI_WDAT_ENTRY *)((char *)wdat + sizeof(ACPI_TABLE_WDAT)); for (i = 0; i < wdat->Entries; i++) { whea = (ACPI_WHEA_HEADER *)wdat_pos; acpi_print_whea(whea, acpi_print_wdat_action, acpi_print_wdat_instruction, NULL); wdat_pos++; } printf(END_COMMENT); } static void acpi_handle_wddt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WDDT *wddt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); wddt = (ACPI_TABLE_WDDT *)sdp; printf("\tSpecVersion=%04hx\n", wddt->SpecVersion); printf("\tTableVersion=%04hx\n", wddt->TableVersion); printf("\tPciVendorID=%04hx\n", wddt->PciVendorId); printf("\tAddress="); acpi_print_gas(&wddt->Address); printf("\n\tTimer Maximum Counter Value=%d\n", wddt->MaxCount); printf("\tTimer Minimum Counter Value=%d\n", wddt->MinCount); printf("\tTimer Counter Period=%d\n", wddt->Period); #define PRINTFLAG(var, flag) printflag((var), ACPI_WDDT_## flag, #flag) printf("\tStatus="); PRINTFLAG(wddt->Status, AVAILABLE); PRINTFLAG(wddt->Status, ACTIVE); PRINTFLAG(wddt->Status, TCO_OS_OWNED); PRINTFLAG(wddt->Status, USER_RESET); PRINTFLAG(wddt->Status, WDT_RESET); PRINTFLAG(wddt->Status, POWER_FAIL); PRINTFLAG(wddt->Status, UNKNOWN_RESET); PRINTFLAG_END(); printf("\tCapability="); PRINTFLAG(wddt->Capability, AUTO_RESET); PRINTFLAG(wddt->Capability, ALERT_SUPPORT); PRINTFLAG_END(); #undef PRINTFLAG printf(END_COMMENT); } static void acpi_handle_wdrt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_WDRT *wdrt; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); wdrt = (ACPI_TABLE_WDRT *)sdp; printf("\tControl Register="); acpi_print_gas(&wdrt->ControlRegister); printf("\tCount Register="); acpi_print_gas(&wdrt->CountRegister); acpi_print_pci(wdrt->PciVendorId, wdrt->PciDeviceId, wdrt->PciSegment, wdrt->PciBus, wdrt->PciDevice, wdrt->PciFunction); /* Value must be >= 511 and < 65535 */ printf("\tMaxCount=%d", wdrt->MaxCount); if (wdrt->MaxCount < 511) printf(" (Out of Range. Valid range: 511 <= maxcount < 65535)"); printf("\n"); printf("\tUnit={"); switch (wdrt->Units) { case 0: printf("1 seconds/count"); break; case 1: printf("100 milliseconds/count"); break; case 2: printf("10 milliseconds/count"); break; default: printf("%d", wdrt->Units); break; } printf("}\n"); printf(END_COMMENT); } static void acpi_print_sdt(ACPI_TABLE_HEADER *sdp) { printf(" "); acpi_print_string(sdp->Signature, ACPI_NAME_SIZE); printf(": Length=%d, Revision=%d, Checksum=%d", sdp->Length, sdp->Revision, sdp->Checksum); if (acpi_checksum(sdp, sdp->Length)) printf(" (Incorrect)"); printf(",\n\tOEMID="); acpi_print_string(sdp->OemId, ACPI_OEM_ID_SIZE); printf(", OEM Table ID="); acpi_print_string(sdp->OemTableId, ACPI_OEM_TABLE_ID_SIZE); printf(", OEM Revision=0x%x,\n", sdp->OemRevision); printf("\tCreator ID="); acpi_print_string(sdp->AslCompilerId, ACPI_NAME_SIZE); printf(", Creator Revision=0x%x\n", sdp->AslCompilerRevision); } void