/* $NetBSD: npf_build.c,v 1.44.4.1 2019/04/19 09:10:49 martin Exp $ */ /*- * Copyright (c) 2011-2017 The NetBSD Foundation, Inc. * All rights reserved. * * This material is based upon work partially supported by The * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * npfctl(8) building of the configuration. */ #include __RCSID("$NetBSD: npf_build.c,v 1.44.4.1 2019/04/19 09:10:49 martin Exp $"); #include #include #include #define __FAVOR_BSD #include #include #include #include #include #include #include #include #include #include #include #include "npfctl.h" #define MAX_RULE_NESTING 16 static nl_config_t * npf_conf = NULL; static bool npf_debug = false; static nl_rule_t * the_rule = NULL; static nl_rule_t * current_group[MAX_RULE_NESTING]; static unsigned rule_nesting_level = 0; static nl_rule_t * defgroup = NULL; static unsigned npfctl_tid_counter = 0; static void npfctl_dump_bpf(struct bpf_program *); void npfctl_config_init(bool debug) { npf_conf = npf_config_create(); if (npf_conf == NULL) { errx(EXIT_FAILURE, "npf_config_create failed"); } npf_debug = debug; memset(current_group, 0, sizeof(current_group)); } int npfctl_config_send(int fd, const char *out) { npf_error_t errinfo; int error = 0; if (!defgroup) { errx(EXIT_FAILURE, "default group was not defined"); } npf_rule_insert(npf_conf, NULL, defgroup); if (out) { printf("\nSaving to %s\n", out); npfctl_config_save(npf_conf, out); } else { error = npf_config_submit(npf_conf, fd, &errinfo); } if (error == EEXIST) { /* XXX */ errx(EXIT_FAILURE, "(re)load failed: " "some table has a duplicate entry?"); } if (error) { npfctl_print_error(&errinfo); } npf_config_destroy(npf_conf); return error; } void npfctl_config_save(nl_config_t *ncf, const char *outfile) { void *blob; size_t len; int fd; blob = npf_config_export(ncf, &len); if (!blob) err(EXIT_FAILURE, "npf_config_export"); if ((fd = open(outfile, O_CREAT | O_TRUNC | O_WRONLY, 0644)) == -1) err(EXIT_FAILURE, "could not open %s", outfile); if (write(fd, blob, len) != (ssize_t)len) { err(EXIT_FAILURE, "write to %s failed", outfile); } free(blob); close(fd); } nl_config_t * npfctl_config_ref(void) { return npf_conf; } nl_rule_t * npfctl_rule_ref(void) { return the_rule; } bool npfctl_debug_addif(const char *ifname) { const char tname[] = "npftest"; const size_t tnamelen = sizeof(tname) - 1; if (npf_debug) { _npf_debug_addif(npf_conf, ifname); return strncmp(ifname, tname, tnamelen) == 0; } return 0; } unsigned npfctl_table_getid(const char *name) { unsigned tid = (unsigned)-1; nl_table_t *tl; /* XXX dynamic ruleset */ if (!npf_conf) { return (unsigned)-1; } /* XXX: Iterating all as we need to rewind for the next call. */ while ((tl = npf_table_iterate(npf_conf)) != NULL) { const char *tname = npf_table_getname(tl); if (strcmp(tname, name) == 0) { tid = npf_table_getid(tl); } } return tid; } static in_port_t npfctl_get_singleport(const npfvar_t *vp) { port_range_t *pr; in_port_t *port; if (npfvar_get_count(vp) > 1) { yyerror("multiple ports are not valid"); } pr = npfvar_get_data(vp, NPFVAR_PORT_RANGE, 0); if (pr->pr_start != pr->pr_end) { yyerror("port range is not valid"); } port = &pr->pr_start; return *port; } static fam_addr_mask_t * npfctl_get_singlefam(const npfvar_t *vp) { if (npfvar_get_count(vp) > 1) { yyerror("multiple addresses are not valid"); } return npfvar_get_data(vp, NPFVAR_FAM, 0); } static bool npfctl_build_fam(npf_bpf_t *ctx, sa_family_t family, fam_addr_mask_t *fam, int opts) { /* * If family is specified, address does not match it and the * address is extracted from the interface, then simply ignore. * Otherwise, address of invalid family was passed manually. */ if (family != AF_UNSPEC && family != fam->fam_family) { if (!fam->fam_ifindex) { yyerror("specified address is not of the required " "family %d", family); } return false; } family = fam->fam_family; if (family != AF_INET && family != AF_INET6) { yyerror("family %d is not supported", family); } /* * Optimise 0.0.0.0/0 case to be NOP. Otherwise, address with * zero mask would never match and therefore is not valid. */ if (fam->fam_mask == 0) { static const npf_addr_t zero; /* must be static */ if (memcmp(&fam->fam_addr, &zero, sizeof(npf_addr_t))) { yyerror("filter criterion would never match"); } return false; } npfctl_bpf_cidr(ctx, opts, family, &fam->fam_addr, fam->fam_mask); return true; } static void npfctl_build_vars(npf_bpf_t *ctx, sa_family_t family, npfvar_t *vars, int opts) { const int type = npfvar_get_type(vars, 0); size_t i; npfctl_bpf_group(ctx); for (i = 0; i < npfvar_get_count(vars); i++) { void *data = npfvar_get_data(vars, type, i); assert(data != NULL); switch (type) { case NPFVAR_FAM: { fam_addr_mask_t *fam = data; npfctl_build_fam(ctx, family, fam, opts); break; } case NPFVAR_PORT_RANGE: { port_range_t *pr = data; npfctl_bpf_ports(ctx, opts, pr->pr_start, pr->pr_end); break; } case NPFVAR_TABLE: { u_int tid; memcpy(&tid, data, sizeof(u_int)); npfctl_bpf_table(ctx, opts, tid); break; } default: assert(false); } } npfctl_bpf_endgroup(ctx, (opts & MATCH_INVERT) != 0); } static void npfctl_build_proto(npf_bpf_t *ctx, sa_family_t family, const opt_proto_t *op) { const npfvar_t *popts = op->op_opts; const int proto = op->op_proto; /* IP version and/or L4 protocol matching. */ if (family != AF_UNSPEC || proto != -1) { npfctl_bpf_proto(ctx, family, proto); } switch (proto) { case IPPROTO_TCP: /* Build TCP flags matching (optional). */ if (popts) { uint8_t *tf, *tf_mask; assert(npfvar_get_count(popts) == 2); tf = npfvar_get_data(popts, NPFVAR_TCPFLAG, 0); tf_mask = npfvar_get_data(popts, NPFVAR_TCPFLAG, 1); npfctl_bpf_tcpfl(ctx, *tf, *tf_mask, false); } break; case IPPROTO_ICMP: case IPPROTO_ICMPV6: /* Build ICMP/ICMPv6 type and/or code matching. */ if (popts) { int *icmp_type, *icmp_code; assert(npfvar_get_count(popts) == 2); icmp_type = npfvar_get_data(popts, NPFVAR_ICMP, 0); icmp_code = npfvar_get_data(popts, NPFVAR_ICMP, 1); npfctl_bpf_icmp(ctx, *icmp_type, *icmp_code); } break; default: /* No options for other protocols. */ break; } } static bool npfctl_build_code(nl_rule_t *rl, sa_family_t family, const opt_proto_t *op, const filt_opts_t *fopts) { bool noproto, noaddrs, noports, nostate, need_tcpudp = false; const addr_port_t *apfrom = &fopts->fo_from; const addr_port_t *apto = &fopts->fo_to; const int proto = op->op_proto; npf_bpf_t *bc; unsigned opts; size_t len; /* If none specified, then no byte-code. */ noproto = family == AF_UNSPEC && proto == -1 && !op->op_opts; noaddrs = !apfrom->ap_netaddr && !apto->ap_netaddr; noports = !apfrom->ap_portrange && !apto->ap_portrange; nostate = !