acpi_print_tabs(unsigned int n) { while (n-- > 0) printf("\t"); } static void acpi_dump_bytes(uint8_t *p, uint32_t len, unsigned int ntabs) { unsigned int i; acpi_print_tabs(ntabs); printf("Data={"); for (i = 0; i < len; i++) { if (cflag) { if (i % 64 == 0) { printf("\n"); acpi_print_tabs(ntabs); printf(" "); }else if (i % 16 == 0) printf(" "); printf("%c", (p[i] >= ' ' && p[i] <= '~') ? p[i] : '.'); } else { if (i % 16 == 0) { printf("\n"); acpi_print_tabs(ntabs + 1); } else if (i % 8 == 0) printf(" "); printf(" %02x", p[i]); } } printf("\n"); acpi_print_tabs(ntabs); printf("}\n"); } /* Dump data which has ACPI_TABLE_HEADER */ static void acpi_dump_table(ACPI_TABLE_HEADER *sdp) { acpi_dump_bytes((uint8_t *)sdp, sdp->Length, 1); } static void acpi_print_rsdt(ACPI_TABLE_HEADER *rsdp) { ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; int i, entries; rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; printf(BEGIN_COMMENT); acpi_print_sdt(rsdp); entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; printf("\tEntries={ "); for (i = 0; i < entries; i++) { if (i > 0) printf(", "); if (addr_size == 4) printf("0x%08x", le32toh(rsdt->TableOffsetEntry[i])); else printf("0x%016jx", (uintmax_t)le64toh(xsdt->TableOffsetEntry[i])); } printf(" }\n"); printf(END_COMMENT); } static const char *acpi_pm_profiles[] = { "Unspecified", "Desktop", "Mobile", "Workstation", "Enterprise Server", "SOHO Server", "Appliance PC", "Performance Server", "Tablet" }; static void acpi_print_fadt(ACPI_TABLE_HEADER *sdp) { ACPI_TABLE_FADT *fadt; const char *pm; fadt = (ACPI_TABLE_FADT *)sdp; printf(BEGIN_COMMENT); acpi_print_sdt(sdp); printf(" \tFACS=0x%x, DSDT=0x%x\n", fadt->Facs, fadt->Dsdt); /* XXX ACPI 2.0 eliminated this */ printf("\tINT_MODEL=%s\n", fadt->Model ? "APIC" : "PIC"); if (fadt->PreferredProfile >= sizeof(acpi_pm_profiles) / sizeof(char *)) pm = "Reserved"; else pm = acpi_pm_profiles[fadt->PreferredProfile]; printf("\tPreferred_PM_Profile=%s (%d)\n", pm, fadt->PreferredProfile); printf("\tSCI_INT=%d\n", fadt->SciInterrupt); printf("\tSMI_CMD=0x%x, ", fadt->SmiCommand); printf("ACPI_ENABLE=0x%x, ", fadt->AcpiEnable); printf("ACPI_DISABLE=0x%x, ", fadt->AcpiDisable); printf("S4BIOS_REQ=0x%x\n", fadt->S4BiosRequest); printf("\tPSTATE_CNT=0x%x\n", fadt->PstateControl); printf("\tPM1a_EVT_BLK=0x%x-0x%x\n", fadt->Pm1aEventBlock, fadt->Pm1aEventBlock + fadt->Pm1EventLength - 1); if (fadt->Pm1bEventBlock != 0) printf("\tPM1b_EVT_BLK=0x%x-0x%x\n", fadt->Pm1bEventBlock, fadt->Pm1bEventBlock + fadt->Pm1EventLength - 1); printf("\tPM1a_CNT_BLK=0x%x-0x%x\n", fadt->Pm1aControlBlock, fadt->Pm1aControlBlock + fadt->Pm1ControlLength - 1); if (fadt->Pm1bControlBlock != 0) printf("\tPM1b_CNT_BLK=0x%x-0x%x\n", fadt->Pm1bControlBlock, fadt->Pm1bControlBlock + fadt->Pm1ControlLength - 1); if (fadt->Pm2ControlBlock != 0) printf("\tPM2_CNT_BLK=0x%x-0x%x\n", fadt->Pm2ControlBlock, fadt->Pm2ControlBlock + fadt->Pm2ControlLength - 1); if (fadt->PmTimerBlock != 0) printf("\tPM_TMR_BLK=0x%x-0x%x\n", fadt->PmTimerBlock, fadt->PmTimerBlock + fadt->PmTimerLength - 1); if (fadt->Gpe0Block != 0) printf("\tGPE0_BLK=0x%x-0x%x\n", fadt->Gpe0Block, fadt->Gpe0Block + fadt->Gpe0BlockLength - 1); if (fadt->Gpe1Block != 0) printf("\tGPE1_BLK=0x%x-0x%x, GPE1_BASE=%d\n", fadt->Gpe1Block, fadt->Gpe1Block + fadt->Gpe1BlockLength - 1, fadt->Gpe1Base); if (fadt->CstControl != 0) printf("\tCST_CNT=0x%x\n", fadt->CstControl); printf("\tP_LVL2_LAT=%d us, P_LVL3_LAT=%d us\n", fadt->C2Latency, fadt->C3Latency); printf("\tFLUSH_SIZE=%d, FLUSH_STRIDE=%d\n", fadt->FlushSize, fadt->FlushStride); printf("\tDUTY_OFFSET=%d, DUTY_WIDTH=%d\n", fadt->DutyOffset, fadt->DutyWidth); printf("\tDAY_ALRM=%d, MON_ALRM=%d, CENTURY=%d\n", fadt->DayAlarm, fadt->MonthAlarm, fadt->Century); #define PRINTFLAG(var, flag) printflag((var), ACPI_FADT_## flag, #flag) printf("\tIAPC_BOOT_ARCH="); PRINTFLAG(fadt->BootFlags, LEGACY_DEVICES); PRINTFLAG(fadt->BootFlags, 8042); PRINTFLAG(fadt->BootFlags, NO_VGA); PRINTFLAG(fadt->BootFlags, NO_MSI); PRINTFLAG(fadt->BootFlags, NO_ASPM); PRINTFLAG(fadt->BootFlags, NO_CMOS_RTC); PRINTFLAG_END(); printf("\tFlags="); PRINTFLAG(fadt->Flags, WBINVD); PRINTFLAG(fadt->Flags, WBINVD_FLUSH); PRINTFLAG(fadt->Flags, C1_SUPPORTED); PRINTFLAG(fadt->Flags, C2_MP_SUPPORTED); PRINTFLAG(fadt->Flags, POWER_BUTTON); PRINTFLAG(fadt->Flags, SLEEP_BUTTON); PRINTFLAG(fadt->Flags, FIXED_RTC); PRINTFLAG(fadt->Flags, S4_RTC_WAKE); PRINTFLAG(fadt->Flags, 32BIT_TIMER); PRINTFLAG(fadt->Flags, DOCKING_SUPPORTED); PRINTFLAG(fadt->Flags, RESET_REGISTER); PRINTFLAG(fadt->Flags, SEALED_CASE); PRINTFLAG(fadt->Flags, HEADLESS); PRINTFLAG(fadt->Flags, SLEEP_TYPE); PRINTFLAG(fadt->Flags, PCI_EXPRESS_WAKE); PRINTFLAG(fadt->Flags, PLATFORM_CLOCK); PRINTFLAG(fadt->Flags, S4_RTC_VALID); PRINTFLAG(fadt->Flags, REMOTE_POWER_ON); PRINTFLAG(fadt->Flags, APIC_CLUSTER); PRINTFLAG(fadt->Flags, APIC_PHYSICAL); PRINTFLAG(fadt->Flags, HW_REDUCED); PRINTFLAG(fadt->Flags, LOW_POWER_S0); PRINTFLAG_END(); if (sdp->Length < ACPI_FADT_V2_SIZE) goto out; if (fadt->Flags & ACPI_FADT_RESET_REGISTER) { printf("\tRESET_REG="); acpi_print_gas(&fadt->ResetRegister); printf(", RESET_VALUE=%#x\n", fadt->ResetValue); } printf("\tArmBootFlags="); PRINTFLAG(fadt->ArmBootFlags, PSCI_COMPLIANT); PRINTFLAG(fadt->ArmBootFlags, PSCI_USE_HVC); PRINTFLAG_END(); #undef PRINTFLAG printf("\tMinorRevision=%u\n", fadt->MinorRevision); if (sdp->Length < ACPI_FADT_V3_SIZE) goto out; printf("\tX_FACS=0x%016jx, ", (uintmax_t)fadt->XFacs); printf("X_DSDT=0x%016jx\n", (uintmax_t)fadt->XDsdt); printf("\tX_PM1a_EVT_BLK="); acpi_print_gas(&fadt->XPm1aEventBlock); if (fadt->XPm1bEventBlock.Address != 