(npf_rule_getattr(rl) & NPF_RULE_STATEFUL); if (noproto && noaddrs && noports && nostate) { return false; } /* * Sanity check: ports can only be used with TCP or UDP protocol. * No filter options are supported for other protocols, only the * IP addresses are allowed. */ if (!noports) { switch (proto) { case IPPROTO_TCP: case IPPROTO_UDP: break; case -1: need_tcpudp = true; break; default: yyerror("invalid filter options for protocol %d", proto); } } bc = npfctl_bpf_create(); /* Build layer 4 protocol blocks. */ npfctl_build_proto(bc, family, op); /* * If this is a stateful rule and TCP flags are not specified, * then add "flags S/SAFR" filter for TCP protocol case. */ if ((npf_rule_getattr(rl) & NPF_RULE_STATEFUL) != 0 && (proto == -1 || (proto == IPPROTO_TCP && !op->op_opts))) { npfctl_bpf_tcpfl(bc, TH_SYN, TH_SYN | TH_ACK | TH_FIN | TH_RST, proto == -1); } /* Build IP address blocks. */ opts = MATCH_SRC | (fopts->fo_finvert ? MATCH_INVERT : 0); npfctl_build_vars(bc, family, apfrom->ap_netaddr, opts); opts = MATCH_DST | (fopts->fo_tinvert ? MATCH_INVERT : 0); npfctl_build_vars(bc, family, apto->ap_netaddr, opts); /* Build port-range blocks. */ if (need_tcpudp) { /* TCP/UDP check for the ports. */ npfctl_bpf_group(bc); npfctl_bpf_proto(bc, AF_UNSPEC, IPPROTO_TCP); npfctl_bpf_proto(bc, AF_UNSPEC, IPPROTO_UDP); npfctl_bpf_endgroup(bc, false); } npfctl_build_vars(bc, family, apfrom->ap_portrange, MATCH_SRC); npfctl_build_vars(bc, family, apto->ap_portrange, MATCH_DST); /* Set the byte-code marks, if any. */ const void *bmarks = npfctl_bpf_bmarks(bc, &len); if (npf_rule_setinfo(rl, bmarks, len) == -1) { errx(EXIT_FAILURE, "npf_rule_setinfo failed"); } /* Complete BPF byte-code and pass to the rule. */ struct bpf_program *bf = npfctl_bpf_complete(bc); if (bf == NULL) { npfctl_bpf_destroy(bc); return true; } len = bf->bf_len * sizeof(struct bpf_insn); if (npf_rule_setcode(rl, NPF_CODE_BPF, bf->bf_insns, len) == -1) { errx(EXIT_FAILURE, "npf_rule_setcode failed"); } npfctl_dump_bpf(bf); npfctl_bpf_destroy(bc); return true; } static void npfctl_build_pcap(nl_rule_t *rl, const char *filter) { const size_t maxsnaplen = 64 * 1024; struct bpf_program bf; size_t len; if (pcap_compile_nopcap(maxsnaplen, DLT_RAW, &bf, filter, 1, PCAP_NETMASK_UNKNOWN) == -1) { yyerror("invalid pcap-filter(7) syntax"); } len = bf.bf_len * sizeof(struct bpf_insn); if (npf_rule_setcode(rl, NPF_CODE_BPF, bf.bf_insns, len) == -1) { errx(EXIT_FAILURE, "npf_rule_setcode failed"); } npfctl_dump_bpf(&bf); pcap_freecode(&bf); } static void npfctl_build_rpcall(nl_rproc_t *rp, const char *name, npfvar_t *args) { npf_extmod_t *extmod; nl_ext_t *extcall; int error; extmod = npf_extmod_get(name, &extcall); if (extmod == NULL) { yyerror("unknown rule procedure '%s'", name); } for (size_t i = 0; i < npfvar_get_count(args); i++) { const char *param, *value; proc_param_t *p; p = npfvar_get_data(args, NPFVAR_PROC_PARAM, i); param = p->pp_param; value = p->pp_value; error = npf_extmod_param(extmod, extcall, param, value); switch (error) { case EINVAL: yyerror("invalid parameter '%s'", param); default: break; } } error = npf_rproc_extcall(rp, extcall); if (error) { yyerror(error == EEXIST ? "duplicate procedure call" : "unexpected error"); } } /* * npfctl_build_rproc: create and insert a rule procedure. */ void npfctl_build_rproc(const char *name, npfvar_t *procs) { nl_rproc_t *rp; size_t i; rp = npf_rproc_create(name); if (rp == NULL) { errx(EXIT_FAILURE, "%s failed", __func__); } npf_rproc_insert(npf_conf, rp); for (i = 0; i < npfvar_get_count(procs); i++) { proc_call_t *pc = npfvar_get_data(procs, NPFVAR_PROC, i); npfctl_build_rpcall(rp, pc->pc_name, pc->pc_opts); } } void npfctl_build_maprset(const char *name, int attr, const char *ifname) { const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT); nl_rule_t *rl; /* If no direction is not specified, then both. */ if ((attr & attr_di) == 0) { attr |= attr_di; } /* Allow only "in/out" attributes. */ attr = NPF_RULE_GROUP | NPF_RULE_GROUP | (attr & attr_di); rl = npf_rule_create(name, attr, ifname); npf_nat_insert(npf_conf, rl, NPF_PRI_LAST); } /* * npfctl_build_group: create a group, insert into the global ruleset, * update the current group pointer and increase the nesting level. */ void npfctl_build_group(const char *name, int attr, const char *ifname, bool def) { const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT); nl_rule_t *rl; if (def || (attr & attr_di) == 0) { attr |= attr_di; } rl = npf_rule_create(name, attr | NPF_RULE_GROUP, ifname); npf_rule_setprio(rl, NPF_PRI_LAST); if (def) { if (defgroup) { yyerror("multiple default groups are not valid"); } if (rule_nesting_level) { yyerror("default group can only be at the top level"); } defgroup = rl; } else { nl_rule_t *cg = current_group[rule_nesting_level]; npf_rule_insert(npf_conf, cg, rl); } /* Set the current group and increase the nesting level. */ if (rule_nesting_level >= MAX_RULE_NESTING) { yyerror("rule nesting limit reached"); } current_group[++rule_nesting_level] = rl; } void npfctl_build_group_end(void) { assert(rule_nesting_level > 0); current_group[rule_nesting_level--] = NULL; } /* * npfctl_build_rule: create a rule, build byte-code from filter options, * if any, and insert into the ruleset of current group, or set the rule. */ void npfctl_build_rule(uint32_t attr, const char *ifname, sa_family_t family, const opt_proto_t *op, const filt_opts_t *fopts, const char *pcap_filter, const char *rproc) { nl_rule_t *rl; attr |= (npf_conf ? 0 : NPF_RULE_DYNAMIC); rl = npf_rule_create(NULL, attr, ifname); if (pcap_filter) { npfctl_build_pcap(rl, pcap_filter); } else { npfctl_build_code(rl, family, op, fopts); } if (rproc) { npf_rule_setproc(rl, rproc); } if (npf_conf) { nl_rule_t *cg = current_group[rule_nesting_level]; if (rproc && !npf_rproc_exists_p(npf_conf, rproc)) { yyerror("rule procedure '%s' is not defined", rproc); } assert(cg != NULL); npf_rule_setprio(rl, NPF_PRI_LAST); npf_rule_insert(npf_conf, cg, rl); } else { /* We have parsed a single rule - set it. */ the_rule = rl; } } /* * npfctl_build_nat: create a single NAT policy of a specified * type with a given filter options. */ static nl_nat_t * npfctl_build_nat(int type, const char *ifname, const addr_port_t *ap, const opt_proto_t *op, const filt_opts_t *fopts, u_int flags) { const opt_proto_t def_op = { .op_proto = -1, .op_opts = NULL }; fam_addr_mask_t *am = npfctl_get_singlefam(ap->ap_netaddr); in_port_t port; nl_nat_t *nat; if (ap->ap_portrange) { port = npfctl_get_singleport(ap->ap_portrange); flags &= ~NPF_NAT_PORTMAP; flags |= NPF_NAT_PORTS; } else { port = 0; } if (!op) { op = &def_op; } nat = npf_nat_create(type, flags, ifname, am->fam_family, &am->fam_addr, am->fam_mask, port); npfctl_build_code(nat, am->fam_family, op, fopts); npf_nat_insert(npf_conf, nat, NPF_PRI_LAST); return nat; } /* * npfctl_build_natseg: validate and create NAT policies. */ void npfctl_build_natseg(int sd, int type, const char *ifname, const addr_port_t *ap1, const addr_port_t *ap2, const opt_proto_t *op, const filt_opts_t *fopts, u_int algo) { fam_addr_mask_t *am1 = NULL, *am2 = NULL; nl_nat_t *nt1 = NULL, *nt2 = NULL; filt_opts_t imfopts; uint16_t adj = 0; u_int flags; bool binat; assert(ifname != NULL); /* * Bi-directional NAT is a combination of inbound NAT and outbound * NAT policies with the translation segments inverted respectively. */ binat = (NPF_NATIN | NPF_NATOUT) == type; switch (sd) { case NPFCTL_NAT_DYNAMIC: /* * Dynamic NAT: traditional NAPT is expected. Unless it * is bi-directional NAT, perform port mapping. */ flags = !binat ? (NPF_NAT_PORTS | NPF_NAT_PORTMAP) : 0; break; case NPFCTL_NAT_STATIC: /* Static NAT: mechanic translation. */ flags = NPF_NAT_STATIC; break; default: abort(); } /* * Validate the mappings and their configuration. */ if ((type & NPF_NATIN) != 0) { if (!ap1->ap_netaddr) yyerror("inbound network segment is not specified"); am1 = npfctl_get_singlefam(ap1->ap_netaddr); } if ((type & NPF_NATOUT) != 0) { if (!ap2->ap_netaddr) yyerror("outbound network segment is not specified"); am2 = npfctl_get_singlefam(ap2->ap_netaddr); } switch (algo) { case NPF_ALGO_NPT66: if (am1 == NULL || am2 == NULL) yyerror("1:1 mapping of two segments must be " "used for NPTv6"); if (am1->fam_mask != am2->fam_mask) yyerror("asymmetric translation is not supported"); adj = npfctl_npt66_calcadj(am1->fam_mask, &am1->fam_addr, &am2->fam_addr); break; default: if ((am1 && am1->fam_mask != NPF_NO_NETMASK) || (am2 && am2->fam_mask != NPF_NO_NETMASK)) yyerror("net-to-net translation is not supported"); break; } /* * If the filter criteria is not specified explicitly, apply implicit * filtering according to the given network segments. * * Note: filled below, depending on the type. */ if (__predict_true(!fopts)) { fopts = &imfopts; } if (type & NPF_NATIN) { memset(&imfopts, 0, sizeof(filt_opts_t)); memcpy(&imfopts.fo_to, ap2, sizeof(addr_port_t)); nt1 = npfctl_build_nat(NPF_NATIN, ifname, ap1, op, fopts, flags); } if (type & NPF_NATOUT) { memset(&imfopts, 0, sizeof(filt_opts_t)); memcpy(&imfopts.fo_from, ap1, sizeof(addr_port_t)); nt2 = npfctl_build_nat(NPF_NATOUT, ifname, ap2, op, fopts, flags); } if (algo == NPF_ALGO_NPT66) { npf_nat_setnpt66(nt1, ~adj); npf_nat_setnpt66(nt2, adj); } } /* * npfctl_fill_table: fill NPF table with entries from a specified file. */ static void npfctl_fill_table(nl_table_t *tl, u_int type, const char *fname) { struct cdbw *cdbw = NULL; /* XXX: gcc */ char *buf = NULL; int l = 0; FILE *fp; size_t n; if (type == NPF_TABLE_CDB && (cdbw = cdbw_open()) == NULL) { err(EXIT_FAILURE, "cdbw_open"); } fp = fopen(fname, "r"); if (fp == NULL) { err(EXIT_FAILURE, "open '%s'", fname); } while (l++, getline(&buf, &n, fp) != -1) { fam_addr_mask_t fam; int alen; if (*buf == '\n' || *buf == '#') { continue; } if (!npfctl_parse_cidr(buf, &fam, &alen)) { errx(EXIT_FAILURE, "%s:%d: invalid table entry", fname, l); } if (type != NPF_TABLE_TREE && fam.fam_mask != NPF_NO_NETMASK) { errx(EXIT_FAILURE, "%s:%d: mask used with the " "non-tree table", fname, l); } /* * Create and add a table entry. */ if (type == NPF_TABLE_CDB) { const npf_addr_t *addr = &fam.fam_addr; if (cdbw_put(cdbw, addr, alen, addr, alen) == -1) { err(EXIT_FAILURE, "cdbw_put"); } } else { npf_table_add_entry(tl, fam.fam_family, &fam.fam_addr, fam.fam_mask); } } if (buf != NULL) { free(buf); } if (type == NPF_TABLE_CDB) { struct stat sb; char sfn[32]; void *cdb; int fd; strncpy(sfn, "/tmp/npfcdb.XXXXXX", sizeof(sfn)); sfn[sizeof(sfn) - 1] = '\0'; if ((fd = mkstemp(sfn)) == -1) { err(EXIT_FAILURE, "mkstemp"); } unlink(sfn); if (cdbw_output(cdbw, fd, "npf-table-cdb", NULL) == -1) { err(EXIT_FAILURE, "cdbw_output"); } cdbw_close(cdbw); if (fstat(fd, &sb) == -1) { err(EXIT_FAILURE, "fstat"); } if ((cdb = mmap(NULL, sb.st_size, PROT_READ, MAP_FILE | MAP_PRIVATE, fd, 0)) == MAP_FAILED) { err(EXIT_FAILURE, "mmap"); } npf_table_setdata(tl, cdb, sb.st_size); close(fd); } } /* * npfctl_build_table: create an NPF table, add to the configuration and, * if required, fill with contents from a file. */ void npfctl_build_table(const char *tname, u_int type, const char *fname) { nl_table_t *tl; tl = npf_table_create(tname, npfctl_tid_counter++, type); assert(tl != NULL); if (npf_table_insert(npf_conf, tl)) { yyerror("table '%s' is already defined", tname); } if (fname) { npfctl_fill_table(tl, type, fname); } else if (type == NPF_TABLE_CDB) { errx(EXIT_FAILURE, "tables of cdb type must be static"); } } npfvar_t * npfctl_ifnet_table(const char *ifname) { char tname[NPF_TABLE_MAXNAMELEN]; nl_table_t *tl; u_int tid; snprintf(tname, sizeof(tname), ".ifnet-%s", ifname); tid = npfctl_table_getid(tname); if (tid == (unsigned)-1) { tid = npfctl_tid_counter++; tl = npf_table_create(tname, tid, NPF_TABLE_TREE); (void)npf_table_insert(npf_conf, tl); } return npfvar_create_element(NPFVAR_TABLE, &tid, sizeof(u_int)); } /* * npfctl_build_alg: create an NPF application level gateway and add it * to the configuration. */ void npfctl_build_alg(const char *al_name) { if (_npf_alg_load(npf_conf, al_name) != 0) { errx(EXIT_FAILURE, "ALG '%s' already loaded", al_name); } } static void npfctl_dump_bpf(struct bpf_program *bf) { if (npf_debug) { extern char *yytext; extern int yylineno; int rule_line = yylineno - (int)(*yytext == '\n'); printf("\nRULE AT LINE %d\n", rule_line); bpf_dump(bf, 0); } }