0) { printf("\n\tX_PM1b_EVT_BLK="); acpi_print_gas(&fadt->XPm1bEventBlock); } printf("\n\tX_PM1a_CNT_BLK="); acpi_print_gas(&fadt->XPm1aControlBlock); if (fadt->XPm1bControlBlock.Address != 0) { printf("\n\tX_PM1b_CNT_BLK="); acpi_print_gas(&fadt->XPm1bControlBlock); } if (fadt->XPm2ControlBlock.Address != 0) { printf("\n\tX_PM2_CNT_BLK="); acpi_print_gas(&fadt->XPm2ControlBlock); } if (fadt->XPmTimerBlock.Address != 0) { printf("\n\tX_PM_TMR_BLK="); acpi_print_gas(&fadt->XPmTimerBlock); } if (fadt->XGpe0Block.Address != 0) { printf("\n\tX_GPE0_BLK="); acpi_print_gas(&fadt->XGpe0Block); } if (fadt->XGpe1Block.Address != 0) { printf("\n\tX_GPE1_BLK="); acpi_print_gas(&fadt->XGpe1Block); } printf("\n"); if (sdp->Length < ACPI_FADT_V5_SIZE) goto out; if (fadt->SleepControl.Address != 0) { printf("\tSleepControl="); acpi_print_gas(&fadt->SleepControl); printf("\n"); } if (fadt->SleepStatus.Address != 0) { printf("\n\tSleepStatus="); acpi_print_gas(&fadt->SleepStatus); printf("\n"); } if (sdp->Length < ACPI_FADT_V6_SIZE) goto out; printf("\tHypervisorId=0x%016"PRIx64"\n", fadt->HypervisorId); out: printf(END_COMMENT); } static void acpi_print_facs(ACPI_TABLE_FACS *facs) { printf(BEGIN_COMMENT); printf(" FACS:\tLength=%u, ", facs->Length); printf("HwSig=0x%08x, ", facs->HardwareSignature); printf("Firm_Wake_Vec=0x%08x\n", facs->FirmwareWakingVector); #define PRINTFLAG(var, flag) printflag((var), ACPI_GLOCK_## flag, #flag) printf("\tGlobal_Lock="); PRINTFLAG(facs->GlobalLock, PENDING); PRINTFLAG(facs->GlobalLock, OWNED); PRINTFLAG_END(); #undef PRINTFLAG #define PRINTFLAG(var, flag) printflag((var), ACPI_FACS_## flag, #flag) printf("\tFlags="); PRINTFLAG(facs->Flags, S4_BIOS_PRESENT); PRINTFLAG(facs->Flags, 64BIT_WAKE); PRINTFLAG_END(); #undef PRINTFLAG if (facs->XFirmwareWakingVector != 0) printf("\tX_Firm_Wake_Vec=%016jx\n", (uintmax_t)facs->XFirmwareWakingVector); printf("\tVersion=%u\n", facs->Version); printf("\tOspmFlags={"); if (facs->OspmFlags & ACPI_FACS_64BIT_ENVIRONMENT) printf("64BIT_WAKE"); printf("}\n"); printf(END_COMMENT); } static void acpi_print_dsdt(ACPI_TABLE_HEADER *dsdp) { printf(BEGIN_COMMENT); acpi_print_sdt(dsdp); printf(END_COMMENT); } int acpi_checksum(void *p, size_t length) { uint8_t *bp; uint8_t sum; bp = p; sum = 0; while (length--) sum += *bp++; return (sum); } static ACPI_TABLE_HEADER * acpi_map_sdt(vm_offset_t pa) { ACPI_TABLE_HEADER *sp; sp = acpi_map_physical(pa, sizeof(ACPI_TABLE_HEADER)); sp = acpi_map_physical(pa, sp->Length); return (sp); } static void acpi_print_rsd_ptr(ACPI_TABLE_RSDP *rp) { printf(BEGIN_COMMENT); printf(" RSD PTR: OEM="); acpi_print_string(rp->OemId, ACPI_OEM_ID_SIZE); printf(", ACPI_Rev=%s (%d)\n", rp->Revision < 2 ? "1.0x" : "2.0x", rp->Revision); if (rp->Revision < 2) { printf("\tRSDT=0x%08x, cksum=%u\n", rp->RsdtPhysicalAddress, rp->Checksum); } else { printf("\tXSDT=0x%016jx, length=%u, cksum=%u\n", (uintmax_t)rp->XsdtPhysicalAddress, rp->Length, rp->ExtendedChecksum); } printf(END_COMMENT); } static void acpi_handle_rsdt(ACPI_TABLE_HEADER *rsdp) { ACPI_TABLE_HEADER *sdp; ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; vm_offset_t addr = 0; int entries, i; acpi_print_rsdt(rsdp); rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; for (i = 0; i < entries; i++) { if (addr_size == 4) addr = le32toh(rsdt->TableOffsetEntry[i]); else addr = le64toh(xsdt->TableOffsetEntry[i]); if (addr == 0) continue; sdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr); if (acpi_checksum(sdp, sdp->Length)) { warnx("RSDT entry %d (sig %.4s) is corrupt", i, sdp->Signature); if (sflag) continue; } if (!memcmp(sdp->Signature, ACPI_SIG_FADT, 4)) acpi_handle_fadt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_BERT, 4)) acpi_handle_bert(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_BOOT, 4)) acpi_handle_boot(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_CPEP, 4)) acpi_handle_cpep(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_CSRT, 4)) acpi_handle_csrt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_DBGP, 4)) acpi_handle_dbgp(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_DBG2, 4)) acpi_handle_dbg2(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_DMAR, 4)) acpi_handle_dmar(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_EINJ, 4)) acpi_handle_einj(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_ERST, 4)) acpi_handle_erst(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_GTDT, 4)) acpi_handle_gtdt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MADT, 4)) acpi_handle_madt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MSCT, 4)) acpi_handle_msct(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_HEST, 4)) acpi_handle_hest(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_HPET, 4)) acpi_handle_hpet(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_ECDT, 4)) acpi_handle_ecdt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_LPIT, 4)) acpi_handle_lpit(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_MCFG, 4)) acpi_handle_mcfg(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SBST, 4)) acpi_handle_sbst(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SLIT, 4)) acpi_handle_slit(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SPCR, 4)) acpi_handle_spcr(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SPMI, 4)) acpi_handle_spmi(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_SRAT, 4)) acpi_handle_srat(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_TCPA, 4)) acpi_handle_tcpa(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_NFIT, 4)) acpi_handle_nfit(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_UEFI, 4)) acpi_handle_uefi(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WAET, 4)) acpi_handle_waet(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WDAT, 4)) acpi_handle_wdat(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WDDT, 4)) acpi_handle_wddt(sdp); else if (!memcmp(sdp->Signature, ACPI_SIG_WDRT, 4)) acpi_handle_wdrt(sdp); else { printf(BEGIN_COMMENT); acpi_print_sdt(sdp); printf("\n"); acpi_dump_table(sdp); printf(END_COMMENT); } } } ACPI_TABLE_HEADER * sdt_load_devmem(void) { ACPI_TABLE_RSDP *rp; ACPI_TABLE_HEADER *rsdp; rp = acpi_find_rsd_ptr(); if (!rp) errx(EXIT_FAILURE, "Can't find ACPI information"); if (tflag) acpi_print_rsd_ptr(rp); if (rp->Revision < 2) { rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->RsdtPhysicalAddress); if (memcmp(rsdp->Signature, "RSDT", 4) != 0 || acpi_checksum(rsdp, rsdp->Length) != 0) errx(EXIT_FAILURE, "RSDT is corrupted"); addr_size = sizeof(uint32_t); } else { rsdp = (ACPI_TABLE_HEADER *)acpi_map_sdt(rp->XsdtPhysicalAddress); if (memcmp(rsdp->Signature, "XSDT", 4) != 0 || acpi_checksum(rsdp, rsdp->Length) != 0) errx(EXIT_FAILURE, "XSDT is corrupted"); addr_size = sizeof(uint64_t); } return (rsdp); } /* Write the DSDT to a file, concatenating any SSDTs (if present). */ static int write_dsdt(int fd, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdt) { ACPI_TABLE_HEADER sdt; ACPI_TABLE_HEADER *ssdt; uint8_t sum; /* Create a new checksum to account for the DSDT and any SSDTs. */ sdt = *dsdt; if (rsdt != NULL) { sdt.Checksum = 0; sum = acpi_checksum(dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, NULL); while (ssdt != NULL) { sdt.Length += ssdt->Length - sizeof(ACPI_TABLE_HEADER); sum += acpi_checksum(ssdt + 1, ssdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, ACPI_SIG_SSDT, ssdt); } sum += acpi_checksum(&sdt, sizeof(ACPI_TABLE_HEADER)); sdt.Checksum -= sum; } /* Write out the DSDT header and body. */ write(fd, &sdt, sizeof(ACPI_TABLE_HEADER)); write(fd, dsdt + 1, dsdt->Length - sizeof(ACPI_TABLE_HEADER)); /* Write out any SSDTs (if present.) */ if (rsdt != NULL) { ssdt = sdt_from_rsdt(rsdt, "SSDT", NULL); while (ssdt != NULL) { write(fd, ssdt + 1, ssdt->Length - sizeof(ACPI_TABLE_HEADER)); ssdt = sdt_from_rsdt(rsdt, "SSDT", ssdt); } } return (0); } void dsdt_save_file(char *outfile, ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp) { int fd; mode_t mode; assert(outfile != NULL); mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH; fd = open(outfile, O_WRONLY | O_CREAT | O_TRUNC, mode); if (fd == -1) { perror("dsdt_save_file"); return; } write_dsdt(fd, rsdt, dsdp); close(fd); } void aml_disassemble(ACPI_TABLE_HEADER *rsdt, ACPI_TABLE_HEADER *dsdp) { char buf[MAXPATHLEN], tmpstr[MAXPATHLEN], wrkdir[MAXPATHLEN]; const char *iname = "/acpdump.din"; const char *oname = "/acpdump.dsl"; const char *tmpdir; FILE *fp; size_t len; int fd, status; pid_t pid; if (rsdt == NULL) errx(EXIT_FAILURE, "aml_disassemble: invalid rsdt"); if (dsdp == NULL) errx(EXIT_FAILURE, "aml_disassemble: invalid dsdp"); tmpdir = getenv("TMPDIR"); if (tmpdir == NULL) tmpdir = _PATH_TMP; if (realpath(tmpdir, buf) == NULL) { perror("realpath tmp dir"); return; } len = sizeof(wrkdir) - strlen(iname); if ((size_t)snprintf(wrkdir, len, "%s/acpidump.XXXXXX", buf) > len-1 ) { fprintf(stderr, "$TMPDIR too long\n"); return; } if (mkdtemp(wrkdir) == NULL) { perror("mkdtemp tmp working dir"); return; } len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, iname); assert(len <= sizeof(tmpstr) - 1); fd = open(tmpstr, O_CREAT | O_WRONLY, S_IRUSR | S_IWUSR); if (fd < 0) { perror("iasl tmp file"); return; } write_dsdt(fd, rsdt, dsdp); close(fd); /* Run iasl -d on the temp file */ if ((pid = fork()) == 0) { close(STDOUT_FILENO); if (vflag == 0) close(STDERR_FILENO); execl("/usr/bin/iasl", "iasl", "-d", tmpstr, NULL); err(EXIT_FAILURE, "exec"); } if (pid > 0) wait(&status); if (unlink(tmpstr) < 0) { perror("unlink"); goto out; } if (pid < 0) { perror("fork"); goto out; } if (status != 0) { fprintf(stderr, "iast exit status = %d\n", status); } /* Dump iasl's output to stdout */ len = (size_t)snprintf(tmpstr, sizeof(tmpstr), "%s%s", wrkdir, oname); assert(len <= sizeof(tmpstr) - 1); fp = fopen(tmpstr, "r"); if (unlink(tmpstr) < 0) { perror("unlink"); goto out; } if (fp == NULL) { perror("iasl tmp file (read)"); goto out; } while ((len = fread(buf, 1, sizeof(buf), fp)) > 0) fwrite(buf, 1, len, stdout); fclose(fp); out: if (rmdir(wrkdir) < 0) perror("rmdir"); } void sdt_print_all(ACPI_TABLE_HEADER *rsdp) { acpi_handle_rsdt(rsdp); } /* Fetch a table matching the given signature via the RSDT. */ ACPI_TABLE_HEADER * sdt_from_rsdt(ACPI_TABLE_HEADER *rsdp, const char *sig, ACPI_TABLE_HEADER *last) { ACPI_TABLE_HEADER *sdt; ACPI_TABLE_RSDT *rsdt; ACPI_TABLE_XSDT *xsdt; vm_offset_t addr = 0; int entries, i; rsdt = (ACPI_TABLE_RSDT *)rsdp; xsdt = (ACPI_TABLE_XSDT *)rsdp; entries = (rsdp->Length - sizeof(ACPI_TABLE_HEADER)) / addr_size; for (i = 0; i < entries; i++) { if (addr_size == 4) addr = le32toh(rsdt->TableOffsetEntry[i]); else addr = le64toh(xsdt->TableOffsetEntry[i]); if (addr == 0) continue; sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt(addr); if (last != NULL) { if (sdt == last) last = NULL; continue; } if (memcmp(sdt->Signature, sig, strlen(sig))) continue; if (acpi_checksum(sdt, sdt->Length)) errx(EXIT_FAILURE, "RSDT entry %d is corrupt", i); return (sdt); } return (NULL); } ACPI_TABLE_HEADER * dsdt_from_fadt(ACPI_TABLE_FADT *fadt) { ACPI_TABLE_HEADER *sdt; /* Use the DSDT address if it is version 1, otherwise use XDSDT. */ sdt = (ACPI_TABLE_HEADER *)acpi_map_sdt( acpi_select_address(fadt->Dsdt, fadt->XDsdt)); if (acpi_checksum(sdt, sdt->Length)) errx(EXIT_FAILURE, "DSDT is corrupt"); return (sdt); }